CFL's in P

1 Introduction

We sketch the proof that all CFG's are in Poly time. We will first need to get a CFG into a certain form.

2 Definitions

Some productions are never used so we want to get rid of them. We now define *useful* rigorously. Its negation will be *useless*.

Def 2.1 Let $G = (N, \Sigma, P, S)$ be a CFG. Let $A \in N$ and $\alpha \in (N \cup \sigma)^*$. $A \implies \alpha$ means that there is a sequence of applications of productions that take you from A to α . (This is often written with a G under the \implies and a * over it.)

Def 2.2 Let $G = (N, \Sigma, P, S)$ be a CFG such that $L(G) \neq \emptyset$. A Nonterminal A is useful if the following two hold.

- There exists $w \in \Sigma^*$ such that $A \implies w$.
- There exists $\alpha, \beta \in (N \cup \Sigma)^*$ such that $S \implies \alpha A \beta$.

Note 2.3 If $L(G) = \emptyset$ then it's not clear how you can define useful nonterminals since S would be useless. To avoid this problem we only deal with G such that $L(G) \neq \emptyset$.

We can get by WITHOUT useless productions. We state this formally but do not prove it.

Theorem 2.4 There is an algorithm that will, given a CFG G such that $L(G) \neq \emptyset$, produce a CFG G' with no useless productions such that L(G') = L(G).

Def 2.5 Let $G = (N, \Sigma, P, S)$ be a CFG. A production is a Unit Production if it is of the form $A \to B$ where A and B are nonterminals.

We can get by WITHOUT unit productions. We state this formally but do not prove it.

Theorem 2.6 There is an algorithm that will, given a CFG G, produce a CFG G' with no unit productions such that L(G) = L(G'). (This procedure does not introduce useless productions.)

Def 2.7 Let $G = (N, \Sigma, P, S)$ be a CFG. A production is an ϵ -Production if it is of the form $A \to \epsilon$.

Can we get by without ϵ -productions? If $e \in L$ then we need them. However, otherwise we do not. We state this formally but do not prove it.

Theorem 2.8 There is an algorithm that will, given a CFG G produce a CFG G' with no eproductions such that $L(G') = L(G) - \{e\}$. (This procedure does not introduce useless or unit productions.)

Putting together the above three theorems we have the following:

Theorem 2.9 There is an algorithm that will, given a CFG G such that $L(G) \neq \emptyset$ produce a CFG G' with no useless productions, no unit productions, and no e-productions such that $L(G') = L(G) - \{e\}$.

3 Chomsky Normal Form

Def 3.1 A grammar Let $G = (N, \Sigma, P, S)$ is in *Chomsky Normal Form* if every production is either of the form $A \to BC$ or $A \to \sigma$ where $\sigma \in \Sigma$.

Theorem 3.2 There exists an algorithm that will, given a CFG $G = (N, \Sigma, P, S)$ such that $L(G) = \emptyset$ and $e \notin L(G)$ will output a grammar $G' = (N', \Sigma, P', S')$ in Chomsky Normal Form such that such that $L(G') = L(G) - \{\epsilon\}$.

Proof:

By Theorem $\ref{eq:started}$ there is a CFG for L with not useless productions, unit productions, or eproductions.

Look at each rule of the form $A \to \alpha_1 \alpha_2 \cdots \alpha_m$. Note that $m \neq 1$ since that would be a unit production. If m = 2 then we do nothing since the production is already of the right form. So we assume $m \geq 3$. We do the following.

- 1. Replace every terminal α_i with nonterminals $[\alpha_i]$ and add the rule $[\alpha_i] \rightarrow \alpha_i$.
- 2. Note that the rule is now of the form

$$\begin{aligned} A &\to \beta_1 \cdots \beta_m \\ \text{where each } \beta_i \text{ is a nonterminal.} \\ \text{Replace this with the following:} \\ A &\to [\beta_1 \cdots \beta_{m-1}] \beta_m \\ [\beta_1 \cdots \beta_{m-1}] &\to [\beta_1 \cdots \beta_{m-2}] \beta_{m-1} \\ [\beta_1 \cdots \beta_{m-2}] &\to [\beta_1 \cdots \beta_{m-3}] \beta_{m-2} \\ \text{etc until} \\ [\beta_1 \beta_2 \beta_3]] &\to [\beta_1 \beta_2] \beta_3 \\ [\beta_1 \beta_2] &\to \beta_1 \beta_2. \end{aligned}$$

CFL's in P

```
for i=1 to n

A[i,i] = \{B \mid B \to w_i\}
for d=1 to n-1

for i=1 to n-d

j=i+d
A[i,j] = \bigcup_{i \le k < j} \{D \mid B \in A[i,k] \land C \in A[k+1,j] \land D \to BC\}
If S \in A[1,n] then output YES, else output NO.
```

4 CFL's in P

Theorem 4.1 If L is a CFL then L is in $O(n^3)$.

Proof: If $L = \emptyset$ then L is in $O(n^3)$ time. Apply the procedure in Theorem ?? to G to obtain a G' such that $L(G') = L(G) - \{\epsilon\}$. We show that L(G') is in $O(n^3)$. This time does not count for the algorithm. This time is preprocessing.

We use DYNAMIC PROGRAMMING! Intuitively: Given a string $w = w_1 w_2 \dots w_n$ we want to look which nonterminals A can produce $w_i \dots w_j$. We do this, first for i = j (that is j - i = 0) then for j - i = 1, j - i = 2, etc. The KEY is that D generates $w_i w_{i+1} \dots w_j$ iff $D \to BC$ and Bgenerates a prefix, say $w_i \dots w_k$, and C generates the remaining suffice, say $w_{k+1} \dots w_n$.

The formal algorithm is above.

There are $O(n^2)$ spaces in the array to fill out. Each one takes at most O(n) to fill out.