
CFL’s in P

1 Introduction
We sketch the proof that all CFG’s are in Poly time. We will first need to get a CFG into a certain
form.

2 Definitions
Some productions are never used so we want to get rid of them. We now define useful rigorously.
Its negation will be useless.

Def 2.1 Let G = (N,Σ, P, S) be a CFG. Let A ∈ N and α ∈ (N ∪σ)∗. A =⇒ α means that there
is a sequence of applications of productions that take you from A to α. (This is often written with
a G under the =⇒ and a * over it.)

Def 2.2 Let G = (N,Σ, P, S) be a CFG such that L(G) 6= ∅. A Nonterminal A is useful if the
following two hold.

• There exists w ∈ Σ∗ such that A =⇒ w.

• There exists α, β ∈ (N ∪ Σ)∗ such that S =⇒ αAβ.

Note 2.3 If L(G) = ∅ then it’s not clear how you can define useful nonterminals since S would be
useless. To avoid this problem we only deal with G such that L(G) 6= ∅.

We can get by WITHOUT useless productions. We state this formally but do not prove it.

Theorem 2.4 There is an algorithm that will, given a CFG G such that L(G) 6= ∅, produce a CFG
G′ with no useless productions such that L(G′) = L(G).

Def 2.5 Let G = (N,Σ, P, S) be a CFG. A production is a Unit Production if it is of the form
A→ B where A and B are nonterminals.

We can get by WITHOUT unit productions. We state this formally but do not prove it.

Theorem 2.6 There is an algorithm that will, given a CFG G, produce a CFG G′ with no unit
productions such that L(G) = L(G′). (This procedure does not introduce useless productions.)

Def 2.7 Let G = (N,Σ, P, S) be a CFG. A production is an ε-Production if it is of the form A→ ε.

Can we get by without ε-productions? If e ∈ L then we need them. However, otherwise we do
not. We state this formally but do not prove it.

1



Theorem 2.8 There is an algorithm that will, given a CFG G produce a CFG G′ with no e-
productions such that L(G′) = L(G) − {e}. (This procedure does not introduce useless or unit
productions.)

Putting together the above three theorems we have the following:

Theorem 2.9 There is an algorithm that will, given a CFG G such that L(G) 6= ∅ produce a
CFG G′ with no useless productions, no unit productions, and no e-productions such that L(G′) =
L(G)− {e}.

3 Chomsky Normal Form
Def 3.1 A grammar Let G = (N,Σ, P, S) is in Chomsky Normal Form if every production is either
of the form A→ BC or A→ σ where σ ∈ Σ.

Theorem 3.2 There exists an algorithm that will, given a CFG G = (N,Σ, P, S) such that L(G) =
∅ and e /∈ L(G) will output a grammar G′ = (N ′,Σ, P ′, S′) in Chomsky Normal Form such that
such that L(G′) = L(G)− {ε}.

Proof:
By Theorem ?? there is a CFG for L with not useless productions, unit productions, or e-

productions.
Look at each rule of the form A → α1α2 · · ·αm. Note that m 6= 1 since that would be a unit

production. If m = 2 then we do nothing since the production is already of the right form. So we
assume m ≥ 3. We do the following.

1. Replace every terminal αi with nonterminals [αi] and add the rule [αi]→ αi.

2. Note that the rule is now of the form
A→ β1 · · ·βm

where each βi is a nonterminal.
Replace this with the following:
A→ [β1 · · ·βm−1]βm

[β1 · · ·βm−1]→ [β1 · · ·βm−2]βm−1

[β1 · · ·βm−2]→ [β1 · · ·βm−3]βm−2

etc until
[β1β2β3]]→ [β1β2]β3

[β1β2]→ β1β2.

2



CFL’s in P
f o r i=1 to n

A[ i , i ] = {B | B → wi}
f o r d=1 to n−1

f o r i=1 to n−d
j=i+d
A[ i , j ] = ⋃

i≤k<j{D | B ∈ A[i, k] ∧ C ∈ A[k + 1, j] ∧D → BC}
I f S ∈ A[1, n] then output YES, e l s e output NO.

4 CFL’s in P
Theorem 4.1 If L is a CFL then L is in O(n3).

Proof: If L = ∅ then L is in O(n3) time. Apply the procedure in Theorem ?? to G to obtain a
G′ such that L(G′) = L(G) − {ε}. We show that L(G′) is in O(n3). This time does not count for
the algorithm. This time is preprocessing.

We use DYNAMIC PROGRAMMING! Intuitively: Given a string w = w1w2 . . . wn we want
to look which nonterminals A can produce wi...wj . We do this, first for i = j (that is j − i = 0)
then for j − i = 1, j − i = 2, etc. The KEY is that D generates wiwi+1 . . . wj iff D → BC and B
generates a prefix, say wi · · ·wk, and C generates the remaining suffice, say wk+1 · · ·wn.

The formal algorithm is above.
There are O(n2) spaces in the array to fill out. Each one takes at most O(n) to fill out.

3


