Converting a DFA to a REG EXP: An Example

Exposition by William Gasarch
$M=(Q, \Sigma, \delta, s, F)$ is a DFA. $R(i, j, k)$ is a reg \exp for $\{x \mid \bar{\delta}(i, x)=j\}$.
Recall:

$$
\begin{gathered}
R(i, j, 0)=\{\sigma \in \Sigma \mid \delta(i, \sigma)=j\} \\
R(i, i, 0)=\{e\} \cup\{\sigma \in \Sigma \mid \delta(i, \sigma)=j\} \\
R(i, j, k)=R(i, j, k-1) \cup R(i, k, k-1) R(k, k, k-1)^{*} R(k, j, k-1)
\end{gathered}
$$

The regular expression for the language accepted by M is $\bigcup_{f \in F} R(1, f, n)$
We work this out on the following small example. We will start with an NFA rather than a DFA- The NFA will leave out some transitions and hence be smaller in this case, better to make the example shorter.

$$
\begin{aligned}
& Q=\{1,2,3\} \\
& s=1 \\
& F=\{3\} \\
& \delta(1, a)=2 \\
& \delta(1, b)=3 \\
& \delta(2, a)=3 \\
& \delta(2, b) \text { does not exist. } \\
& \delta(3, a)=3 \\
& \delta(3, b)=3
\end{aligned}
$$

We want to know $R(1,3,3)$. Rather than compute all $3 \times 3 \times 4=36 R(i, j, k)$'s, we see which ones we need.

ALL OF THE $R(-,-, 3)$ THAT WE NEED: $R(1,3,3)$. (only 1)
Since $R(1,3,3)=R(1,3,2) \cup R(1,3,2) R(3,3,2)^{*} R(3,3,2)$
ALL OF THE $R(-,-, 2)$ THAT WE NEED: $R(1,3,2), R(3,3,2)$. (only 2)
We need $R(1,3,2)$. We use

$$
R(1,3,2)=R(1,3,1) \cup R(1,2,1) R(2,2,1)^{*} R(2,3,1)
$$

Hence we need $R(1,3,1), R(1,2,1), R(2,2,1), R(2,3,1)$.
We need $R(3,3,2)$. ANOTHER SHORTCUT: Since state 3 is a self-loop it cannot ever use any other state, so $R(3,3,2)=R(3,3,0)$. We keep this in mind for later.

ALL OF THE $R(-,-, 1)$ THAT WE NEED:
$R(1,2,1), R(1,3,1), R(2,2,1), R(2,3,1)$ (only 4).
We are not going to bother to figure out which $R(-,-, 0)$ we need since its easier to just computer all nine of them. Note that we will get $R(3,3,0)$ which we need.

We first look at ALL of the $R(i, j, 0)$.

$$
R(1,1,0)=e
$$

$$
\begin{aligned}
& R(1,2,0)=a \\
& R(1,3,0)=b \\
& R(2,1,0)=\emptyset \\
& R(2,2,0)=e \\
& R(2,3,0)=a \\
& R(3,1,0)=\emptyset \\
& R(3,2,0)=\emptyset \\
& R(3,3,0)=e \cup a \cup b
\end{aligned}
$$

We now look at all of the $R(i, j, 1)$ that we need.

$$
\begin{aligned}
& R(1,2,1)=R(1,2,0) \cup R(1,1,0) R(1,1,0)^{*} R(1,2,0)=a \cup e e^{*} a=a \\
& R(1,3,1)=R(1,3,0) \cup R(1,1,0) R(1,1,0)^{*} R(1,3,0)=b \cup e e^{*} b=b \\
& R(2,2,1)=R(2,2,0) \cup R(2,1,0) R(1,1,0)^{*} R(1,2,0)=e \cup \emptyset e^{*} a=e \cup \emptyset=e \\
& R(2,3,1)=R(2,3,0) \cup R(2,1,0) R(1,1,0)^{*} R(1,3,0)=a \cup \emptyset e^{*} b=e \cup \emptyset=a
\end{aligned}
$$

We now look at all of the $R(i, j, 2)$ that we need.

$$
\begin{aligned}
& R(1,3,2)=R(1,3,1) \cup R(1,2,1) R(2,2,1)^{*} R(2,3,1)=b \cup a e^{*} a=b \cup a a \\
& R(3,3,2)=R(3,3,0)=e \cup a \cup b
\end{aligned}
$$

We now look at all of the $R(i, j, 3)$, just $R(1,3,3)$.

$$
R(1,3,3)=R(1,3,2) \cup R(1,3,2) R(3,3,2)^{*} R(3,3,2)=(b \cup a a) \cup(b \cup a a)(e \cup a \cup b)^{*}(a \cup b) .
$$

Reg Exp for the language is $R(1,3,3)$ above.

