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Context Free Languages



Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.
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Examples of Context Free Grammars

S → aSb
S → e

The set of all strings Generated is

L = {anbn : n ∈ N}

Note L is context free lang that is not regular.
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Context Free Grammar for {ambn : m > n}

BREAKOUT ROOMS

S → AT
T → aTb
T → e
A→ Aa
A→ a
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Context Free Grammars

Def A Context Free Grammar is a tuple G = (N,Σ,R, S)

I N is a finite set of nonterminals.

I Σ is a finite alphabet. Note Σ ∩ N = ∅.
I R ⊆ N × (N ∪ Σ)∗ and are called Rules.

I S ∈ N, the start symbol.



L(G)

If A is non-terminal then the CFG gives us gives us rules like:

I A→ AB

I A→ a

For any string of terminals and non-terminals α, A⇒ α means
that, starting from A, some combination of the rules produces α.
Examples:

I A⇒ a

I A⇒ aB

Then, if w is string of non-terminals only, we define L(G ) by:

L(G ) = {w ∈ Σ∗ | S ⇒ w}
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Number of a’s = Number of b’s

Is

L = {w | #a(w) = #b(w)}

context free?



YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G ) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.
(Exception: a course on foundations. I proved x + y = y + x .)
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L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e

Thm L(G ) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G )′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G )′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α′Sα′′) = #b(α′Sα′′).
#a(α′aSbα′′) = #b(α′Sα′′) + 1.
#b(α′aSbα′′) = #b(α′Sα′′) + 1.

Hence
#a(α′aSbα′′) = #b(α′aSbα′′)

Case 2 Other cases for last step similar.
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{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e

Thm {w | #a(w) = #b(w)} ⊆ L(G ).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
BREAKOUT ROOMS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w ′) = #b(w ′) then w ′ ∈ L(G ).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G ). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.
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#a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)
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Recap

1) a: #a(a) > #b(a)

2) For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi ) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi ) = #a(aσ2 · · ·σi−1) + 1.

3) #a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)
Hence there exists 2 ≤ i ≤ n − 1
#a(aσ2 · · ·σi ) = #b(aσ2 · · ·σi−1).

So w = w ′w ′′ where w ,w ′ ∈ L(G ). Since |w ′| < |w | and
|w ′′| < |w |, by IH
S ⇒ w ′ and S ⇒ w ′′.

So
S → SS ⇒ w ′w ′′ = w .
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Example of a Lang that is NOT a CFL

1) {anbncn : n ∈ N} is NOT a CFL.

2) {an2 : n ∈ N} is NOT a CFL.

3) If L ⊆ a∗ and L is not regular than L is not a CFL.

We will not be proving Langs NOT CFL.
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CLOSURE PROPERTIES
AND REG⊂ CFL



Closure Properties: PROVE or DISPROVE

If L1, L2 are Context Free Languages then

1. IS L1 ∪ L2 is a context free Lang?

2. IS L1 ∩ L2 is a context free Lang?

3. IS L1 · L2 is a context free Lang?

4. IS L1 is a context free Lang?

5. IS L∗1 is a context free Lang?

BREAKOUT ROOMS



L1,L2 CFL → L1 ∪ L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 ∪ L2.
L1 ∪ L2 is CFL via CFG (N,Σ,R,S) where

N = N1 ∪ N2 ∪ {S}
S is start state.

R = R1 ∪ R2 ∪ {S → S1 | S2}
Note We assume N1 ∩ N2 = ∅.
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Finite vs Infinite Union

If L1 and L2 are regular then L1 ∪ L2 is regular.

This is true for 3 languages or 4 languages or 98 languages.

But if L1, L2, L3, · · · is an infinite set of regular languages, is
L1 ∪ L2 ∪ ... regular?

No, because:

I L1 = {ab} is regular.

I Lk = {akbk} is regular.

I L1 ∪ L2 ∪ · · · = {anbn : n ∈ N} is not regular.

What about for CFLs?

I L1 = {abc} is a CFL.

I Lk = {akbkck} is a CFL.

I We will see later that
⋃∞

i=1 Li = {anbncn : n ∈ N} is not CFL.
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L1,L2 CFL → L1 ∩ L2 CFL

NOT TRUE: anbnc∗ ∩ a∗bncn = anbncn.



L1,L2 CFL → L1 · L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 · L2.
L1 · L2 is CFL via CFG (N,Σ,R, S) where

N = N1 ∪ N2

S is the start state.

R = R1 ∪ R2 ∪ {S → S1 · S2}.
Note We assume N1 ∩ N2 = ∅.
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S ′ → e
S ′ → S ′S
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Thm If L is regular then L is CFL.
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REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

Base Case |α| = 1 then α is σ or e. Both {a} and {e} are CFL’s.

Ind Hyp For all regex β with |β| < n there exists CFG G such that
L(β) = L(G ).

Ind Step |α| = n.
Case 1 α = β1 ∪ β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ∪, L(α) is CFL.
Case 2 α = β1 · β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ·, L(α) is CFL.
Case 3 α = β∗. By IH L(β) is CFL. By closure under ∗, L(α) is
CFL.
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Size of CFGs

How big is a CFL for the language {aaaaaaaa} (there are 8 a’s).

We could say the size is 1:

S → aaaaaaaa

This does not seem quite right.

Next slide has a standard form for CFL’s that make size make
sense.
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Def CFG G is in Chomsky Normal Form if the rules are all of the
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1) A→ BC where A,B,C ∈ N (nonterminals).
2) A→ σ (where A ∈ N and σ ∈ Σ).
3) S → e (where S is the start state).
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C → a
We measure the size of a Chomsky Normal Form CFG by the
number of rules.
So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.
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Chomsky Normal Form CFG for {an}

We say that {a8} has a CNF CFG of size 4.

What about {a16}? Vote
1) Size 8
2) Size 5
The answer is 5. Next slide.
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D → a

What to do if n is not a power of 2. HW.
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L = {a}n

Upshot
For Ln = {an}:
I Any DFA or NFA that recognizes Ln has n + Ω(1) states.

I There is a CFG that generates Ln with O(log n) rules.



Our Old Friend L = {a,b}∗a{a,b}n

1) We showed that L requires a 2n+1 size DFA.

2) We have an NFA of size n + 2. There is no NFA of size n since
then there would be a DFA of size 2n < 2n+1.

3) BREAKOUT ROOMS for getting a CFG of size � n.
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DFA, NFA, CFG

L = L1 · L2 where

L1 = {a, b}∗a. Has 5-rule Chomsky Normal Form CFG:
S → AS | BS | a
A→ a
B → b

L2 = {a, b}n. A lg(n) + 3 rule Chomsky Normal Form CFG.
S → S1S1
S1 → S2S2
...
Slg(n)+1 → Slg(n)Slg(n)
Slg(n) → a | b
Note We are assuming n is a power of 2.
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DFA, NFA, CFG Size Diff

L = {a, b}∗a{a, b}n

1) DFA of size Θ(2n).
2) NFA of size n + Θ(1).
3) CFG of size Θ(lg(n)).
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Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {ambn : m > n}. We put it into Chomsky
Normal Form.
1) S → AT
2) T → aTb
3) T → e
4) A→ Aa
5) A→ a

New nonterminals [aT ], [b], [a]. Replace T → aTb with:
T → [aT ][b]
[aT ]→ [a]T
[b]→ b.
[a]→ a
Repeat the process with the other rules.
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MISC

1) There is a pumping theorem for CFL’s but we won’t be doing it.

2) If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
3) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:

PDAs
PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.
Deterministic CFG’s are defined by DPDA’s where are DFAs with
a stack.
The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won’t be doing it. We won’t deal with
PDA’s in this course at all.
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