Solution to Spring 2019 Midterm 2019

William Gasarch-U of MD

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Problem 1

For each of the following languages say if it's REGULAR or NOT REGULAR. If REGULAR then draw a DFA or give a regular expression for it.

(NOTE — I REALLY WANT the DFA or REGULAR expression for it!!!!!!!!!!!) If NOT REGULAR then prove it is not regular.

Alphabet is $\{a, b\}$ and $N = \{0, 1, 2, ...\}$.

Added For Spring 2020 Class If not regular than is it CFL?

Problem 1a

 $L_1 = \{a^n b^m \mid n, m \in \mathbb{N}\}$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Problem 1a

$$L_1 = \{a^n b^m \mid n, m \in \mathbb{N}\}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

REGULAR This is just a^*b^* . DFA omitted but its easy.

Problem 1b

$$L_2 = \{a, b\}^* - L_1.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

(In other words, all strings that are NOT in $L_{1.}$)

Problem 1b

$$L_2 = \{a, b\}^* - L_1.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

(In other words, all strings that are NOT in $L_{1.}$) REGULAR: Discuss- What is easier DFA or REGEX?

Problem 1b

$$L_2 = \{a, b\}^* - L_1.$$

(In other words, all strings that are NOT in $L_{1.}$) REGULAR: Discuss- What is easier DFA or REGEX?

REGEX for it: $\{a, b\}^* ba\{a, b\}^*$. Could also do a DFA for a^*b^* and swap final and nonfinal states.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

$$L_3 = \{a^n b^m \mid n \ge 2m\}$$

$$L_3 = \{a^n b^m \mid n \ge 2m\}$$

NOT REGULAR

$$L_3 = \{a^n b^m \mid n \ge 2m\}$$

NOT REGULAR

Let $w = a^{2n}b^n$. By ZW Pumping Lemma we can make sure the xy is within the a's, so the y is within the a's.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

$$w = xyz$$
.
 $x = a^{n_1}, y = a^{n_2}, z = a^{n_3}b^n$ where: $n_2 \neq 0$.
 $w = xyz$.
 $x = a^{n_1}, y = a^{n_2}, z = a^{n_3}b^{2n}$ where: $n_1 + n_2 + n_3 = 2n$
We know that $\forall i \ge 0, xy^i z \in L$.

$$L_3 = \{a^n b^m \mid n \ge 2m\}$$

NOT REGULAR

Let $w = a^{2n}b^n$. By ZW Pumping Lemma we can make sure the xy is within the a's, so the y is within the a's.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

$$w = xyz.$$

$$x = a^{n_1}, y = a^{n_2}, z = a^{n_3}b^n \text{ where: } n_2 \neq 0.$$

$$w = xyz.$$

$$x = a^{n_1}, y = a^{n_2}, z = a^{n_3}b^{2n} \text{ where: } n_1 + n_2 + n_3 = 2n$$
We know that $\forall i \ge 0, xy^i z \in L.$

Take
$$i = 0$$
: to get $a^{n_1+n_3}b^n$.
Since $n_2 \neq 0$, $n_1 + n_3 < n_1 + n_2 + n_3 < 2n$, so NOT in *L*.

Problem 1c, Possible Alternative

$$L_3 = \{a^n b^m \mid n \ge 2m\}$$

NOT REGULAR We used ZW PL with i = 0. Is there another way to prove it?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Problem 1c, Possible Alternative

$$L_3 = \{a^n b^m \mid n \geq 2m\}$$

NOT REGULAR We used ZW PL with i = 0. Is there another way to prove it?

YES. The WZ PL. This is just ZW backwards. Rather than force |xy| to be small, you can instead force |yz| to be small. Then you could force |yz| to be within the *b*'s.

We omit details, work out a proof of WZ theorem yourself and a proof that L_3 is not regular using it.

Problem 1c, CFL part

Back to our problem.

$$L_3 = \{a^n b^m \mid n \ge 2m\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

We showed L_3 not regular. Is L_3 context free?

Problem 1c, CFL part

Back to our problem.

 $L_{3} = \{a^{n}b^{m} \mid n \geq 2m\}$ We showed L_{3} not regular. Is L_{3} context free? YES: $S \rightarrow XY$ $Y \rightarrow aaYb$ $Y \rightarrow e$ $X \rightarrow aX$ $X \rightarrow e$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Problem 1d

$$L_4 = \{a, b\}^* - L_3.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

(In other words, all strings that are NOT in L_3 .) NOT REGULAR If L_4 was regular than, since regular is closed under Comp, L_3 would be regular. Problem 1d, CFL Part

$$L_4 = \{a, b\}^* - L_3.$$

Is L₄ Context Free?

Problem 1d, CFL Part

$$L_4 = \{a, b\}^* - L_3.$$

Is L_4 Context Free? YES. L_4 is the union of the following CFL's

1. $\{a, b\}^* ba\{a, b\}^a$ (This one is easy and we leave to you.)

2. $\{a^n b^m \mid n < 2m\}$. We discuss how this is CFL.

Problem 1d, CFL Part

$$L_4 = \{a, b\}^* - L_3.$$

Is L_4 Context Free? YES. L_4 is the union of the following CFL's

{a, b}*ba{a, b}^a (This one is easy and we leave to you.)
 {aⁿb^m | n < 2m}. We discuss how this is CFL.

2. $\{a, b\} \in \{1, 2, 2, 3\}$. We discuss now this is CFL.

 $\{a^nb^m \mid n < 2m\}$ is the union of the following CFL's

$$1. \{a^n b^m \mid n \le m\}.$$

 $2. \ \{a^n b^m \mid m \le n \le 2m\}.$

Problem 1d, CFL Part, Cont

CFL for
$$\{a^n b^m \mid n \le m\}$$
.
 $S \to XY$
 $X \to aSb$
 $Y \to bY$
 $Y \to e$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Problem 1d, CFL Part, Cont

CFL for $\{a^n b^m \mid m \le n \le 2m\}$. $S \rightarrow aSb$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- S
 ightarrow aSbb
- $S \to e$

Problem 4

Let $\Sigma = \{a, b\}$. L_1 is regular via DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$, L_2 is regular via DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$. Note that \$ is NOT in Σ . Construct a DFA for:

 $\{x\$y \mid x \in L_1 \text{ and } y \notin L_2\}$

using M_1 and M_2 . Briefly describe how your DFA is constructed. (NOTE- we are asking for a construction, not a drawing. Recall we did constructions with DFA's to prove that if L_1 and L_2 are regular than so are BLAH.)

NOTE- Do NOT give an NFA and say we can convert it to a DFA. I want the DFA! REMINDER: Your DFA must have, for every state q and alphabet symbol σ , $\delta(q, \sigma)$ defined.

Problem 4 SOLUTION

 $(Q_1 \cup Q_2 \cup \{\text{DUMP}\}, \Sigma \cup \{\$\}, \delta, s_1, Q_2 - F_2)$ Where δ is defined as follows: If $q \in Q_1$ and $\sigma \in \{a, b\}$ then $\delta(q, \sigma) = \delta_1(q, \sigma)$. If $q \in Q_1 - F_1$ then $\delta(q, \$) = \text{DUMP}$ If $q \in F_1$ then $\delta(q, \$) = s_2$ If $q \in Q_2$ and $\sigma \in \{a, b\}$ then $\delta(q, \sigma) = \delta_2(q, \sigma)$. If $q \in Q_2$ then $\delta(q, \$) = \text{DUMP}$. $\delta(\text{DUMP}, \sigma) = \text{DUMP}$ for $\sigma \in \{a, b, \$\}$.

ション ふゆ アメビア メロア しょうくしゃ

What Some Students Tried To Do

- Some students tried to do a cross product construction. I suspect they did the one thing I told students ℵ₀ times: do not memorize things and not copy things off of your cheat sheet. These students got 0.
- There was a mild ambiguity in the problem. We had y ∉ L₂. Do we mean {a, b}* - L₂ or {a, b, \$}* - L₂. We were happy with either interpretation. Almost everyone interpreted it as {a, b}* - L₂.
- Some students did not have a dead state. We let this one pass. We will not be so generous in the future. Why did you leave it out when I said explicitly that every δ(q, σ) has to be defined? These are the questions that try ones soul.
- Some students copied the L₁L₂ construction, so they had e instead of \$ for going from M₁ to M₂. Note that this is NOT a DFA. And they are likely copying from their cheat sheets. They got ZERO.

Problem 5

For this problem you may use the following theorem. **Theorem:** If x, y are relatively prime then

For all $z \ge xy - x - y + 1$ there exists $c, d \in \mathbb{N}$ such that z = cx + dy.

▶ There is no $c, d \in \mathbb{N}$ such that xy - x - y = cx + dy. The alphabet is $\{a\}$. Let

$$L = \{a^n \mid n \neq 117\}$$

- 1. (10 points) Does there exist a DFA for L with < 120 states? If so then draw the DFA; you may use DOT DOT DOT. If not then PROVE there is no such DFA.
- (10 points) Does there exist an NFA for L with less than 60 states? If so then draw the NFA; you may use DOT DOT DOT. If not then PROVE there is no such NFA.

Problem 5 Solution

We just Sketch this one since we've done so many like it. Thought Process: First take $x = \lfloor \sqrt{117} \rfloor = 11$ and y = 12. Then

$$xy - x - y = 89$$

Rather small. Lets see if x = 12, y = 13 still gives us ≤ 117

$$xy - x - y = 109$$

1. x = 12, y = 13, Tail 117-109=8. 8 + 13 = 21 states.

2. Primes: $2 \times 3 \times 5 \times 7 = 210 > 117$, 2 + 3 + 5 + 7 = 17 states. Total number of states: 21+17=38. Note On An Exam you would have to do the whole problem, give the NFA or a picture of it. Note Can do better?

ション ふゆ アメビア メロア しょうくしゃ

Problem 5 Solution

We just Sketch this one since we've done so many like it. Thought Process: First take $x = \lfloor \sqrt{117} \rfloor = 11$ and y = 12. Then

$$xy - x - y = 89$$

Rather small. Lets see if x = 12, y = 13 still gives us ≤ 117

$$xy - x - y = 109$$

1. x = 12, y = 13, Tail 117-109=8. 8 + 13 = 21 states.

2. Primes: $2 \times 3 \times 5 \times 7 = 210 > 117$, 2 + 3 + 5 + 7 = 17 states.

Total number of states: 21+17=38.

Note On An Exam you would have to do the whole problem, give the NFA or a picture of it.

Note Can do better? YES: use $4 \times 5 \times 7 = 140 > 117$,

4 + 5 + 7 = 16, so 21 + 16 = 37.

Extra Problems to Think About

Definition If $w = \sigma_1 \cdots \sigma_n$ is a string then any string of the form

 $\sigma_{i_1}\cdots\sigma_{i_k}$

where $i_1 < \cdots < i_k$ is a subsequence of w. SUBSEQ(w) is the set of all subsequences of the string w. Examples If w = aaba then the subsequences are $SUBSEQ(aaba) = \{e, a, b, aa, ab, ba, aaa, aab, aba, aaba\}$. Definition If $L \subseteq \{a, b\}^*$ then

$$SUBSEQ(L) = \bigcup_{w \in L} SUBSEQ(w).$$

Extra Problems to Think About

Definition If $w = \sigma_1 \cdots \sigma_n$ is a string then any string of the form

 $\sigma_{i_1}\cdots\sigma_{i_k}$

where $i_1 < \cdots < i_k$ is a subsequence of w. SUBSEQ(w) is the set of all subsequences of the string w. Examples If w = aaba then the subsequences are $SUBSEQ(aaba) = \{e, a, b, aa, ab, ba, aaa, aab, aba, aaba\}$. Definition If $L \subseteq \{a, b\}^*$ then

$$SUBSEQ(L) = \bigcup_{w \in L} SUBSEQ(w).$$

T or F and prove:

- 1. If L is regular than SUBSEQ(L) is regular.
- 2. If L is context free than SUBSEQ(L) is context free.