NFA for $\left\{a^{y}: y \neq 1000\right\}$
 Exposition by William Gasarch-U of MD

1 Introduction

Let

$$
L=\left\{a^{y}: y \neq 1000\right\}
$$

It is easy to show that any DFA for L requires 1002 states.
We show that there is an NFA for L with substantially fewer states.

2 The Big Loop

Theorem:

1. For all $n \geq 992$ there exists $x, y \in N$ such that $n=32 x+33 y$.
2. There does not exist $x, y \in N$ such that $991=32 x+33 y$.

Proof:

a) We prove this by induction on n.

Base Case: $n=992.992=32 \times 31+33 \times 0$.
Ind Hyp: Assume that $n \geq 992$ and that there exists $x, y \in N$ such that $n=32 x+33 y$.
Ind Step: We have $n=32 x+33 y$. We want to get $n+1=32 x^{\prime}+33 y^{\prime}$. Thinking in terms of coins we want to either:

- Remove some 32 -cent coins, add some 33 -cent coins, and be up by 1 . In this case you need to HAVE some 32 cent coins. This one is easy- we need to remove a 32 -cent coin and add a 33 -cent coin. So we'll need at least 132 -cent coin.
- Remove some 33 -cent coins, add some 32 -cent coins, and be up by 1 . In this case you need to HAVE some 33 cent coins. This one is a bit harder- note that $33 \times 31=1023$ and $32 \times 32=1024$. So we want to remove 3133 -cent coins, and add 3232 -cent coins. We'll need to have ≥ 3133-cent coins.

These become two cases, and a third case to show that the first two are all that can happen.
Case 1: $x \geq 1$. Then

$$
n+1=32(x-1)+33(y+1)
$$

Case 2: $x=0$ and $y \geq 31$. Then

$$
\begin{gathered}
n=33 y \\
n+1=32 \times 32+33(y-31)
\end{gathered}
$$

(Note that $32^{2}-33 \times 31=1$ because more generally

$$
z^{2}-(z+1)(z-1)=1
$$

)
Case 3: $x \leq 0$ AND $y \leq 30$. Then

$$
n=32 x+33 y \leq 32 \times 0+33 \times 30=990<992
$$

This cannot happen. Hence Case 3 cannot occur.
b) Assume, by way of contradiction, that there exists $x, y \in N$ such that $991=32 x+33 y$.

Take the equation mod 32

$$
\begin{gathered}
991 \equiv 0 \times x+1 \times y \quad(\bmod 32) \\
31 \equiv y \quad(\bmod 3) 2 .
\end{gathered}
$$

So $y \geq 31$. So

$$
991=32 x+33 y \geq 31 \times 0+33 \times 31=1023
$$

This is a contradiction.

End of Proof

The following corollary of the theorem above is easy:

Corollary:

1. For all $n \geq 1001$ there exists $x, y \in N$ such that $n=32 x+33 y+9$.
2. There does not exist $x, y \in N$ such that $1000=32 x+33 y+9$.

Theorem: There exist an NDFA M on 42 states such that the following is true:

1. For all $n \geq 1001, M$ accepts a^{n}.
2. M does not accepts a^{1000}.
3. We have NO COMMENT on the behaviour of M on a^{i} for $i \leq 999$.

Proof:

The NFA has a start state and then a string of 9 states, so that state 0 is the start state
state 1 is the next state- you are here if input is a^{1}.
\vdots
state 9 is the next state- you are here if input is a^{9}.
(States $0,1,2,3,4,5,6,7,8$ are reject states, though we could make the accept. State 9 is accept and this is important.)

From State 9 there is a loop that goes through 32 states and then comes back to state 9 . So far this NFA accepts multiples of 33 . But we then put in a shortcut so that from state 31 go straight to state 9 . We now see that a^{n} is accepted iff

$$
n=32 x+33 y+9
$$

By the Corollary, this NFA has the behaviour we want.

End of Proof

3 The Smaller Loops

Theorem: There exist an NDFA M^{\prime} on 25 states such that the following is true:

1. For all $n \leq 999, M$ accepts a^{n}.
2. M does not accepts a^{1000}.
3. We have NO COMMENT on the behavior of M on a^{i} for $i \geq 1001$.

Proof:

The NFA has a start state and then an e-transition to four different NFAs which we describe.

1. A 4-loop such that we accept all strings a^{n} such that $n \not \equiv 0(\bmod 4)$, which we rewrite as $n \not \equiv 1000(\bmod 4)$.
2. A 5 -loop such that we accept all strings a^{n} such that $n \not \equiv 0(\bmod 5)$, which we rewrite as $n \not \equiv 1000(\bmod 5)$.
3. A 7 -loop such that we accept all strings a^{n} such that $n \not \equiv 6(\bmod 7)$, which we rewrite as $n \not \equiv 1000(\bmod 7)$.
4. A 9-loop such that we accept all strings a^{n} such that $n \not \equiv 1(\bmod 9)$, which we rewrite as $n \not \equiv 1000(\bmod 9)$.

Let $n \leq 1000$ and a^{n} rejected by M^{\prime}. We show that $n=1000$.
Since a^{n} is rejected all four branches reject it. Hence
$n \equiv 1000(\bmod 4)$.
$n \equiv 1000(\bmod 5)$.
$n \equiv 1000(\bmod 7)$.
$n \equiv 1000(\bmod 9)$.
We leave it to the reader to show that, given the above,
$n \equiv 1000(\bmod 4 \times 5 \times 7 \times 9)$
$n \equiv 1000(\bmod 1260)$
Since $n \leq 1000$ and $n \equiv 1000(\bmod 1260), n=1000$.

End of Proof

4 A Small NFA for $\left\{a^{y}: y \neq 1000\right\}$

The following NFA accepts L : from the start state there are 5 e-transitions, one to the Big Loop, the rest to the four small loops from the last theorem.

If a^{n} is rejected then

- From the big loop we know that $n \leq 1000$.
- From the four small loops we know that $n=1000$.

The NFA has $1+41+4+5+7+9=67$ states.
We can make it a bit smaller. The big loop first went through 9 states. You could instead have the start state be the 9th state of the loop rather than the first. So we can get htis down to 58 .

Can we do better? Unknown to science!

