Closure of Regular Langs Under Union, Intersection, Complementation, and Projection Exposition by William Gasarch

1 Introduction

We give the constructions that show sketch the proof that all if L_{1} and L_{2} are regular and $L_{1} \cap L_{2}, L_{1} \cup L_{2}, \bar{L}$, and $\operatorname{proj}(L)$ (which we will define) are regular.

Def 1.1 A DFA is a tuple $(Q, \Sigma, \delta, s, F)$ where $\delta: Q \times \Sigma \rightarrow Q$.
We define running a DFA M on a string x in the obvious way. If the DFA ends in a state in F then x is accepted. Otherwise its rejected.

2 Closure Under Intersection

Theorem 2.1 If L_{1} and L_{2} are regular then $L_{1} \cap L_{2}$ is regular.

Proof:

Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ be the DFA for L_{1}. Let $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ be the DFA for L_{2}.

We define a DFA for $L_{1} \cap L_{2}$. Let $M=\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F_{1} \times F_{2}\right)$ where δ is defines by, for $\left(q_{1}, q_{2}\right) \in Q_{1} \times Q_{2}$ and $\sigma \in \Sigma$,

$$
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right) .
$$

The intuition is that the DFA M runs M_{1} and M_{2} at the same time. If both end up in $F_{1} \times F_{2}$ then both M_{1} and M_{2} accepted.

3 Closure Under Union

Theorem 3.1 If L_{1} and L_{2} are regular then $L_{1} \cup L_{2}$ is regular.

Proof:

Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ be the DFA for L_{1}. Let $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ be the DFA for L_{2}.

We define a DFA for $L_{1} \cup L_{2}$. Let $M=\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F_{1} \times Q_{2} \cup Q_{1} \times F_{2}\right)$ where δ is defines by, for $\left(q_{1}, q_{2}\right) \in Q_{1} \times Q_{2}$ and $\sigma \in \Sigma$,

$$
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right) .
$$

The intuition is that the DFA M runs M_{1} and M_{2} at the same time. If M_{1} ends up in F_{1} then we accept (independent of what M_{2} does), and if M_{2} ends up in F_{2} then we accept (independent of what M_{1} does).

4 Closure Under Complementation

Theorem 4.1 If L is regular then \bar{L} is regular.

Proof:

Let $M=(Q, \Sigma, \delta, s, F)$ be the DFA for L.
We define a DFA for \bar{L}. Let $M^{\prime}=(Q, \Sigma, \delta, s, Q-F)$ (recall that $Q-F=\{q \mid q \in Q \wedge q \notin$ $F\}$.

The intuition is that the DFA M^{\prime} runs M but does the opposite when it comes to accepting.

5 Closure Under Complimentation

To Compliment a DFA you say
DFA, I admire your states!

6 NDFA's and DFA's

Recall the definition of an NDFA:
Def 6.1 An NDFA is a tuple $(Q, \Sigma, \Delta, s, F)$ where $\Delta: Q \times(\Sigma \cup e) \rightarrow 2^{Q}$. (Recall that 2^{Q} is the powerset of Q.

We DO NOT define running an NDFA M on a string x. Instead we say that an NDFA accepts x if SOME way of running the machine ends up in a state in F.

Theorem 6.2 If L is accepted by an NDFA then there exists a DFA such that accepts L.
Proof: Let $M=(Q, \Sigma, \Delta, s, F)$ be the NDFA for L.
We define a DFA for L. Let $M^{\prime}=\left(2^{Q}, \Sigma, \delta, s, \mathcal{F}\right)$ where for $A \in 2^{Q}$ and $\sigma \in \Sigma$,

$$
\delta(A, \sigma)=\bigcup_{q \in A} \Delta\left(e^{a} q e^{b}, \sigma\right)
$$

(The e^{a} and e^{b} are strings of the empty string.)

$$
\mathcal{F}=\{A \mid A \cap F \neq \emptyset\}
$$

The intuition is that the DFA M^{\prime} runs ALL possibilities for M. If SOME possibility ends up accepting, then accept.

7 Closure under Projection

Notation 7.1 Let $\Sigma=\{0,1\}^{n}$. Note that each element of Σ is itself a string of n bits. If $x \in \Sigma^{*}$ then $\operatorname{proj}(x)$ is what you get by taking each symbol in x and chopping off the last bit. So if $x \in\left(\{0,1\}^{n}\right)^{*}$ then $\operatorname{proj}(x) \in\left(\{0,1\}^{n-1}\right)^{*}$. If $L \subseteq\left(\{0,1\}^{n}\right)^{*}$ then

$$
\operatorname{proj}(L)=\{\operatorname{proj}(x) \mid x \in L\} .
$$

Theorem 7.2 If L is regular than proj (L) is regular.
Proof: Let $M=\left(Q,\left(\{0,1\}^{n}\right), \delta, s, F\right)$ be the DFA for L.
We define an NDFA for L. Let $M^{\prime}=\left(Q,\{0,1\}^{n-1}, \Delta, s, F\right)$. For $q \in Q$ and $\sigma \in\{0,1\}^{n-1}$

$$
\Delta(q, \sigma)=\{\delta(q, \sigma 0), \delta(q, \sigma 1)\} .
$$

8 Closure under Concatenation

Theorem 8.1 If L_{1} and L_{2} are regular then $L_{1} L_{2}$ is regular.

Proof:

Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ be the DFA for L_{1}. Let $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ be the DFA for L_{2}. By relabelling we can assume $Q_{1} \cap Q_{2}=\emptyset$.

We define an NDFA for $L_{1} L_{2}$. By Theorem 6.2 we could then obtain a DFA for $L_{1} L_{2}$.
Let $M=\left(Q_{1} \cup Q_{2}, \Sigma, \delta, s_{1}, F_{2}\right)$ where δ is defines as follows:

- If $q_{1} \in Q_{1}$ and $\sigma \in \Sigma$ then $\delta\left(q_{1}, \sigma\right)=\delta_{1}\left(q_{1}, \sigma\right)$.
- If $q_{2} \in Q_{2}$ and $\sigma \in \Sigma$ then $\delta\left(q_{2}, \sigma\right)=\delta_{2}\left(q_{2}, \sigma\right)$.
- If $f_{1} \in F_{1}$ then $\delta\left(f_{1}, e\right)=s_{2}$

The intuition is that the NDFA M runs M_{1} and then nondeterministically hops to M_{2}. But the hop must be from $f_{1} \in F_{1}$ to $s_{2} \in Q_{2}$ and then the M_{2} must accept, so if w is accepted there must be SOME WAY to divide it $w=x y$ where $x \in L_{1}$ and $y \in L_{2}$.

9 Closure Under *

Theorem 9.1 If L is regular then L^{*} is regular.

Proof:

Let $M=(Q, \Sigma, \delta, s, F)$ be the DFA for L.
We define an NDFA for L^{*}. LEAVE AS AN EXERCISE.

