$\mathrm{CLIQ} \leq \mathrm{SAT}$

Exposition by William Gasarch—U of MD

$\mathrm{CLIQ} \leq \mathrm{SAT.}$ Why?

Bill Today we will prove $CLIQ \leq SAT$.

 $\label{eq:saturation} \begin{array}{l} \mbox{Bill} & \mbox{Today we will prove } {\rm CLIQ} \leq {\rm SAT}. \end{array}$ Yaelle That's stupid! We know ${\rm CLIQ} \leq {\rm SAT}$ by Cook-Levin.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Bill Today we will prove $CLIQ \le SAT$. **Yaelle** That's stupid! We know $CLIQ \le SAT$ by Cook-Levin. **Bill** Write a program that will, given (G, k) produce ϕ such that

 $(G, k) \in \text{CLIQ} \text{ iff } \phi \in \text{SAT}$

Bill Today we will prove $CLIQ \le SAT$. **Yaelle** That's stupid! We know $CLIQ \le SAT$ by Cook-Levin. **Bill** Write a program that will, given (G, k) produce ϕ such that

 $(G, k) \in \text{CLIQ} \text{ iff } \phi \in \text{SAT}$

ション ふゆ アメビア メロア しょうくしゃ

Yaelle Deal with Turing Machines? That'sinsane!

Bill Today we will prove $CLIQ \le SAT$. **Yaelle** That's stupid! We know $CLIQ \le SAT$ by Cook-Levin. **Bill** Write a program that will, given (G, k) produce ϕ such that

 $(G, k) \in \text{CLIQ} \text{ iff } \phi \in \text{SAT}$

Yaelle Deal with Turing Machines? That'sinsane! Bill Correct. I will show $CLIQ \leq SAT$ in a sane way.

Bill Today we will prove $CLIQ \leq SAT$.

Yaelle That's stupid! We know $CLIQ \leq SAT$ by Cook-Levin.

Bill Write a program that will, given (G, k) produce ϕ such that

 $(G, k) \in \text{CLIQ} \text{ iff } \phi \in \text{SAT}$

Yaelle Deal with Turing Machines? That'sinsane! Bill Correct. I will show $CLIQ \leq SAT$ in a sane way. Yaelle Why? Not practical since SAT is hard. Not theoretically interesting since we already know $CLIQ \leq SAT$.

Bill Today we will prove $CLIQ \leq SAT$.

Yaelle That's stupid! We know $CLIQ \leq SAT$ by Cook-Levin.

Bill Write a program that will, given (G, k) produce ϕ such that

 $(G, k) \in \text{CLIQ} \text{ iff } \phi \in \text{SAT}$

Bill Because there are awesome SAT Solvers!

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $CLIQ \leq SAT$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $CLIQ \leq SAT$. That reduction is insane (hard and blow up).

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}$. That reduction is insane (hard and blow up). If I can find a better reduction of $\mathrm{CLIQ} \leq \mathrm{SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

ション ふゆ アメビア メロア しょうくしゃ

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}$. That reduction is insane (hard and blow up). If I can find a better reduction of $\mathrm{CLIQ} \leq \mathrm{SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

ション ふゆ アメビア メロア しょうくしゃ

Caveat This does not always work.

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}$. That reduction is insane (hard and blow up). If I can find a better reduction of $\mathrm{CLIQ} \leq \mathrm{SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

ション ふゆ アメビア メロア しょうくしゃ

Caveat This does not always work.

1. SAT solvers are only good on some problems.

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}$. That reduction is insane (hard and blow up). If I can find a better reduction of $\mathrm{CLIQ} \leq \mathrm{SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

- 1. SAT solvers are only good on some problems.
- 2. Getting the reductions to not blow up is not always possible.

ション ふゆ アメビア メロア しょうくしゃ

How to View CLIQ

Does G have a clique of size k?

How to View CLIQ

Does G have a clique of size k? We rephrase that:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Does G have a clique of size k? We rephrase that: Let G = (V, E).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Does G have a clique of size k? We rephrase that: Let G = (V, E). G has a clique of size k is **equivalent** to: **There is a 1-1 function** $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k$, $(f(a), f(b)) \in E$.

Does G have a clique of size k?

We rephrase that:

Let G = (V, E).

G has a clique of size *k* is **equivalent** to: There is a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k$, $(f(a), f(b)) \in E$.

I will go to the Zoom whiteboard and do an example, drawing with the mouse.

ション ふゆ アメビア メロア しょうくしゃ

Does G have a clique of size k?

We rephrase that:

Let G = (V, E).

G has a clique of size *k* is **equivalent** to: There is a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k$, $(f(a), f(b)) \in E$.

I will go to the Zoom whiteboard and do an example, drawing with the mouse. Wish me luck.

ション ふゆ アメビア メロア しょうくしゃ

$\mathbf{CLIQ} \leq \mathbf{SAT}$

We want to know: Is there a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k$, $(f(a), f(b)) \in E$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$\mathbf{CLIQ} \leq \mathbf{SAT}$

We want to know:

Is there a 1-1 function $\{1, \ldots, k\} \to V$ such that for all $1 \le a, b \le k$, $(f(a), f(b)) \in E$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We formulate this as a Boolean Formula.

$\mathrm{CLIQ} \leq \mathrm{SAT}$

We want to know:

Is there a 1-1 function $\{1, \ldots, k\} \to V$ such that for all $1 \le a, b \le k$, $(f(a), f(b)) \in E$.

We formulate this as a Boolean Formula.

For $1 \le i \le k$, $1 \le j \le n$, have Boolean Vars x_{ij} .

$\mathrm{CLIQ} \leq \mathrm{SAT}$

We want to know:

Is there a 1-1 function $\{1, \ldots, k\} \to V$ such that for all $1 \le a, b \le k$, $(f(a), f(b)) \in E$.

We formulate this as a Boolean Formula.

For $1 \le i \le k$, $1 \le j \le n$, have Boolean Vars x_{ij} .

$$x_{ij} = \begin{cases} T & \text{if numb } i \text{ maps to vertex } j \\ F & \text{if numb } i \text{ does not maps to vertex } j \end{cases}$$
(1)

Formula: x_{ii} Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

+ロト 4 個 ト 4 国 ト 4 国 ト 1 の 4 で

The formula is in diff parts to guarantee diff things. **Every** *i* maps to at least one *j* For $1 \le i \le k$

 $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The formula is in diff parts to guarantee diff things. **Every** *i* maps to at least one *j* For $1 \le i \le k$

 $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$

Every *i* maps to at at most one *j* For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n$

 $\neg(x_{ij_1} \wedge x_{ij_2})$

The formula is in diff parts to guarantee diff things. **Every** *i* maps to at least one *j* For $1 \le i \le k$

 $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$

Every *i* maps to at at most one *j* For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n$

 $\neg(x_{ij_1} \wedge x_{ij_2})$

The mapping is 1-1 For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n$ $\neg(x_{i_1,j} \land x_{i_2,j})$

The formula is in diff parts to guarantee diff things. **Every** *i* maps to at least one *j* For $1 \le i \le k$

 $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$

Every *i* maps to at at most one *j* For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n$

 $\neg(x_{ij_1} \wedge x_{ij_2})$

The mapping is 1-1 For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n$ $\neg(x_{i_1,j} \land x_{i_2,j})$

Note So far all we've used about *G* is that it has *n* vertices.

Formula: The Edges are Preserved

We need that if i_1 maps to j_1 and i_2 maps to j_2 then $(j_1, j_2) \in E$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Formula: The Edges are Preserved

We need that if i_1 maps to j_1 and i_2 maps to j_2 then $(j_1, j_2) \in E$. For every $1 \le i_1 < i_2 \le k$

$$\bigvee_{(j_1,j_2)\in E} x_{i_1j_1} \wedge x_{i_2j_2}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We state the parts of the formula and how long they are.

We state the parts of the formula and how long they are. For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We state the parts of the formula and how long they are. For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn). For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

We state the parts of the formula and how long they are. For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn). For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$ For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

We state the parts of the formula and how long they are. For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn). For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$ For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$ For every $1 \le i_1 < i_2 \le k$, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$

We state the parts of the formula and how long they are. For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn). For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$ For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$ For every $1 \le i_1 < i_2 \le k$, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$

• The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.

We state the parts of the formula and how long they are. For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn). For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$ For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$ For every $1 \le i_1 < i_2 \le k$, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$

- The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- The construction is easy to do. Yaelle could code this up.

We state the parts of the formula and how long they are. For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn). For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$ For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$ For every $1 \le i_1 < i_2 \le k$, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$

- The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- The construction is easy to do. Yaelle could code this up.

The constants are small.

We state the parts of the formula and how long they are. For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn). For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$ For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$ For every $1 \le i_1 < i_2 \le k$, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$

- The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- The construction is easy to do. Yaelle could code this up.

- The constants are small.
- Usually $k \ll n$ so the real issue is the n^2 and the |E|.

We state the parts of the formula and how long they are. For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn). For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$ For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$ For every $1 \le i_1 < i_2 \le k$, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$

- The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- The construction is easy to do. Yaelle could code this up.
- The constants are small.
- Usually $k \ll n$ so the real issue is the n^2 and the |E|.
- Upshot: probably really good on sparse graphs.