Some Context Free Languages
 An Expostion

by
William Gasarch

1 Context Free Grammars and Languages

Definition 1.1 A Context Free Grammar is a tuple $G=(N, \Sigma, R, S)$ such that:

- N is a finite set of nonterminals
- Σ is a finite alphabet. Note $\Sigma \cap N=\emptyset$.
- $R \subseteq N \times(N \cup \Sigma)^{*}$.
- $S \in N$, the start symbol.

If S can generate $w \in(\Sigma \cup N)^{*}$ we denote this $S \Rightarrow w$.

$$
L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow w\right\}
$$

Definition 1.2 A language L is a Context Free Language if there exists a context free grammar G such that $L(G)=L$.

In this document we will show several languages are context free.
We will need the following definition for some of the proofs.

$2 L=\left\{a^{n} b^{n}: n \in \mathbf{N}\right\}$ is a CFL

Here is the context free language G :
$S \rightarrow a S b$
$S \rightarrow e$
The proof that $L(G)=L$ is an easy induction on the number-of-steps in a derivation, which we omit.

$3 L=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is a CFL

Theorem 3.1 Let the language L below is a CFL.

$$
L=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}
$$

Proof:

Let G the the following context free grammar.
$S \rightarrow a S b \quad \mid \quad b S a$
$S \rightarrow S S$.
$S \rightarrow e$.
We show that $L(G)=L$.
$L(G) \subseteq L$ is an easy induction on the number-of-steps in a derivation, which we omit.

We prove that, for all $w \in L, w \in L(G)$ by induction on $|w|$.
Base Case $|w|=0$ so $w=e$. This is clearly in $L(G)$ using $S \rightarrow e$.
Ind Hyp Let $n \geq 1$. For all $w \in L$ of length $\leq n-1, w \in L(G)$.
Ind Step Let $w \in L,|w|=n$. We show $w \in L(G)$. We assume n is even.
Case $1 w=a w^{\prime} b$. Then $w^{\prime} \in L,\left|w^{\prime}\right|=n-2 l e n-1$. By the $\mathrm{IH}, S \Rightarrow w^{\prime}$. Hence we have

$$
S \rightarrow a S b \Rightarrow a w^{\prime} b=w
$$

Case $2 w=b w^{\prime} a$. Similar to case 1.
Case $3 w=a w^{\prime} a$. Let $w=w_{1} w_{2} \cdots w_{n}$ where $w_{1}=w_{n}=a$.
For $1 \leq i \leq n$ let $x_{i}=w_{1} \cdots w_{i}$ and $r_{i}=\frac{\#_{b}\left(w_{i}\right)}{\#_{a}\left(w_{i}\right)}$. Note $r_{1}=0$ and $r_{n-1}=\frac{n-1}{n}$
Claim There exists $2 \leq k \leq n-2$ such that $r_{k}=1$.

Proof of Claim

Since $r_{1}<1$ and $r_{n-1}>1$ there exists a least $k, 2 \leq k \leq m-1$, such that $r_{k} \geq 1$. If $r_{k}=1$ then we are done. So we assume $r_{k}>1$. Since i is the least such we have $r_{k-1}<1$. Hence

$$
\begin{aligned}
& r_{k-1}=\frac{\#_{b}\left(x_{k-1}\right)}{\# a\left(x_{k-1}\right)}<1 \\
& r_{k}=\frac{\#_{b}\left(x_{k}\right)}{\#_{a}\left(x_{k}\right)}>1
\end{aligned}
$$

Since $r_{k-1}<r_{k}, w_{k}=b$. Hence $\#_{b}\left(x_{k-1}\right)=\#_{b}\left(x_{k}\right)-1$ and $\#_{a}\left(x_{k}\right)=$ $\#_{a}\left(x_{k}\right)$

Hence we have
$r_{k-1}=\frac{\#_{b}\left(x_{k}\right)-1}{\#_{a}\left(x_{k}\right)}<1$
$r_{k}=\frac{\#_{b}\left(x_{k}\right)}{\#_{a}\left(x_{k}\right)}>1$
The first equation yields

$$
\#_{b}\left(x_{k}\right)-1<\#_{a}\left(x_{k}\right) .
$$

The second equation yields.

$$
\#_{b}\left(x_{k}\right)>\#_{a}\left(x_{k}\right)
$$

which we rewrite as

$$
\#_{a}\left(x_{k}\right)<\#_{b}\left(x_{k}\right)
$$

Combining the $<$ inequalities we get

$$
\#_{b}\left(x_{k}\right)-1<\#_{a}\left(x_{k}\right)<\#_{b}\left(x_{k}\right) .
$$

Since all of the quantities are natural numbers this cannot occur. Hence the case where $r_{k}>1$ cannot occur, so $r_{k}=1$.

So we have $w=x y$ where $x, y \neq e$ and $\#_{a}(x)=\#_{b}(x)$, so $x \in L$. Since $w \in L$, we also have $\#_{a}(y)=\#_{b}(y)$, so $y \in L$. By the Induction Hypothesis $x, y \in L(G)$. Hence $S \Rightarrow y$ and $S \Rightarrow x$. Therefore $w \in L(G)$ as follows:

$$
S \rightarrow S S \Rightarrow x y=w
$$

Case $4 w=b w^{\prime} b$. Similar to Case 3 .

4 A Useful Lemma

In the proof of Theorem 3.1, Case 3, we had to show that a string $w \in L$ that began with an a ended with a b must be of the form $x y$ where $x \in L$ and $y \in L$. We prove a general lemma using the proof of that claim.

Lemma 4.1 Let $m \in N$. Let

$$
\begin{gathered}
L_{0}=\left\{w: \#_{b}(w)=m \#_{a}(w)+0\right\} . \\
L_{1}=\left\{w: \#_{b}(w)=m \#_{a}(w)+1\right\} . \\
\vdots \\
L_{m-1}=\left\{w: \#_{b}(w)=m \#_{a}(w)+m-1\right\} .
\end{gathered}
$$

Let $w \in L_{0}$. Let $w=w_{1} \cdots w_{(m+1) n}$. (There are $n a^{\prime} s$ and $m n$ b's.) For $1 \leq k \leq(m+1) n$ let $x_{k}=w_{1} \cdots w_{k}$ and $r_{k}=\frac{\#_{b}\left(x_{k}\right)}{\#_{a}\left(x_{k}\right)}$.

1. If there exists $1 \leq i<j<(m+1) n$ such that $r_{i}<m, r_{j}>m$, and $\#_{a}\left(x_{i}\right) \geq 1$ then there exists $k, i<k<j$, where $r_{k}=m$. Hence there exists $x, y \neq e$ such that $w=x y$ and $x, y \in L_{0}$. (This follows since if $r_{k}=m$ then $x_{k} \in L_{0}$, so the rest of the string is also in L_{0}.)
2. If there exists $1 \leq i<j<(m+1) n$ such that $r_{i}>m, r_{j}<m$, and $\#_{a}\left(x_{j} \cdots x_{(m+1) n}\right) \geq 1$, then there exists $k, i<k<j$, where $r_{k}=m$. Hence there exists $x, y \neq e$ such that $w=x y$ and $x, y \in L_{0}$. This can be obtained by applying Part 1 to w^{R}.
3. If w begins with an a and ends with $a b$ then one of the following occurs.
(a) $w=x y$ where $x, y \in L_{0}$.
(b) $w=a x b^{m}$ where $x \in L_{0}$.
4. If w begins with $a b$ and ends with an a then one of the following occurs.
(a) $w=x y$ where $x, y \in L_{0}$.
(b) $w=b^{m} x a$ where $x \in L_{0}$.

This can be obtained by applying Part 3 to w^{R}.
5. If w begins and ends with $a b$ then either
(a) $w=x y$ where $x, y \in L_{0}$.

$$
\begin{aligned}
& \text { (b) } w=b^{k} a x b^{m-k} \text { for some } 1 \leq k \leq m-1 \text {. } \\
& \text { (c) FILL IN LATER }
\end{aligned}
$$

Proof:

1) Since $r_{i}<m$ and $r_{j}>m$ there exists a least $k, i<k<j$, such that $r_{k} \geq m$. If $r_{k}=m$ then we are done. So we assume $r_{k}>m$. Since k is the least such number we know $r_{k-1}<m$. Hence
$r_{k-1}=\frac{\#_{b}\left(x_{k-1}\right)}{\#_{a}\left(x_{k-1}\right)}<m$ (Note that $\#_{a}\left(x_{k-1}\right) \geq 1$.)
$r_{k}=\frac{\#_{b}\left(x_{k}\right)}{\#_{a}\left(x_{k}\right)}>m$
Since $r_{k-1}<r_{k}, w_{k}=b$. Hence $\#_{b}\left(x_{k-1}\right)=\#_{b}\left(x_{k}\right)-1$ and $\#_{a}\left(x_{k}\right)=$ $\#_{a}\left(x_{k}\right)$

Hence we have
$r_{k-1}=\frac{\#_{b}\left(x_{k}\right)-1}{\# a\left(x_{k}\right)}<m$
$r_{k}=\frac{\#_{b}\left(x_{k}\right)}{\#_{a}\left(x_{k}\right)}>m$
The first equation yields

$$
\#_{b}\left(x_{k}\right)-1<m \#_{a}\left(x_{k}\right) .
$$

The second equation yields.

$$
\#_{b}\left(x_{k}\right)>m \#_{a}\left(x_{k}\right)
$$

which we rewrite as

$$
m \#_{a}\left(x_{k}\right)<\#_{b}\left(x_{k}\right)
$$

Combining the $<$ inequalities we get

$$
\#_{b}\left(x_{k}\right)-1<m \#_{a}\left(x_{k}\right)<\#_{b}\left(x_{k}\right) .
$$

Since all of the quantities are natural numbers and $\#_{a}\left(x_{k}\right) \geq 1$ this cannot occur. Hence the case where $r_{k}>m$ cannot occur, so $r_{k}=m$.
3) w begins with an a and ends with a b. Let $i \geq 1$ be such that $w=a w^{\prime} a b^{i}$. (The enumerated list here does not correlate with the one in the theorem; however, we always get one of the cases.)

1. If $1 \leq i \leq m-1$ then we will be applying Part 1 to the prefix a and the prefix $a w^{\prime}$. The first ratio we need is $\frac{\#_{b}(a)}{\#_{a}(a)}=0<m$. The second ratio we need is

$$
\frac{\#_{b}\left(a w^{\prime}\right)}{\#_{a}\left(a w^{\prime}\right)}=\frac{\#_{b}(w)-\#_{b}\left(a b^{i}\right)}{\#_{a}(w)-\#_{a}\left(a b^{i}\right)}=\frac{m n-i}{n-1}>m .
$$

Hence Part 1 applies and we get $w=x y$ where $x, y \in L_{0}$.
2. If $i=m$ then the suffice $y=a b^{i} \in L_{0}$, so the prefix $x=a w^{\prime} \in L_{0}$.
3. If $i \geq m+1$ then $w=a w^{\prime} b^{i}=a w^{\prime} b^{i-m} b^{m}$. Let $x=w^{\prime} b^{i-m}$ and note that $w=a x b^{m}$ and $x \in L_{0}$.
5) w begins with a b and ends with a b. Let $k, \ell \geq 1$ be such that $w=$ $b^{k} a w^{\prime} a b^{\ell}$. (The enumerated list here does not correlate with the one in the theorem; however, we always get one of the cases.)

1. $k \leq m-1$ and $\ell \leq m-1$. We apply Part 1 with $x_{i}=b^{k} a$ and $x_{j}=b^{k} a w^{\prime}$. We have $\#_{a}\left(x_{i}\right) \geq 1$. we need $r_{i}<m$ and $r^{j}>m$.
$\#_{b}\left(b^{k} a\right)=i$ and $\#_{a}\left(b^{k} a\right)=1$ so $\frac{\#_{b}\left(b^{k} a\right)}{\#_{a}\left(b^{k} a\right)}=k<m$.
$\#_{b}\left(b^{k} a w^{\prime}\right)=\#_{b}(w)-\#_{b}\left(a b^{\ell}\right)=m n-\ell$ and $\#_{a}\left(b^{k} a w^{\prime}\right)=\#_{a}(w)-$ $\#_{a}\left(a b^{\ell}\right)=n-1$, so
$\frac{\#_{b}\left(b^{k} a w^{\prime}\right)}{\#_{a}\left(b^{k} w^{\prime}\right)}=\frac{m n-\ell}{n-1}>m$.
So Part 1 applies and $w=x y$ with $x, y \in L_{0}$.
2. $k=m$ or $\ell=m$. If $k=m$ then $w=b^{m} a w^{\prime \prime}$ so just take $x=b^{m} a$ and $y=w^{\prime \prime}$. Since $x \in L_{0}, y \in L_{0}$. The case of $\ell=m$ is similar.
3. $k \geq m+1$ and $\ell \geq m+1$.
4. $k \leq m-1$ or $\ell \geq m+1$. So $w=b^{k} a w^{\prime} a b^{\ell+k-m} b^{m-k}$. Let $x=w^{\prime} a$. Then $w=b^{k} x b^{m-k}$.
$5 L=\left\{w: m_{a}(w)=\#_{b}(w)\right\}$ is a CFL
Theorem 5.1 Let $m \geq 1$. The language L below is a CFL.

$$
L=\left\{w: m_{a}(w)=\#_{b}(w)\right\}
$$

Proof:

Let G the the following context free grammar.
For every $\sigma_{1} \cdots \sigma_{m+1}$ where m of the symbols are b and one of the symbols is a, and for every $0 \leq i \leq m+1$ we have the production
$S \rightarrow \sigma_{1} \cdots \sigma_{i} S \sigma_{i+1} \cdots \sigma_{m+1}$.
$S \rightarrow S S$.
$S \rightarrow e$.
$S \rightarrow T a T$.
$T \rightarrow b S \quad \mid S T$.

1) $L(G) \subseteq L$.

We show by induction no the number-of-steps in a derivation that, for all $w \in\{a, b, S, T\}^{*}$ that G generates,

$$
m\left(\#_{a}(w)+\#_{T}(w)\right)=\#_{b}(w) .
$$

Base Case If there is only one step them $w=e$ so the conclusion holds.
Ind Hyp If $w^{\prime} \in\{a, b, S, T\}^{*}$ is generates by $n-1$ steps then

$$
m\left(\#_{a}\left(w^{\prime}\right)+\#_{T}\left(w^{\prime}\right)\right)=\#_{b}\left(w^{\prime}\right) .
$$

Ind Step Let $S \Rightarrow w$ in n steps. Then $S \Rightarrow w^{\prime}$ in $n-1$ steps and then some rule R goes from w^{\prime} to w. By the IH.

$$
m\left(\#_{a}\left(w^{\prime}\right)+\#_{T}\left(w^{\prime}\right)\right)=\#_{b}\left(w^{\prime}\right)
$$

If R replaces an S with one a and $m b^{\prime} s$ then
$\#_{a}(w)=\#_{a}\left(w^{\prime}\right)+1$.
$\#_{b}(w)=\#_{b}\left(w^{\prime}\right)+m$.
$\#_{S}(w)=\#_{S}\left(w^{\prime}\right)$.
$\#_{T}(w)=\#_{T}\left(w^{\prime}\right)$.
Hence

$$
m\left(\left(\#_{a}(w)-1\right)+\#_{T}(w)=\#_{b}(w)-m\right.
$$

$$
\begin{aligned}
m \#_{a}(w)-m+\#_{T}(w) & =\#_{b}(w)-m \\
m \#_{a}(w)+\#_{T}(w) & =\#_{b}(w)
\end{aligned}
$$

BILL - DO THE REST LATER

is an easy induction on the number-of-steps in a derivation, which we omit.

We prove that, for all $w \in L, w \in L(G)$ by induction on $|w|$.
Base Case $|w|=0$ so $w=e$. This is clearly in $L(G)$ using $S \rightarrow e$.
Ind Hyp Let $n \geq 1$. For all $w \in L$ of length $\leq n-1, w \in L(G)$.
Ind Step Let $w \in L,|w|=n$. We show $w \in L(G)$.
Case $1 w=a w^{\prime} a$.

1. For the prefix a we have $\frac{\#_{b}(a)}{\#_{a}(a)}=0<m$. Also note that $\#_{a}(a)=1 \geq 1$.
2. For the prefix $a w^{\prime}$ we have $\frac{\#_{b}(a)}{\#_{a}(a)}=\frac{\#_{b}(w)}{\#_{a}(w)-1}>\frac{\#_{b}(w)}{\#_{a}(w)}=m$.

By Lemma 4.1, there exists $x, y \in L$ such that $w=x y$. By the Induction Hypothesis $S \Rightarrow x$ and $S \Rightarrow y$. Hence
Case $2 w=a w^{\prime} b$. Let i be such that $w=a w^{\prime \prime} a b^{i}$.
Case 2.1 $0 \leq i \leq m-1$.

1. For the prefix a we have $\frac{\#_{b}(a)}{\#_{a}(a)}=0<m$
2. For the prefix $a w^{\prime \prime} a$ we have $\frac{\#_{b}(a)}{\#_{a}(a)}=\frac{\#_{b}(w)-i}{\#_{a}(w)}>\frac{\#_{b}(w)}{\#_{a}(w)}=m$.

By Lemma 4.1, there exists $x, y \in L$ such that $w=x y$. By the Induction Hypothesis
$S \Rightarrow x$ and $S \Rightarrow y$. Hence

$$
S \rightarrow S S \Rightarrow x y=w
$$

Case $2.2 i \geq m$. So $w=a w^{\prime \prime \prime} a b^{i-m} b^{m}$. Note that $w=w^{\prime \prime \prime} a b^{i-m} \in L$. Ву the induction hypothesis
$S \Rightarrow w^{\prime \prime \prime} a b^{i-m}$. Hence

$$
S \rightarrow a S b^{m} \Rightarrow a w^{\prime \prime \prime} a b^{i-m} b^{m}=a w^{\prime \prime \prime} b^{i}=w
$$

Case $3 w=b w^{\prime} a$. Similar to Case 3.
Case $4 w=b w^{\prime} b$. We cannot use Lemma 4.1 with the prefix b since $\#_{a}(b)=$ 0 . We need to find the first a. Let i be such that $w=b^{i} a w^{\prime \prime} b$.
Case $4.1 i \leq m-1$.

1. For the prefix $b^{i} a$ we have $\frac{\#_{b}\left(b^{i} a\right)}{\#_{a}\left(b^{i} a\right)}=\frac{i}{1}=i<m$. Note that $\#_{a}\left(b^{i} a\right)=$ $1 \geq 1$.
2. For the prefix $a w^{\prime \prime} a$ we have $\frac{\#_{b}(a)}{\#_{a}(a)}=\frac{\#_{b}(w)-i}{\#_{a}(w)}>\frac{\#_{b}(w)}{\#_{a}(w)}=m$.

By Lemma 4.1, there exists $x, y \in L$ such that $w=x y$. By the Induction Hypothesis
$S \Rightarrow x$ and $S \Rightarrow y$. Hence

- $S=x$ ance

