CFL's in \mathbf{P}

1 Introduction

We sketch the proof that all CFG's are in Poly time. We will first need to get a CFG into a certain form.

2 Definitions

Some productions are never used so we want to get rid of them. We now define useful rigorously. Its negation will be useless.

Def 2.1 Let $G=(N, \Sigma, P, S)$ be a CFG. Let $A \in N$ and $\alpha \in(N \cup \sigma)^{*} . A \Longrightarrow \alpha$ means that there is a sequence of applications of productions that take you from A to α. (This is often written with a G under the \Longrightarrow and a * over it.)

Def 2.2 Let $G=(N, \Sigma, P, S)$ be a CFG such that $L(G) \neq \emptyset$. A Nonterminal A is useful if the following two hold.

- There exists $w \in \Sigma^{*}$ such that $A \Longrightarrow w$.
- There exists $\alpha, \beta \in(N \cup \Sigma)^{*}$ such that $S \Longrightarrow \alpha A \beta$.

Note 2.3 If $L(G)=\emptyset$ then it's not clear how you can define useful nonterminals since S would be useless. To avoid this problem we only deal with G such that $L(G) \neq \emptyset$.

We can get by WITHOUT useless productions. We state this formally but do not prove it.
Theorem 2.4 There is an algorithm that will, given a $C F G G$ such that $L(G) \neq \emptyset$, produce a $C F G$ G^{\prime} with no useless productions such that $L\left(G^{\prime}\right)=L(G)$.

Def 2.5 Let $G=(N, \Sigma, P, S)$ be a CFG. A production is a Unit Production if it is of the form $A \rightarrow B$ where A and B are nonterminals.

We can get by WITHOUT unit productions. We state this formally but do not prove it.
Theorem 2.6 There is an algorithm that will, given a CFG G, produce a $C F G G^{\prime}$ with no unit productions such that $L(G)=L\left(G^{\prime}\right)$. (This procedure does not introduce useless productions.)

Def 2.7 Let $G=(N, \Sigma, P, S)$ be a CFG. A production is an ϵ-Production if it is of the form $A \rightarrow \epsilon$.
Can we get by without ϵ-productions? If $e \in L$ then we need them. However, otherwise we do not. We state this formally but do not prove it.

Theorem 2.8 There is an algorithm that will, given a CFG G produce a $C F G G^{\prime}$ with no eproductions such that $L\left(G^{\prime}\right)=L(G)-\{e\}$. (This procedure does not introduce useless or unit productions.)

Putting together the above three theorems we have the following:
Theorem 2.9 There is an algorithm that will, given a $C F G G$ such that $L(G) \neq \emptyset$ produce a $C F G G^{\prime}$ with no useless productions, no unit productions, and no e-productions such that $L\left(G^{\prime}\right)=$ $L(G)-\{e\}$.

3 Chomsky Normal Form

Def 3.1 A grammar Let $G=(N, \Sigma, P, S)$ is in Chomsky Normal Form if every production is either of the form $A \rightarrow B C$ or $A \rightarrow \sigma$ where $\sigma \in \Sigma$.

Theorem 3.2 There exists an algorithm that will, given a $C F G G=(N, \Sigma, P, S)$ such that $L(G)=$ \emptyset and e $\notin L(G)$ will output a grammar $G^{\prime}=\left(N^{\prime}, \Sigma, P^{\prime}, S^{\prime}\right)$ in Chomsky Normal Form such that such that $L\left(G^{\prime}\right)=L(G)-\{\epsilon\}$.

Proof:

By Theorem ?? there is a CFG for L with not useless productions, unit productions, or eproductions.

Look at each rule of the form $A \rightarrow \alpha_{1} \alpha_{2} \cdots \alpha_{m}$. Note that $m \neq 1$ since that would be a unit production. If $m=2$ then we do nothing since the production is already of the right form. So we assume $m \geq 3$. We do the following.

1. Replace every terminal α_{i} with nonterminals $\left[\alpha_{i}\right]$ and add the rule $\left[\alpha_{i}\right] \rightarrow \alpha_{i}$.
2. Note that the rule is now of the form

$$
A \rightarrow \beta_{1} \cdots \beta_{m}
$$

where each β_{i} is a nonterminal.
Replace this with the following:
$A \rightarrow\left[\beta_{1} \cdots \beta_{m-1}\right] \beta_{m}$
$\left[\beta_{1} \cdots \beta_{m-1}\right] \rightarrow\left[\beta_{1} \cdots \beta_{m-2}\right] \beta_{m-1}$
$\left[\beta_{1} \cdots \beta_{m-2}\right] \rightarrow\left[\beta_{1} \cdots \beta_{m-3}\right] \beta_{m-2}$
etc until
$\left.\left[\beta_{1} \beta_{2} \beta_{3}\right]\right] \rightarrow\left[\beta_{1} \beta_{2}\right] \beta_{3}$
$\left[\beta_{1} \beta_{2}\right] \rightarrow \beta_{1} \beta_{2}$.

CFL's in P

```
for i=1 to n
    A[i, i ] = {B|B-> wi}
for d=1 to n-1
    for i=1 to n-d
        j=i+d
    A[\textrm{i},\textrm{j}]=\mp@subsup{\bigcup}{i<k<j}{}{D|B\inA[i,k]^C\inA[k+1,j]\wedgeD->BC}
If S\inA[1,n] then output YES, else output NO.
```


4 CFL's in P

Theorem 4.1 If L is a CFL then L is in $O\left(n^{3}\right)$.
Proof: If $L=\emptyset$ then L is in $O\left(n^{3}\right)$ time. Apply the procedure in Theorem ?? to G to obtain a G^{\prime} such that $L\left(G^{\prime}\right)=L(G)-\{\epsilon\}$. We show that $L\left(G^{\prime}\right)$ is in $O\left(n^{3}\right)$. This time does not count for the algorithm. This time is preprocessing.

We use DYNAMIC PROGRAMMING! Intuitively: Given a string $w=w_{1} w_{2} \ldots w_{n}$ we want to look which nonterminals A can produce $w_{i} \ldots w_{j}$. We do this, first for $i=j$ (that is $j-i=0$) then for $j-i=1, j-i=2$, etc. The KEY is that D generates $w_{i} w_{i+1} \ldots w_{j}$ iff $D \rightarrow B C$ and B generates a prefix, say $w_{i} \cdots w_{k}$, and C generates the remaining suffice, say $w_{k+1} \cdots w_{n}$.

The formal algorithm is above.
There are $O\left(n^{2}\right)$ spaces in the array to fill out. Each one takes at most $O(n)$ to fill out.

