2. (40 points) For each of the following state if it's REGULAR or NOT REGULAR. If it's REGULAR then give a DFA or REGEX for it. If it's NOT REGULAR then prove that.
Recall that $n_{a}(w)$ is the Number of a 's in w. Also, recall that N (natural numbers) denotes the set of nonnegative integers.
(a) (8 points) (Alphabet is $\{a\}$.)

$$
\left\{a^{n} a^{n} \mid n \in \mathrm{~N}\right\}
$$

Regular:

(b) (8 points) (Alphabet is $\{a, b\}$.) Here, x^{R} denotes the reverse of a string (so $\left.(a a b)^{R}=b a a\right)$.

$$
\left\{x y x^{R} \mid x, y \in\{a, b\}^{*}\right\}
$$

Regular (x can be the empty string, and thus any y is accepted):

(c) (8 points) (Alphabet is $\{a\}$.)

$$
\left\{a^{\left[\log _{2}(n+1)\right\rceil} \mid n \in \mathbf{N}\right\}
$$

Regular (all natural numbers can be expressed as $\left\lceil\log _{2}(n+1)\right\rceil$):

