BILL AND NATHAN START RECORDING

Context Free Languages

Why Are Context Free Languages Important

I am supposed to say:

Why Are Context Free Languages Important

I am supposed to say:
Most prog langs are Context Free Languages

Why Are Context Free Languages Important

I am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!

Why Are Context Free Languages Important

I am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.

Why Are Context Free Languages Important

I am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.
Our interest in CFL's is:

Why Are Context Free Languages Important

I am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.
Our interest in CFL's is:

1) Languages that require a LARGE NFA but a SMALL CFG.

Why Are Context Free Languages Important

I am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.
Our interest in CFL's is:

1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.

Why Are Context Free Languages Important

I am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.
Our interest in CFL's is:

1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL's are all in P (poly time).

Why Are Context Free Languages Important

I am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.
Our interest in CFL's is:

1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL's are all in P (poly time).
4) Which languages are not context free?

Why Are Context Free Languages Important

I am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.
Our interest in CFL's is:

1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL's are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Examples of Context Free Grammars

$S \rightarrow a S b$
$S \rightarrow e$

The set of all strings Generated is

Examples of Context Free Grammars

$S \rightarrow a S b$
$S \rightarrow e$

The set of all strings Generated is

$$
L=\left\{a^{n} b^{n}: n \in \mathrm{~N}\right\}
$$

Examples of Context Free Grammars

$S \rightarrow a S b$
$S \rightarrow e$

The set of all strings Generated is

$$
L=\left\{a^{n} b^{n}: n \in \mathrm{~N}\right\}
$$

Note L is context free lang that is not regular.

Context Free Grammar for $\left\{a^{2 n} b^{n}: n \in N\right\}$

$$
\begin{aligned}
& S \rightarrow a a S b \\
& S \rightarrow e
\end{aligned}
$$

The set of all strings Generated is

Context Free Grammar for $\left\{a^{2 n} b^{n}: n \in \mathbb{N}\right\}$

$$
\begin{aligned}
& S \rightarrow a a S b \\
& S \rightarrow e
\end{aligned}
$$

The set of all strings Generated is

$$
L=\left\{a^{2 n} b^{n}: n \in \mathrm{~N}\right\}
$$

Context Free Grammar for $\left\{a^{2 n} b^{n}: n \in \mathbb{N}\right\}$

$S \rightarrow a a S b$
$S \rightarrow e$
The set of all strings Generated is

$$
L=\left\{a^{2 n} b^{n}: n \in \mathrm{~N}\right\}
$$

Note L is context free lang that is not regular.

Context Free Grammar for $\left\{a^{m} b^{n}: m>n\right\}$

BREAKOUT ROOMS

Context Free Grammar for $\left\{a^{m} b^{n}: m>n\right\}$

$$
\begin{aligned}
& \text { BREAKOUT ROOMS } \\
& S \rightarrow A T \\
& T \rightarrow a T b \\
& T \rightarrow e \\
& A \rightarrow A a \\
& A \rightarrow a
\end{aligned}
$$

Context Free Grammars

Def A Context Free Grammar is a tuple $G=(N, \Sigma, R, S)$

- N is a finite set of nonterminals.
- Σ is a finite alphabet. Note $\Sigma \cap N=\emptyset$.
- $R \subseteq N \times(N \cup \Sigma)^{*}$ and are called Rules.
- $S \in N$, the start symbol.

If A is non-terminal then the CFG gives us gives us rules like:

- $A \rightarrow A B$
- $A \rightarrow a$

If A is non-terminal then the CFG gives us gives us rules like:

- $A \rightarrow A B$
- $A \rightarrow a$

For any string of terminals and non-terminals $\alpha, A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α.

If A is non-terminal then the CFG gives us gives us rules like:

- $A \rightarrow A B$
- $A \rightarrow a$

For any string of terminals and non-terminals $\alpha, A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α. Examples:

- $A \Rightarrow a$
- $A \Rightarrow a B$

L(G)

If A is non-terminal then the CFG gives us gives us rules like:

- $A \rightarrow A B$
- $A \rightarrow a$

For any string of terminals and non-terminals $\alpha, A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α. Examples:

- $A \Rightarrow a$
- $A \Rightarrow a B$

Then, if w is string of non-terminals only, we define $L(G)$ by:

$$
L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow w\right\}
$$

Number of a 's $=$ Number of b 's

Is

$$
L=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}
$$

context free?

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$
$\operatorname{Thm} L(G)=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$
Thm $L(G)=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
Note This Theorem is not obvious. Deserves a proof!

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$
Thm $L(G)=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
Note This Theorem is not obvious. Deserves a proof!
Contrast

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$
Thm $L(G)=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
Note This Theorem is not obvious. Deserves a proof!
Contrast
Never proved a DFA recognized language we claimed it did.

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$
Thm $L(G)=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
Note This Theorem is not obvious. Deserves a proof!
Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$
Thm $L(G)=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
Note This Theorem is not obvious. Deserves a proof!
Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch's Principle Never prove an obvious Theorem.

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$
Thm $L(G)=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
Note This Theorem is not obvious. Deserves a proof!
Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch's Principle Never prove an obvious Theorem.
(Exception: a course on foundations. I proved $x+y=y+x$.)
$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$
\quad Let G be the CFG
$\quad S \rightarrow a S b|b S a| S S \mid e$

$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
Thm $L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$. We prove something stronger.
Let $L(G)^{\prime}=\left\{\alpha \in\{S, a, b\}^{*}: S \Rightarrow \alpha\right\}$ (Note that we allow S in α.)

$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
Thm $L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$. We prove something stronger.
Let $L(G)^{\prime}=\left\{\alpha \in\{S, a, b\}^{*}: S \Rightarrow \alpha\right\}$ (Note that we allow S in α.)
$\operatorname{Thm} L(G)^{\prime} \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.

$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
Thm $L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$. We prove something stronger.
Let $L(G)^{\prime}=\left\{\alpha \in\{S, a, b\}^{*}: S \Rightarrow \alpha\right\}$ (Note that we allow S in α.)
Thm $L(G)^{\prime} \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
This is by induction on numb of steps in the derivation from S.

$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
Thm $L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$. We prove something stronger.
Let $L(G)^{\prime}=\left\{\alpha \in\{S, a, b\}^{*}: S \Rightarrow \alpha\right\}$ (Note that we allow S in α.)
Thm $L(G)^{\prime} \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
This is by induction on numb of steps in the derivation from S.
Base Case In one step can only get $\alpha \in\{a S b, b S a, S S, e\}$.

$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm} L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$. We prove something stronger.
Let $L(G)^{\prime}=\left\{\alpha \in\{S, a, b\}^{*}: S \Rightarrow \alpha\right\}$ (Note that we allow S in α.)
Thm $L(G)^{\prime} \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
This is by induction on numb of steps in the derivation from S.
Base Case In one step can only get $\alpha \in\{a S b, b S a, S S, e\}$. Ind Hyp If $S \Rightarrow \beta$ in $n-1$ steps then $\#_{a}(\beta)=\#_{b}(\beta)$.

$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm} L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$. We prove something stronger.
Let $L(G)^{\prime}=\left\{\alpha \in\{S, a, b\}^{*}: S \Rightarrow \alpha\right\}$ (Note that we allow S in α.)
Thm $L(G)^{\prime} \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
This is by induction on numb of steps in the derivation from S.
Base Case In one step can only get $\alpha \in\{a S b, b S a, S S, e\}$.
Ind Hyp If $S \Rightarrow \beta$ in $n-1$ steps then $\#_{a}(\beta)=\#_{b}(\beta)$.
Ind Step Assume $S \Rightarrow \alpha$ in n steps. Look at the last step.

$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm} L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$. We prove something stronger.
Let $L(G)^{\prime}=\left\{\alpha \in\{S, a, b\}^{*}: S \Rightarrow \alpha\right\}$ (Note that we allow S in α.)
Thm $L(G)^{\prime} \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
This is by induction on numb of steps in the derivation from S.
Base Case In one step can only get $\alpha \in\{a S b, b S a, S S, e\}$.
Ind Hyp If $S \Rightarrow \beta$ in $n-1$ steps then $\#_{a}(\beta)=\#_{b}(\beta)$.
Ind Step Assume $S \Rightarrow \alpha$ in n steps. Look at the last step.
Case $1 S \Rightarrow \alpha^{\prime} S \alpha^{\prime \prime} \rightarrow \alpha^{\prime} a S b \alpha$. By IH $\#_{a}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)$. $\#_{a}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)+1$.
$\#_{b}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)+1$.

$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm} L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$. We prove something stronger.
Let $L(G)^{\prime}=\left\{\alpha \in\{S, a, b\}^{*}: S \Rightarrow \alpha\right\}$ (Note that we allow S in α.)
Thm $L(G)^{\prime} \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
This is by induction on numb of steps in the derivation from S.
Base Case In one step can only get $\alpha \in\{a S b, b S a, S S, e\}$.
Ind Hyp If $S \Rightarrow \beta$ in $n-1$ steps then $\#_{a}(\beta)=\#_{b}(\beta)$.
Ind Step Assume $S \Rightarrow \alpha$ in n steps. Look at the last step.
Case $1 S \Rightarrow \alpha^{\prime} S \alpha^{\prime \prime} \rightarrow \alpha^{\prime} a S b \alpha$. By IH $\#_{a}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)$. $\#_{a}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)+1$.
$\#_{b}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)+1$.
Hence

$$
\#_{a}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)
$$

$L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm} L(G) \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$. We prove something stronger.
Let $L(G)^{\prime}=\left\{\alpha \in\{S, a, b\}^{*}: S \Rightarrow \alpha\right\}$ (Note that we allow S in α.)
Thm $L(G)^{\prime} \subseteq\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
This is by induction on numb of steps in the derivation from S.
Base Case In one step can only get $\alpha \in\{a S b, b S a, S S, e\}$.
Ind Hyp If $S \Rightarrow \beta$ in $n-1$ steps then $\#_{a}(\beta)=\#_{b}(\beta)$.
Ind Step Assume $S \Rightarrow \alpha$ in n steps. Look at the last step.
Case $1 S \Rightarrow \alpha^{\prime} S \alpha^{\prime \prime} \rightarrow \alpha^{\prime} a S b \alpha$. By IH $\#_{a}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)$. $\#_{a}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)+1$.
$\#_{b}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} S \alpha^{\prime \prime}\right)+1$.
Hence
$\#_{a}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)=\#_{b}\left(\alpha^{\prime} a S b \alpha^{\prime \prime}\right)$
Case 2 Other cases for last step similar.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG $S \rightarrow a S b|b S a| S S \mid e$

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated. BREAKOUT ROOMS!

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated. BREAKOUT ROOMS!
We use induction on $|w|$.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated.
BREAKOUT ROOMS!
We use induction on $|w|$.
Base Case $|w|=0$. So $w=e$. Can be generated by $S \rightarrow e$.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated.
BREAKOUT ROOMS!
We use induction on $|w|$.
Base Case $|w|=0$. So $w=e$. Can be generated by $S \rightarrow e$. Ind Hyp If $\left|w^{\prime}\right| \leq n-1$ and $\#_{a}\left(w^{\prime}\right)=\#_{b}\left(w^{\prime}\right)$ then $w^{\prime} \in L(G)$.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated.
BREAKOUT ROOMS!
We use induction on $|w|$.
Base Case $|w|=0$. So $w=e$. Can be generated by $S \rightarrow e$. Ind Hyp If $\left|w^{\prime}\right| \leq n-1$ and $\#_{a}\left(w^{\prime}\right)=\#_{b}\left(w^{\prime}\right)$ then $w^{\prime} \in L(G)$.
Ind Step Let w be such that $\#_{a}(w)=\#_{b}(w)$.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated.
BREAKOUT ROOMS!
We use induction on $|w|$.
Base Case $|w|=0$. So $w=e$. Can be generated by $S \rightarrow e$. Ind Hyp If $\left|w^{\prime}\right| \leq n-1$ and $\#_{a}\left(w^{\prime}\right)=\#_{b}\left(w^{\prime}\right)$ then $w^{\prime} \in L(G)$.
Ind Step Let w be such that $\#_{a}(w)=\#_{b}(w)$.
Case $1 w=a w^{\prime} b$. Then $w^{\prime} \in L(G)$. By IH $S \Rightarrow w^{\prime}$.
$S \rightarrow a S b \Rightarrow a w^{\prime} b$.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated.
BREAKOUT ROOMS!
We use induction on $|w|$.
Base Case $|w|=0$. So $w=e$. Can be generated by $S \rightarrow e$.
Ind Hyp If $\left|w^{\prime}\right| \leq n-1$ and $\#_{a}\left(w^{\prime}\right)=\#_{b}\left(w^{\prime}\right)$ then $w^{\prime} \in L(G)$.
Ind Step Let w be such that $\#_{a}(w)=\#_{b}(w)$.
Case $1 w=a w^{\prime} b$. Then $w^{\prime} \in L(G)$. By IH $S \Rightarrow w^{\prime}$.
$S \rightarrow a S b \Rightarrow a w^{\prime} b$.
Case $2 w=b w^{\prime} a$. Similar.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated.
BREAKOUT ROOMS!
We use induction on $|w|$.
Base Case $|w|=0$. So $w=e$. Can be generated by $S \rightarrow e$.
Ind Hyp If $\left|w^{\prime}\right| \leq n-1$ and $\#_{a}\left(w^{\prime}\right)=\#_{b}\left(w^{\prime}\right)$ then $w^{\prime} \in L(G)$.
Ind Step Let w be such that $\#_{a}(w)=\#_{b}(w)$.
Case $1 w=a w^{\prime} b$. Then $w^{\prime} \in L(G)$. By IH $S \Rightarrow w^{\prime}$.
$S \rightarrow a S b \Rightarrow a w^{\prime} b$.
Case $2 w=b w^{\prime} a$. Similar.
Case $3 w=a w^{\prime} a$. This is first NON-OBVIOUS part!

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG
$S \rightarrow a S b|b S a| S S \mid e$
$\operatorname{Thm}\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$.
This is not obvious!
We must show that every w with $\#_{a}(w)=\#_{b}(w)$ can be generated.
BREAKOUT ROOMS!
We use induction on $|w|$.
Base Case $|w|=0$. So $w=e$. Can be generated by $S \rightarrow e$. Ind Hyp If $\left|w^{\prime}\right| \leq n-1$ and $\#_{a}\left(w^{\prime}\right)=\#_{b}\left(w^{\prime}\right)$ then $w^{\prime} \in L(G)$.
Ind Step Let w be such that $\#_{a}(w)=\#_{b}(w)$.
Case $1 w=a w^{\prime} b$. Then $w^{\prime} \in L(G)$. By IH $S \Rightarrow w^{\prime}$.
$S \rightarrow a S b \Rightarrow a w^{\prime} b$.
Case $2 w=b w^{\prime} a$. Similar.
Case $3 w=a w^{\prime} a$. This is first NON-OBVIOUS part! Next Slide.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG $S \rightarrow a S b|b S a| S S \mid e$

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG $S \rightarrow a S b|b S a| S S \mid e$
Case $3 w=a w^{\prime} a$. Let $w=a \sigma_{2} \cdots \sigma_{n-1} a$. Look at prefixes of w :

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG $S \rightarrow a S b|b S a| S S \mid e$
Case $3 w=a w^{\prime} a$. Let $w=a \sigma_{2} \cdots \sigma_{n-1} a$. Look at prefixes of w : $a: \# a(a)>\#_{b}(a)$

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG $S \rightarrow a S b|b S a| S S \mid e$
Case $3 w=a w^{\prime} a$. Let $w=a \sigma_{2} \cdots \sigma_{n-1} a$. Look at prefixes of w : a: $\# a(a)>\#_{b}(a)$
For all $2 \leq i \leq n-1$, EITHER
$\#{ }_{a}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
OR
$\#_{b}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{b}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
But NOT both.

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG $S \rightarrow a S b|b S a| S S \mid e$
Case $3 w=a w^{\prime} a$. Let $w=a \sigma_{2} \cdots \sigma_{n-1} a$. Look at prefixes of w : a: $\# a(a)>\#_{b}(a)$
For all $2 \leq i \leq n-1$, EITHER
$\#{ }_{a}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
OR
$\# b\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{b}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
But NOT both.
$\begin{aligned} \#_{a}\left(a \sigma_{2} \cdots \sigma_{n-1}\right) & =\frac{n}{2}-1 \\ \#_{b}\left(a \sigma_{2} \cdots \sigma_{n-1}\right) & =\frac{n}{2}\end{aligned}$

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG $S \rightarrow a S b|b S a| S S \mid e$
Case $3 w=a w^{\prime} a$. Let $w=a \sigma_{2} \cdots \sigma_{n-1} a$. Look at prefixes of w : a: $\# a(a)>\#_{b}(a)$
For all $2 \leq i \leq n-1$, EITHER
$\#{ }_{a}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
OR
$\# b\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{b}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
But NOT both.
$\#_{a}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)=\frac{n}{2}-1$
$\#_{b}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)=\frac{n}{2}$
Hence

$\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\} \subseteq L(G)$

Let G be the CFG $S \rightarrow a S b|b S a| S S \mid e$
Case $3 w=a w^{\prime} a$. Let $w=a \sigma_{2} \cdots \sigma_{n-1} a$. Look at prefixes of w : a: $\# a(a)>\#_{b}(a)$
For all $2 \leq i \leq n-1$, EITHER
$\#{ }_{a}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
OR
$\# b\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{b}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
But NOT both.
$\#_{a}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)=\frac{n}{2}-1$
$\#_{b}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)=\frac{n}{2}$
Hence
$\#{ }_{a}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)<\#_{b}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)$

Recap

1) a: $\#_{a}(a)>\#_{b}(a)$

Recap

1) a: $\#_{a}(a)>\#_{b}(a)$
2) For all $2 \leq i \leq n-1$, EITHER
$\#_{a}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
OR
$\# b\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.

Recap

1) a: $\#_{a}(a)>\#_{b}(a)$
2) For all $2 \leq i \leq n-1$, EITHER
$\#_{a}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
OR
$\#_{b}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
3) $\#_{a}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)<\#_{b}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)$

Hence there exists $2 \leq i \leq n-1$
$\#_{a}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{b}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)$.

Recap

1) a: $\#_{a}(a)>\#_{b}(a)$
2) For all $2 \leq i \leq n-1$, EITHER
$\# a\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
OR
$\#_{b}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
3) $\#_{a}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)<\#_{b}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)$

Hence there exists $2 \leq i \leq n-1$
$\#{ }_{a}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{b}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)$.
So $w=w^{\prime} w^{\prime \prime}$ where $w, w^{\prime} \in L(G)$. Since $\left|w^{\prime}\right|<|w|$ and $\left|w^{\prime \prime}\right|<|w|$, by IH
$S \Rightarrow w^{\prime}$ and $S \Rightarrow w^{\prime \prime}$.

Recap

1) a: $\#_{a}(a)>\#_{b}(a)$
2) For all $2 \leq i \leq n-1$, EITHER
$\# a\left(a \sigma_{2} \cdots \sigma_{i}\right)=\# a\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
OR
$\#_{b}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{a}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)+1$.
3) $\#{ }_{a}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)<\#_{b}\left(a \sigma_{2} \cdots \sigma_{n-1}\right)$

Hence there exists $2 \leq i \leq n-1$
$\#{ }_{a}\left(a \sigma_{2} \cdots \sigma_{i}\right)=\#_{b}\left(a \sigma_{2} \cdots \sigma_{i-1}\right)$.
So $w=w^{\prime} w^{\prime \prime}$ where $w, w^{\prime} \in L(G)$. Since $\left|w^{\prime}\right|<|w|$ and $\left|w^{\prime \prime}\right|<|w|$, by IH
$S \Rightarrow w^{\prime}$ and $S \Rightarrow w^{\prime \prime}$.
So
$S \rightarrow S S \Rightarrow w^{\prime} w^{\prime \prime}=w$.

Example of a Lang that is NOT a CFL

1) $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$ is NOT a CFL.

Example of a Lang that is NOT a CFL

1) $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$ is NOT a CFL.
2) $\left\{a^{n^{2}}: n \in \mathrm{~N}\right\}$ is NOT a CFL.

Example of a Lang that is NOT a CFL

1) $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$ is NOT a CFL.
2) $\left\{a^{n^{2}}: n \in \mathrm{~N}\right\}$ is NOT a CFL.
3) If $L \subseteq a^{*}$ and L is not regular than L is not a CFL.

Example of a Lang that is NOT a CFL

1) $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$ is NOT a CFL.
2) $\left\{a^{n^{2}}: n \in \mathrm{~N}\right\}$ is NOT a CFL.
3) If $L \subseteq a^{*}$ and L is not regular than L is not a CFL.

We will not be proving Langs NOT CFL.

CLOSURE PROPERTIES AND REG \subset CFL

Closure Properties: PROVE or DISPROVE

If L_{1}, L_{2} are Context Free Languages then

1. IS $L_{1} \cup L_{2}$ is a context free Lang?
2. IS $L_{1} \cap L_{2}$ is a context free Lang?
3. IS $L_{1} \cdot L_{2}$ is a context free Lang?
4. IS $\overline{L_{1}}$ is a context free Lang?
5. IS L_{1}^{*} is a context free Lang?

BREAKOUT ROOMS

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cup L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.

$L_{1}, L_{2} C F L \rightarrow L_{1} \cup L_{2} C F L$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cup L_{2}$.
$L_{1} \cup L_{2}$ is CFL via CFG (N, Σ, R, S) where

$L_{1}, L_{2} C F L \rightarrow L_{1} \cup L_{2} C F L$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cup L_{2}$.
$L_{1} \cup L_{2}$ is CFL via CFG (N, Σ, R, S) where
$N=N_{1} \cup N_{2} \cup\{S\}$

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cup L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cup L_{2}$.
$L_{1} \cup L_{2}$ is CFL via CFG (N, Σ, R, S) where
$N=N_{1} \cup N_{2} \cup\{S\}$
S is start state.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cup L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cup L_{2}$.
$L_{1} \cup L_{2}$ is CFL via CFG (N, Σ, R, S) where
$N=N_{1} \cup N_{2} \cup\{S\}$
S is start state.
$R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}$

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cup L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cup L_{2}$.
$L_{1} \cup L_{2}$ is CFL via CFG (N, Σ, R, S) where
$N=N_{1} \cup N_{2} \cup\{S\}$
S is start state.
$R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}$
Note We assume $N_{1} \cap N_{2}=\emptyset$.

Finite vs Infinite Union

If L_{1} and L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
This is true for 3 languages or 4 languages or 98 languages.

Finite vs Infinite Union

If L_{1} and L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
This is true for 3 languages or 4 languages or 98 languages.
But if $L_{1}, L_{2}, L_{3}, \cdots$ is an infinite set of regular languages, is $L_{1} \cup L_{2} \cup \ldots$ regular?

Finite vs Infinite Union

If L_{1} and L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
This is true for 3 languages or 4 languages or 98 languages.
But if $L_{1}, L_{2}, L_{3}, \cdots$ is an infinite set of regular languages, is $L_{1} \cup L_{2} \cup \ldots$ regular?
No, because:

- $L_{1}=\{a b\}$ is regular.
- $L_{k}=\left\{a^{k} b^{k}\right\}$ is regular.
- $L_{1} \cup L_{2} \cup \cdots=\left\{a^{n} b^{n}: n \in \mathrm{~N}\right\}$ is not regular.

Finite vs Infinite Union

If L_{1} and L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
This is true for 3 languages or 4 languages or 98 languages.
But if $L_{1}, L_{2}, L_{3}, \cdots$ is an infinite set of regular languages, is $L_{1} \cup L_{2} \cup \ldots$ regular?
No, because:

- $L_{1}=\{a b\}$ is regular.
- $L_{k}=\left\{a^{k} b^{k}\right\}$ is regular.
- $L_{1} \cup L_{2} \cup \cdots=\left\{a^{n} b^{n}: n \in N\right\}$ is not regular.

What about for CFLs?

- $L_{1}=\{a b c\}$ is a CFL.
- $L_{k}=\left\{a^{k} b^{k} c^{k}\right\}$ is a CFL.
- We will see later that $\bigcup_{i=1}^{\infty} L_{i}=\left\{a^{n} b^{n} c^{n}: n \in N\right\}$ is not CFL.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cap L_{2} \mathrm{CFL}$

NOT TRUE: $a^{n} b^{n} c^{*} \cap a^{*} b^{n} c^{n}=a^{n} b^{n} c^{n}$.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cdot L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cdot L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cdot L_{2}$.
$L_{1} \cdot L_{2}$ is CFL via CFG (N, Σ, R, S) where

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cdot L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cdot L_{2}$.
$L_{1} \cdot L_{2}$ is CFL via CFG (N, Σ, R, S) where
$N=N_{1} \cup N_{2}$

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cdot L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cdot L_{2}$.
$L_{1} \cdot L_{2}$ is CFL via CFG (N, Σ, R, S) where
$N=N_{1} \cup N_{2}$
S is the start state.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cdot L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cdot L_{2}$.
$L_{1} \cdot L_{2}$ is CFL via CFG (N, Σ, R, S) where
$N=N_{1} \cup N_{2}$
S is the start state.
$R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \cdot S_{2}\right\}$.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cdot L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
The following CFG generates $L_{1} \cdot L_{2}$.
$L_{1} \cdot L_{2}$ is CFL via CFG (N, Σ, R, S) where
$N=N_{1} \cup N_{2}$
S is the start state.
$R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \cdot S_{2}\right\}$.
Note We assume $N_{1} \cap N_{2}=\emptyset$.

$L C F L \rightarrow \bar{L} C F L$

FALSE.
Let

$$
L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}}
$$

$L C F L \rightarrow \bar{L} C F L$

FALSE.
Let

$$
L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}}
$$

This is a CFL. This will be a HW.

$L C F L \rightarrow L^{*}$ CFL

L is CFL via CFG (N, Σ, R, S).

$L C F L \rightarrow L^{*}$ CFL

L is CFL via CFG (N, Σ, R, S).
Here is a CFL for $L^{*}:\left(N^{\prime}, \Sigma, R^{\prime}, S^{\prime}\right)$ where

$L C F L \rightarrow L^{*}$ CFL

L is CFL via CFG (N, Σ, R, S).
Here is a CFL for $L^{*}:\left(N^{\prime}, \Sigma, R^{\prime}, S^{\prime}\right)$ where S^{\prime} is new start nonterminal.

$L C F L \rightarrow L^{*}$ CFL

L is CFL via CFG (N, Σ, R, S).
Here is a CFL for $L^{*}:\left(N^{\prime}, \Sigma, R^{\prime}, S^{\prime}\right)$ where S^{\prime} is new start nonterminal.
$N^{\prime}=N \cup\{S\}$.

$L C F L \rightarrow L^{*}$ CFL

L is CFL via CFG (N, Σ, R, S).
Here is a CFL for $L^{*}:\left(N^{\prime}, \Sigma, R^{\prime}, S^{\prime}\right)$ where S^{\prime} is new start nonterminal.
$N^{\prime}=N \cup\{S\}$.
R^{\prime} has R and also

$L C F L \rightarrow L^{*}$ CFL

L is CFL via CFG (N, Σ, R, S).
Here is a CFL for $L^{*}:\left(N^{\prime}, \Sigma, R^{\prime}, S^{\prime}\right)$ where S^{\prime} is new start nonterminal.
$N^{\prime}=N \cup\{S\}$.
R^{\prime} has R and also
$S^{\prime} \rightarrow e$

$L C F L \rightarrow L^{*}$ CFL

L is CFL via CFG (N, Σ, R, S).
Here is a CFL for $L^{*}:\left(N^{\prime}, \Sigma, R^{\prime}, S^{\prime}\right)$ where S^{\prime} is new start nonterminal.
$N^{\prime}=N \cup\{S\}$.
R^{\prime} has R and also
$S^{\prime} \rightarrow e$
$S^{\prime} \rightarrow S^{\prime} S$

REG contained in CFL

Thm If L is regular then L is CFL. BREAKOUT ROOMS

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.
Prove by ind on the length of α.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.
Prove by ind on the length of α.
Base Case $|\alpha|=1$ then α is σ or e. Both $\{a\}$ and $\{e\}$ are CFL's.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.
Prove by ind on the length of α.
Base Case $|\alpha|=1$ then α is σ or e. Both $\{a\}$ and $\{e\}$ are CFL's. Ind Hyp For all regex β with $|\beta|<n$ there exists CFG G such that $L(\beta)=L(G)$.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.
Prove by ind on the length of α.
Base Case $|\alpha|=1$ then α is σ or e. Both $\{a\}$ and $\{e\}$ are CFL's. Ind Hyp For all regex β with $|\beta|<n$ there exists CFG G such that $L(\beta)=L(G)$.
Ind Step $|\alpha|=n$.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.
Prove by ind on the length of α.
Base Case $|\alpha|=1$ then α is σ or e. Both $\{a\}$ and $\{e\}$ are CFL's. Ind Hyp For all regex β with $|\beta|<n$ there exists CFG G such that $L(\beta)=L(G)$.
Ind Step $|\alpha|=n$.
Case $1 \alpha=\beta_{1} \cup \beta_{2}$. By IH $L\left(\beta_{1}\right)$ and $L\left(\beta_{2}\right)$ are CFL's. By closure under $\cup, L(\alpha)$ is CFL.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.
Prove by ind on the length of α.
Base Case $|\alpha|=1$ then α is σ or e. Both $\{a\}$ and $\{e\}$ are CFL's. Ind Hyp For all regex β with $|\beta|<n$ there exists CFG G such that $L(\beta)=L(G)$.
Ind Step $|\alpha|=n$.
Case $1 \alpha=\beta_{1} \cup \beta_{2}$. By IH $L\left(\beta_{1}\right)$ and $L\left(\beta_{2}\right)$ are CFL's. By closure under $\cup, L(\alpha)$ is CFL.
Case $2 \alpha=\beta_{1} \cdot \beta_{2}$. By IH $L\left(\beta_{1}\right)$ and $L\left(\beta_{2}\right)$ are CFL's. By closure under $\cdot, L(\alpha)$ is CFL.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.
Prove by ind on the length of α.
Base Case $|\alpha|=1$ then α is σ or e. Both $\{a\}$ and $\{e\}$ are CFL's. Ind Hyp For all regex β with $|\beta|<n$ there exists CFG G such that $L(\beta)=L(G)$.
Ind Step $|\alpha|=n$.
Case $1 \alpha=\beta_{1} \cup \beta_{2}$. By IH $L\left(\beta_{1}\right)$ and $L\left(\beta_{2}\right)$ are CFL's. By closure under $\cup, L(\alpha)$ is CFL.
Case $2 \alpha=\beta_{1} \cdot \beta_{2}$. By IH $L\left(\beta_{1}\right)$ and $L\left(\beta_{2}\right)$ are CFL's. By closure under $\cdot, L(\alpha)$ is CFL.
Case $3 \alpha=\beta^{*}$. By IH $L(\beta)$ is CFL. By closure under $*, L(\alpha)$ is CFL.

Examples of CFL's and Size of CFG's

Size of CFGs

How big is a CFL for the language \{aaaaaaat (there are 8 a's).

Size of CFGs

How big is a CFL for the language \{aaaaaaat (there are 8 a's).
We could say the size is 1 :

$$
S \rightarrow \text { аааааааа }
$$

Size of CFGs

How big is a CFL for the language \{aaaaaaat (there are 8 a's).
We could say the size is 1 :

$$
S \rightarrow \text { аааааааа }
$$

This does not seem quite right.

Size of CFGs

How big is a CFL for the language \{aaaaaaat (there are 8 a's). We could say the size is 1 :

$$
S \rightarrow \text { аааааааа }
$$

This does not seem quite right.
Next slide has a standard form for CFL's that make size make sense.

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

1) $A \rightarrow B C$ where $A, B, C \in N$ (nonterminals).

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

1) $A \rightarrow B C$ where $A, B, C \in N$ (nonterminals).
2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

1) $A \rightarrow B C$ where $A, B, C \in N$ (nonterminals).
2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).
3) $S \rightarrow e$ (where S is the start state).

Example of Chomsky Normal Form

Recall the CFG:
$S \rightarrow$ aaaaaaaa

Example of Chomsky Normal Form

Recall the CFG:

$S \rightarrow$ aaaaaaaa
BREAKOUT ROOM TO FIND A CHOMSKY NORMAL FORM CFG FOR \{aaaaaaa\}.

Example of Chomsky Normal Form

Recall the CFG:
$S \rightarrow$ aaaaaaaa

Example of Chomsky Normal Form

Recall the CFG:
$S \rightarrow$ aaaaaaaa
Chomsky Normal form CFG that generates same lang:
$S \rightarrow A A$

Example of Chomsky Normal Form

Recall the CFG:
$S \rightarrow$ aaaaaaaa
Chomsky Normal form CFG that generates same lang:
$S \rightarrow A A$
$A \rightarrow B B$

Example of Chomsky Normal Form

Recall the CFG:
$S \rightarrow$ aaaaaaaa
Chomsky Normal form CFG that generates same lang:
$S \rightarrow A A$
$A \rightarrow B B$
$B \rightarrow C C$

Example of Chomsky Normal Form

Recall the CFG:
$S \rightarrow$ aaaaaaaa
Chomsky Normal form CFG that generates same lang:
$S \rightarrow A A$
$A \rightarrow B B$
$B \rightarrow C C$
$C \rightarrow a$

Example of Chomsky Normal Form

Recall the CFG:
$S \rightarrow$ aaaaaaaa
Chomsky Normal form CFG that generates same lang:
$S \rightarrow A A$
$A \rightarrow B B$
$B \rightarrow C C$
$C \rightarrow a$
We measure the size of a Chomsky Normal Form CFG by the number of rules.

Example of Chomsky Normal Form

Recall the CFG:
$S \rightarrow$ aaaaaaaa
Chomsky Normal form CFG that generates same lang:
$S \rightarrow A A$
$A \rightarrow B B$
$B \rightarrow C C$
$C \rightarrow a$
We measure the size of a Chomsky Normal Form CFG by the number of rules.
So \{aaaaaaaa\} has a Chomsky Normal Form CFG of size 4.

Chomsky Normal Form CFG for $\left\{a^{n}\right\}$

We say that $\left\{a^{8}\right\}$ has a CNF CFG of size 4.

Chomsky Normal Form CFG for $\left\{a^{n}\right\}$

We say that $\left\{a^{8}\right\}$ has a CNF CFG of size 4.
What about $\left\{a^{16}\right\}$? Vote

Chomsky Normal Form CFG for $\left\{a^{n}\right\}$

We say that $\left\{a^{8}\right\}$ has a CNF CFG of size 4.
What about $\left\{a^{16}\right\}$? Vote

1) Size 8
2) Size 5

Chomsky Normal Form CFG for $\left\{a^{n}\right\}$

We say that $\left\{a^{8}\right\}$ has a CNF CFG of size 4.
What about $\left\{a^{16}\right\}$? Vote

1) Size 8
2) Size 5

The answer is 5. Next slide.

Chomsky Normal Form CFG for $\left\{a^{16}\right\}$

$S \rightarrow A A$

Chomsky Normal Form CFG for $\left\{a^{16}\right\}$

$$
\begin{aligned}
& S \rightarrow A A \\
& A \rightarrow B B
\end{aligned}
$$

Chomsky Normal Form CFG for $\left\{a^{16}\right\}$

$S \rightarrow A A$
$A \rightarrow B B$
$B \rightarrow C C$

Chomsky Normal Form CFG for $\left\{a^{16}\right\}$

$$
\begin{aligned}
& S \rightarrow A A \\
& A \rightarrow B B \\
& B \rightarrow C C \\
& C \rightarrow D D
\end{aligned}
$$

Chomsky Normal Form CFG for $\left\{a^{16}\right\}$

$$
\begin{aligned}
& S \rightarrow A A \\
& A \rightarrow B B \\
& B \rightarrow C C \\
& C \rightarrow D D \\
& D \rightarrow a
\end{aligned}
$$

Chomsky Normal Form CFG for $\left\{a^{16}\right\}$

$$
\begin{aligned}
& S \rightarrow A A \\
& A \rightarrow B B \\
& B \rightarrow C C \\
& C \rightarrow D D \\
& D \rightarrow a
\end{aligned}
$$

What to do if n is not a power of 2 . HW.

$L=\{a\}^{n}$

Upshot
For $L_{n}=\left\{a^{n}\right\}$:

- Any DFA or NFA that recognizes L_{n} has $n+\Omega(1)$ states.
- There is a CFG that generates L_{n} with $O(\log n)$ rules.

Our Old Friend $L=\{a, b\}^{*} a\{a, b\}^{n}$

1) We showed that L requires a 2^{n+1} size DFA.

Our Old Friend $L=\{a, b\}^{*} a\{a, b\}^{n}$

1) We showed that L requires a 2^{n+1} size DFA.
2) We have an NFA of size $n+2$. There is no NFA of size n since then there would be a DFA of size $2^{n}<2^{n+1}$.

Our Old Friend $L=\{a, b\}^{*} a\{a, b\}^{n}$

1) We showed that L requires a 2^{n+1} size DFA.
2) We have an NFA of size $n+2$. There is no NFA of size n since then there would be a DFA of size $2^{n}<2^{n+1}$.
3) BREAKOUT ROOMS for getting a CFG of size $\ll n$.

DFA，NFA，CFG

DFA, NFA, CFG

$L=L_{1} \cdot L_{2}$ where

DFA, NFA, CFG

$$
\begin{aligned}
& L=L_{1} \cdot L_{2} \text { where } \\
& L_{1}=\{a, b\}^{*} \text { a. Has 5-rule Chomsky Normal Form CFG: } \\
& S \rightarrow A S|B S| a \\
& A \rightarrow a \\
& B \rightarrow b
\end{aligned}
$$

DFA, NFA, CFG

$L=L_{1} \cdot L_{2}$ where
$L_{1}=\{a, b\}^{*} a$. Has 5-rule Chomsky Normal Form CFG:
$S \rightarrow A S|B S| a$
$A \rightarrow a$
$B \rightarrow b$
$L_{2}=\{a, b\}^{n}$. A $\lg (n)+3$ rule Chomsky Normal Form CFG.
$S \rightarrow S_{1} S_{1}$
$S_{1} \rightarrow S_{2} S_{2}$
$S_{\lg (n)+1} \rightarrow S_{\lg (n)} S_{\lg (n)}$
$S_{\lg (n)} \rightarrow a \mid b$
Note We are assuming n is a power of 2 .

DFA, NFA, CFG Size Diff

$$
L=\{a, b\}^{*} a\{a, b\}^{n}
$$

DFA, NFA, CFG Size Diff

$$
L=\{a, b\}^{*} a\{a, b\}^{n}
$$

1) DFA of size $\Theta\left(2^{n}\right)$.

DFA, NFA, CFG Size Diff

$$
L=\{a, b\}^{*} a\{a, b\}^{n}
$$

1) DFA of size $\Theta\left(2^{n}\right)$.
2) NFA of size $n+\Theta(1)$.

DFA, NFA, CFG Size Diff

$$
L=\{a, b\}^{*} a\{a, b\}^{n}
$$

1) DFA of size $\Theta\left(2^{n}\right)$.
2) NFA of size $n+\Theta(1)$.
3) CFG of size $\Theta(\lg (n))$.

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\left\{a^{m} b^{n}: m>n\right\}$. We put it into Chomsky Normal Form.

1) $S \rightarrow A T$
2) $T \rightarrow a T b$
3) $T \rightarrow e$
4) $A \rightarrow A a$
5) $A \rightarrow a$

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\left\{a^{m} b^{n}: m>n\right\}$. We put it into Chomsky Normal Form.

1) $S \rightarrow A T$
2) $T \rightarrow a T b$
3) $T \rightarrow e$
4) $A \rightarrow A a$
5) $A \rightarrow a$

New nonterminals [aT], [b], [a]. Replace $T \rightarrow a T b$ with:
$T \rightarrow[a T][b]$
$[a T] \rightarrow[a] T$
$[b] \rightarrow b$.
$[a] \rightarrow a$

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\left\{a^{m} b^{n}: m>n\right\}$. We put it into Chomsky Normal Form.

1) $S \rightarrow A T$
2) $T \rightarrow a T b$
3) $T \rightarrow e$
4) $A \rightarrow A a$
5) $A \rightarrow a$

New nonterminals [aT], [b], [a]. Replace $T \rightarrow a T b$ with:
$T \rightarrow[a T][b]$
$[a T] \rightarrow[a] T$
$[b] \rightarrow b$.
$[a] \rightarrow a$
Repeat the process with the other rules.

MISC
4ロ〉4句

MISC

1) There is a pumping theorem for CFL's but we won't be doing it.

MISC

1) There is a pumping theorem for CFL's but we won't be doing it.
2) If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.

MISC

1) There is a pumping theorem for CFL's but we won't be doing it.
2) If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.
3) Recall: DFA's are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDAs

MISC

1) There is a pumping theorem for CFL's but we won't be doing it.
2) If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.
3) Recall: DFA's are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDAs
PDA does not stand for Public Display of Affection

MISC

1) There is a pumping theorem for CFL's but we won't be doing it.
2) If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.
3) Recall: DFA's are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDAs
PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.

MISC

1) There is a pumping theorem for CFL's but we won't be doing it.
2) If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.
3) Recall: DFA's are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it: PDAs
PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.
Deterministic CFG's are defined by DPDA's where are DFAs with a stack.

MISC

1) There is a pumping theorem for CFL's but we won't be doing it.
2) If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.
3) Recall: DFA's are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDAs
PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.
Deterministic CFG's are defined by DPDA's where are DFAs with a stack.
The proof that PDA-recognizers and CFG-generators are equivalent is messy so we won't be doing it. We won't deal with PDA's in this course at all.

