A Clean CFG and Proof For

 $\{w: \#_b(w) = m \#_a(w)\}$ by

Robert Brady and William Gasarch

ROB - this is part you helped me with. I state it as one lemma, but it will be part of a much bigger lemma that covers all of the cases.

 $k \ge m + 1$ and $\ell \ge m + 1$. (THIS WAS THE HARD CASE)

Lemma 0.1 Let $m \in N$. Let

$$L = \{ w : \#_b(w) = m \#_a(w) + 0 \}.$$

Let $w \in L$. Let $w = w_1 \cdots w_{(m+1)n}$. (There are n a's and mn b's.) If $w = b^k a w' a b^\ell$ where $k, \ell \ge k+1$ then one of the following occurs.

- 1. There exists $x, y \in L$ such that w = xy.
- 2. There exists $x, y \in L$ such that

Proof:

Notation 0.2 Let $x \in \{a, b\}^*$.

- 1. $\#_a(x)$ is the number of a's in x.
- 2. $\#_b(x)$ is the number of b's in x.
- 3. weight(x) = $\#_a(x) \frac{\#_b(x)}{m}$.

Note that

weight
$$(b^k a) = 1 - \frac{k}{m} < 0.$$

Note that

weight
$$(b^k a w') = (\#_a(w) - \#_a(ab^\ell)) - \frac{1}{m}(\#_b(w) - \#_b(ab^\ell)) = (n-1) - \frac{1}{m}(mn-\ell) = -1 + \frac{\ell}{m} > 0$$

Hence there must be a prefix of w of the form $b^k a z'$ where the weight is ≥ 0 . Consider the shortest such extension. It must end in a, so let it be $b^k a z a$.

Case 1 weight $(b^k aza) = 0$. Then let $x = b^k aza$ and y be the rest of the string. Clearly $x, y \in L$.

Case 2 weight $(b^k aza) > 0$. Since the last *a* pushed the weight from positive to negative we must have the following:

weight
$$(b^k a z) = -\frac{1}{m}$$

 So

$$\#_{a}(b^{k}az) - \frac{\#_{b}(b^{k}az)}{m} = -\frac{1}{m}$$
$$\#_{a}(az) - \frac{k + \#_{b}(az)}{m} = -\frac{1}{m}$$
$$\#_{a}(az) = \frac{k - 1 + \#_{b}(az)}{m}$$
$$m\#_{a}(az) = k - 1 + \#_{b}(az)$$
$$\#_{b}(az) = m\#_{a}(az) + 1 - k$$

 $\#_b(b^{k-1}az) = k - 1 + \#_b(az) = k - 1 + m \#_a(az) + 1 - k = m \#_a(az) = m \#_a(b^{k-1}z).$

So $b^{k-1}az \in L$. Hence w has a prefix of the form bxa where $x \in L$. By the same reasoning, w has a suffix of the form ayb where $y \in L$.