
CMSC 452 – P and NP Closure Properties

1 Closure Properties for P

The class P is closed under union, intersection, concatentation, and ∗. We just show closure under concatentation and *.
Frankly, the only one that is interesting is * since the others are rather easy.

Theorem 1. Let L1, L2 ∈ P . Then L1L2 ∈ P .

Proof. Let TM M1 decide L1 in time p1(n) (a polynomial) and TM M2 decide L2 in time p2(n) (a polynomial). Here is the
code for determining if a string x ∈ L1L2.

1. Input string x of length n.

2. Look at all n + 1 ways to split x into substrings y and z, where x = yz.

3. If y ∈ L1 (run M1 on y) and z ∈ L2 (run M2 on z) for some splitting of x, then output TRUE. Else, output FALSE.

How fast is this algorithm? We run M1 on strings of length 0, 1, 2, . . . , n and M2 on strings of length 0, 1, 2, . . . , n. (The
string of length 0 is the empty string: note that if e ∈ L1 and x ∈ L2 then x ∈ L1L2.) We use O-notation to avoid having to
deal with details and constants. The run time is bounded above by

O(p1(0) + · · ·+ p1(n) + p2(0) + · · ·+ p2(n)) ≤ O(np1(n) + np2(n)).

Since p1 and p2 are polynomails, np1(n) + np2(n) is a polynomial.

Theorem 1 is an illustration of why poly time is a good notion mathematically. Polynomials are closed under many oper-
ations (e.g., addition, multiplication), hence P is closed under many operations (e.g., concatention). Classes like DTIME(n)
and even DTIME(O(n)) are thought to not be closed under concatenation and many other operations. (We do not know if
they are.)

Theorem 2. Let L ∈ P . Then L∗ ∈ P .

Proof. Let TM M decide L in time p(n) (a polynomial).
Given x of length n we want to know if x ∈ L∗. We could look at every way to break x up into substrings. That would

not give a poly time algorithm since there are lots of ways to break up x (exercise: how many?).
We will actually solve a “harder” problem: given x of length n, determine for ALL prefixes of x, are they in L∗. This is

helpful since when we are trying to determine if, say,

x1 · · ·xi ∈ L∗

we already know the answers to
e ∈ L∗

x1 ∈ L∗

x1x2 ∈ L∗

...
x1x2 · · ·xi−1 ∈ L∗.

Intuition: x1 · · ·xi ∈ L∗ IFF it can be broken into TWO pieces, the first one in L∗, and the second in L.
We now present the algorithm that will determine if x ∈ L∗. The array A[i] will store if x1 · · ·xi is in L∗.

input x of length n

A[1] = A[2] = ... = A[n] = FALSE

A[0] = TRUE

for i = 1 to n do

for j = 0 to n-1 do

Use machine M to test for membership in L

if A[j] and (x_j, ..., x_{i-1}) in L then

1

A[i] = TRUE

end

end

end

output A[n]

What is the runtime of the above algorithm? The only time that matters is the calls to M . There are O(n2) calls to M , all
on inputs of length ≤ n, hence the runtime is bounded by O(n2p(n)). Since p(n) is a polynomial, n2p(n) is a polynomial.

2 Closure Properties for NP

The class NP is closed under union, intersection, concatentation, and ∗. We just show closure under concatentation. Frankly,
all of these are easy.

Theorem 3. Let L1, L2 ∈ NP . Then L1L2 ∈ NP .

Proof. Since L1 ∈ NP there exists set A1 in poly time q1(n) and a poly p1(n) such that

L1 = {x | (∃y)[|y| = p1(|x|) ∧ (x, y) ∈ A1}

Since L2 ∈ NP there exists set A2 in poly time q2(n) and a poly p2(n) such that

L2 = {x | (∃y)[|y| = p2(|x|) ∧ (x, y) ∈ A2}

Given x we want to know if x ∈ L1L2. Actualy NO- we want evidence to VERIFY that x ∈ L1L2. So we just need to
know where the split happens and the corresponding y1, y2.

(NOTATION: below we use x1, x2. They are NOT the first two characters of x. They are strings.)

L1L2 = {x | (∃x1, x2, y1, y2)[

• x = x1x2

• |y1| = p1(|x1|) ∧ (x1, y1) ∈ A1

• |y2| = p2(|x2|) ∧ (x2, y2) ∈ A2

]}

Notice that

|x1, x2, y1, y2| ≤ O(n + n + p1(n) + p2(n))

which is a poly in n. So the witness is short.
Noice that testig (x1, y1) ∈ A1 and (x2, y2) ∈ A2 takes times bounded by

O(q1(n + p1(n)) + q2(n + p2(n)))

which is a polynomial.

2

