A Clean CFG and Proof For

$$
\left\{w: \#_{b}(w)=m \#_{a}(w)\right\}
$$

by

Robert Brady and William Gasarch

ROB - this is part you helped me with. I state it as one lemma, but it will be part of a much bigger lemma that covers all of the cases.
$k \geq m+1$ and $\ell \geq m+1$. (THIS WAS THE HARD CASE)
Lemma 0.1 Let $m \in N$. Let

$$
L=\left\{w: \#_{b}(w)=m \#_{a}(w)+0\right\} .
$$

Let $w \in L$. Let $w=w_{1} \cdots w_{(m+1) n}$. (There are $n a^{\prime} s$ and $m n b$'s.) If $w=b^{k} a w^{\prime} a b^{\ell}$ where $k, \ell \geq k+1$ then one of the following occurs.

1. There exists $x, y \in L$ such that $w=x y$.
2. There exists $x, y \in L$ such that

Proof:

Notation 0.2 Let $x \in\{a, b\}^{*}$.

1. $\#_{a}(x)$ is the number of a 's in x.
2. $\#_{b}(x)$ is the number of b 's in x.
3. $\operatorname{weight}(x)=\#_{a}(x)-\frac{\#_{b}(x)}{m}$.

Note that

$$
\text { weight }\left(b^{k} a\right)=1-\frac{k}{m}<0 .
$$

Note that
$\operatorname{weight}\left(b^{k} a w^{\prime}\right)=\left(\#_{a}(w)-\#_{a}\left(a b^{\ell}\right)\right)-\frac{1}{m}\left(\#_{b}(w)-\#_{b}\left(a b^{\ell}\right)\right)=(n-1)-\frac{1}{m}(m n-\ell)=-1+\frac{\ell}{m}>0$
Hence there must be a prefix of w of the form $b^{k} a z^{\prime}$ where the weight is ≥ 0. Consider the shortest such extension. It must end in a, so let it be $b^{k} a z a$.

Case 1 weight $\left(b^{k} a z a\right)=0$. Then let $x=b^{k} a z a$ and y be the rest of the string. Clearly $x, y \in L$.

Case 2 weight $\left(b^{k} a z a\right)>0$. Since the last a pushed the weight from positive to negative we must have the following:

$$
\text { weight }\left(b^{k} a z\right)=-\frac{1}{m}
$$

So

$$
\begin{aligned}
& \#_{a}\left(b^{k} a z\right)-\frac{\#_{b}\left(b^{k} a z\right)}{m}=-\frac{1}{m} \\
& \#_{a}(a z)-\frac{k+\#_{b}(a z)}{m}=-\frac{1}{m} \\
& \#_{a}(a z)=\frac{k-1+\#_{b}(a z)}{m} \\
& m \#_{a}(a z)=k-1+\#_{b}(a z) \\
& \#_{b}(a z)=m \#_{a}(a z)+1-k
\end{aligned}
$$

$\#_{b}\left(b^{k-1} a z\right)=k-1+\#_{b}(a z)=k-1+m \#_{a}(a z)+1-k=m \#_{a}(a z)=m \#_{a}\left(b^{k-1} z\right)$.
So $b^{k-1} a z \in L$. Hence w has a prefix of the form $b x a$ where $x \in L$. By the same reasoning, w has a suffix of the form $a y b$ where $y \in L$.

