Solution to Spring 2019 Midterm 2019

William Gasarch-U of MD

Problem 1

For each of the following languages say if it's REGULAR or NOT REGULAR. If REGULAR then draw a DFA or give a regular expression for it.
(NOTE - I REALLY WANT the DFA or REGULAR expression for it!!!!!!!!!!!!!!!!) If NOT REGULAR then prove it is not regular.

Alphabet is $\{a, b\}$ and $\mathrm{N}=\{0,1,2, \ldots\}$.
Added For Spring 2020 Class If not regular than is it CFL?

Problem 1a

$$
L_{1}=\left\{a^{n} b^{m} \mid n, m \in \mathrm{~N}\right\}
$$

Problem 1a

$$
L_{1}=\left\{a^{n} b^{m} \mid n, m \in \mathrm{~N}\right\}
$$

REGULAR This is just $a^{*} b^{*}$.
DFA omitted but its easy.

Problem 1b

$$
L_{2}=\{a, b\}^{*}-L_{1} .
$$

(In other words, all strings that are NOT in L_{1}.)

Problem 1b

$$
L_{2}=\{a, b\}^{*}-L_{1} .
$$

(In other words, all strings that are NOT in L_{1}.) REGULAR: Discuss- What is easier DFA or REGEX?

Problem 1b

$$
L_{2}=\{a, b\}^{*}-L_{1} .
$$

(In other words, all strings that are NOT in L_{1}.) REGULAR: Discuss- What is easier DFA or REGEX?

REGEX for it: $\{a, b\}^{*} b a\{a, b\}^{*}$.
Could also do a DFA for $a^{*} b^{*}$ and swap final and nonfinal states.

Problem 1c

$$
L_{3}=\left\{a^{n} b^{m} \mid n \geq 2 m\right\}
$$

Problem 1c

$$
L_{3}=\left\{a^{n} b^{m} \mid n \geq 2 m\right\}
$$

NOT REGULAR

Problem 1c

$$
L_{3}=\left\{a^{n} b^{m} \mid n \geq 2 m\right\}
$$

NOT REGULAR

Let $w=a^{2 n} b^{n}$. By ZW Pumping Lemma we can make sure the $x y$ is within the a 's, so the y is within the a 's.
$w=x y z$.
$x=a^{n_{1}}, y=a^{n_{2}}, z=a^{n_{3}} b^{n}$ where: $n_{2} \neq 0$.
$w=x y z$.
$x=a^{n_{1}}, y=a^{n_{2}}, z=a^{n_{3}} b^{2 n}$ where: $n_{1}+n_{2}+n_{3}=2 n$
We know that $\forall i \geq 0, x y^{i} z \in L$.

Problem 1c

$$
L_{3}=\left\{a^{n} b^{m} \mid n \geq 2 m\right\}
$$

NOT REGULAR

Let $w=a^{2 n} b^{n}$. By ZW Pumping Lemma we can make sure the $x y$ is within the a's, so the y is within the a's.
$w=x y z$.
$x=a^{n_{1}}, y=a^{n_{2}}, z=a^{n_{3}} b^{n}$ where: $n_{2} \neq 0$.
$w=x y z$.
$x=a^{n_{1}}, y=a^{n_{2}}, z=a^{n_{3}} b^{2 n}$ where: $n_{1}+n_{2}+n_{3}=2 n$
We know that $\forall i \geq 0, x y^{i} z \in L$.
Take $i=0$: to get $a^{n_{1}+n_{3}} b^{n}$.
Since $n_{2} \neq 0, n_{1}+n_{3}<n_{1}+n_{2}+n_{3}<2 n$, so NOT in L.

Problem 1c, Possible Alternative

$$
L_{3}=\left\{a^{n} b^{m} \mid n \geq 2 m\right\}
$$

NOT REGULAR We used ZW PL with $i=0$. Is there another way to prove it?

Problem 1c, Possible Alternative

$$
L_{3}=\left\{a^{n} b^{m} \mid n \geq 2 m\right\}
$$

NOT REGULAR We used ZW PL with $i=0$. Is there another way to prove it?
YES. The WZ PL. This is just ZW backwards. Rather than force $|x y|$ to be small, you can instead force $|y z|$ to be small. Then you could force $|y z|$ to be within the b 's.

We omit details, work out a proof of WZ theorem yourself and a proof that L_{3} is not regular using it.

Problem 1c, CFL part

Back to our problem.

$$
L_{3}=\left\{a^{n} b^{m} \mid n \geq 2 m\right\}
$$

We showed L_{3} not regular. Is L_{3} context free?

Problem 1c, CFL part

Back to our problem.

$$
L_{3}=\left\{a^{n} b^{m} \mid n \geq 2 m\right\}
$$

We showed L_{3} not regular. Is L_{3} context free?
YES:
$S \rightarrow X Y$
$Y \rightarrow a a Y b$
$Y \rightarrow e$
$X \rightarrow a X$
$X \rightarrow e$

Problem 1d

$$
L_{4}=\{a, b\}^{*}-L_{3} .
$$

(In other words, all strings that are NOT in L_{3}.) NOT REGULAR If L_{4} was regular than, since regular is closed under Comp, L_{3} would be regular.

Problem 1d, CFL Part

$$
L_{4}=\{a, b\}^{*}-L_{3} .
$$

Is L_{4} Context Free?

Problem 1d, CFL Part

$$
L_{4}=\{a, b\}^{*}-L_{3} .
$$

Is L_{4} Context Free?
YES. L_{4} is the union of the following CFL's

1. $\{a, b\}^{*} b a\{a, b\}^{a}$ (This one is easy and we leave to you.)
2. $\left\{a^{n} b^{m} \mid n<2 m\right\}$. We discuss how this is CFL.

Problem 1d, CFL Part

$$
L_{4}=\{a, b\}^{*}-L_{3} .
$$

Is L_{4} Context Free?
YES. L_{4} is the union of the following CFL's

1. $\{a, b\}^{*} b a\{a, b\}^{a}$ (This one is easy and we leave to you.)
2. $\left\{a^{n} b^{m} \mid n<2 m\right\}$. We discuss how this is CFL.
$\left\{a^{n} b^{m} \mid n<2 m\right\}$ is the union of the following CFL's
3. $\left\{a^{n} b^{m} \mid n \leq m\right\}$.
4. $\left\{a^{n} b^{m} \mid m \leq n \leq 2 m\right\}$.

Problem 1d, CFL Part, Cont

CFL for $\left\{a^{n} b^{m} \mid n \leq m\right\}$.

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow a S b \\
& Y \rightarrow b Y \\
& Y \rightarrow e
\end{aligned}
$$

Problem 1d, CFL Part, Cont

CFL for $\left\{a^{n} b^{m} \mid m \leq n \leq 2 m\right\}$.
$S \rightarrow a S b$
$S \rightarrow a S b b$
$S \rightarrow e$

Problem 4

Let $\Sigma=\{a, b\}$.
L_{1} is regular via DFA $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$,
L_{2} is regular via DFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$.
Note that $\$$ is NOT in Σ. Construct a DFA for:

$$
\left\{x \$ y \mid x \in L_{1} \text { and } y \notin L_{2}\right\}
$$

using M_{1} and M_{2}. Briefly describe how your DFA is constructed. (NOTE- we are asking for a construction, not a drawing. Recall we did constructions with DFA's to prove that if L_{1} and L_{2} are regular than so are BLAH.)

NOTE- Do NOT give an NFA and say we can convert it to a DFA. I want the DFA!
REMINDER: Your DFA must have, for every state q and alphabet symbol $\sigma, \delta(q, \sigma)$ defined.

Problem 4 SOLUTION

$\left(Q_{1} \cup Q_{2} \cup\{D U M P\}, \Sigma \cup\{\$\}, \delta, s_{1}, Q_{2}-F_{2}\right)$
Where δ is defined as follows:
If $q \in Q_{1}$ and $\sigma \in\{a, b\}$ then $\delta(q, \sigma)=\delta_{1}(q, \sigma)$.
If $q \in Q_{1}-F_{1}$ then $\delta(q, \$)=$ DUMP
If $q \in F_{1}$ then $\delta(q, \$)=s_{2}$
If $q \in Q_{2}$ and $\sigma \in\{a, b\}$ then $\delta(q, \sigma)=\delta_{2}(q, \sigma)$.
If $q \in Q_{2}$ then $\delta(q, \$)=$ DUMP.
$\delta(\mathrm{DUMP}, \sigma)=\mathrm{DUMP}$ for $\sigma \in\{a, b, \$\}$.

What Some Students Tried To Do

- Some students tried to do a cross product construction. I suspect they did the one thing I told students \aleph_{0} times: do not memorize things and not copy things off of your cheat sheet. These students got 0 .
- There was a mild ambiguity in the problem. We had $y \notin L_{2}$. Do we mean $\{a, b\}^{*}-L_{2}$ or $\{a, b, \$\}^{*}-L_{2}$. We were happy with either interpretation. Almost everyone interpreted it as $\{a, b\}^{*}-L_{2}$.
- Some students did not have a dead state. We let this one pass. We will not be so generous in the future. Why did you leave it out when I said explicitly that every $\delta(q, \sigma)$ has to be defined? These are the questions that try ones soul.
- Some students copied the $L_{1} L_{2}$ construction, so they had e instead of $\$$ for going from M_{1} to M_{2}. Note that this is NOT a DFA. And they are likely copying from their cheat sheets. They got ZERO.

Problem 5

For this problem you may use the following theorem.
Theorem: If x, y are relatively prime then

- For all $z \geq x y-x-y+1$ there exists $c, d \in \mathrm{~N}$ such that

$$
z=c x+d y
$$

- There is no $c, d \in \mathrm{~N}$ such that $x y-x-y=c x+d y$.

The alphabet is $\{a\}$. Let

$$
L=\left\{a^{n} \mid n \neq 117\right\}
$$

1. (10 points) Does there exist a DFA for L with <120 states? If so then draw the DFA; you may use DOT DOT DOT. If not then PROVE there is no such DFA.
2. (10 points) Does there exist an NFA for L with less than 60 states? If so then draw the NFA; you may use DOT DOT DOT. If not then PROVE there is no such NFA.

Problem 5 Solution

We just Sketch this one since we've done so many like it. Thought Process: First take $x=\lceil\sqrt{117}\rceil=11$ and $y=12$. Then

$$
x y-x-y=89
$$

Rather small. Lets see if $x=12, y=13$ still gives us ≤ 117

$$
x y-x-y=109
$$

1. $x=12, y=13$, Tail $117-109=8.8+13=21$ states.
2. Primes: $2 \times 3 \times 5 \times 7=210>117,2+3+5+7=17$ states.

Total number of states: $21+17=38$.
Note On An Exam you would have to do the whole problem, give the NFA or a picture of it.
Note Can do better?

Problem 5 Solution

We just Sketch this one since we've done so many like it.
Thought Process: First take $x=\lceil\sqrt{117}\rceil=11$ and $y=12$. Then

$$
x y-x-y=89
$$

Rather small. Lets see if $x=12, y=13$ still gives us ≤ 117

$$
x y-x-y=109
$$

$$
\text { 1. } x=12, y=13 \text {, Tail } 117-109=8.8+13=21 \text { states. }
$$

2. Primes: $2 \times 3 \times 5 \times 7=210>117,2+3+5+7=17$ states.

Total number of states: $21+17=38$.
Note On An Exam you would have to do the whole problem, give the NFA or a picture of it.
Note Can do better? YES: use $4 \times 5 \times 7=140>117$,
$4+5+7=16$, so $21+16=37$.

Extra Problems to Think About

Definition If $w=\sigma_{1} \cdots \sigma_{n}$ is a string then any string of the form

$$
\sigma_{i_{1}} \cdots \sigma_{i_{k}}
$$

where $i_{1}<\cdots<i_{k}$ is a subsequence of w. $\operatorname{SUBSEQ}(w)$ is the set of all subsequences of the string w.
Examples If $w=a a b a$ then the subsequences are $\operatorname{SUBSEQ}(a a b a)=\{e, a, b, a a, a b, b a, a a a, a a b, a b a, a a b a\}$. Definition If $L \subseteq\{a, b\}^{*}$ then

$$
\operatorname{SUBSEQ}(L)=\bigcup_{w \in L} \operatorname{SUBSEQ}(w)
$$

Extra Problems to Think About

Definition If $w=\sigma_{1} \cdots \sigma_{n}$ is a string then any string of the form

$$
\sigma_{i_{1}} \cdots \sigma_{i_{k}}
$$

where $i_{1}<\cdots<i_{k}$ is a subsequence of w.
$\operatorname{SUBSEQ}(w)$ is the set of all subsequences of the string w.
Examples If $w=a a b a$ then the subsequences are $\operatorname{SUBSEQ}(a a b a)=\{e, a, b, a a, a b, b a, a a a, a a b, a b a, a a b a\}$. Definition If $L \subseteq\{a, b\}^{*}$ then

$$
\operatorname{SUBSEQ}(L)=\bigcup_{w \in L} \operatorname{SUBSEQ}(w)
$$

T or F and prove:

1. If L is regular than $\operatorname{SUBSEQ}(L)$ is regular.
2. If L is context free than $\operatorname{SUBSEQ}(L)$ is context free.
