$\mathrm{CLIQ} \leq \mathrm{SAT}$

Exposition by William Gasarch-U of MD

$\mathrm{CLIQ} \leq \mathrm{SAT}$. Why?

Bill Today we will prove CLIQ \leq SAT.

$\mathrm{CLIQ} \leq \mathrm{SAT}$. Why?

Bill Today we will prove CLIQ \leq SAT.
Yaelle That's stupid! We know CLIQ \leq SAT by Cook-Levin.

$\mathrm{CLIQ} \leq \mathrm{SAT}$. Why?

Bill Today we will prove CLIQ \leq SAT.
Yaelle That's stupid! We know CLIQ \leq SAT by Cook-Levin.
Bill Write a program that will, given (G, k) produce ϕ such that

$$
(G, k) \in \mathrm{CLIQ} \text { iff } \phi \in \mathrm{SAT}
$$

$\mathrm{CLIQ} \leq \mathrm{SAT}$. Why?

Bill Today we will prove CLIQ \leq SAT.
Yaelle That's stupid! We know CLIQ \leq SAT by Cook-Levin.
Bill Write a program that will, given (G, k) produce ϕ such that

$$
(G, k) \in \mathrm{CLIQ} \text { iff } \phi \in \mathrm{SAT}
$$

Yaelle Deal with Turing Machines? That'sinsane!

$\mathrm{CLIQ} \leq \mathrm{SAT}$. Why?

Bill Today we will prove CLIQ \leq SAT.
Yaelle That's stupid! We know CLIQ \leq SAT by Cook-Levin.
Bill Write a program that will, given (G, k) produce ϕ such that

$$
(G, k) \in \mathrm{CLIQ} \text { iff } \phi \in \mathrm{SAT}
$$

Yaelle Deal with Turing Machines? That'sinsane!
Bill Correct. I will show CLIQ \leq SAT in a sane way.

$\mathrm{CLIQ} \leq \mathrm{SAT}$. Why?

Bill Today we will prove CLIQ \leq SAT.
Yaelle That's stupid! We know CLIQ \leq SAT by Cook-Levin.
Bill Write a program that will, given (G, k) produce ϕ such that

$$
(G, k) \in \mathrm{CLIQ} \text { iff } \phi \in \mathrm{SAT}
$$

Yaelle Deal with Turing Machines? That'sinsane!
Bill Correct. I will show CLIQ \leq SAT in a sane way.
Yaelle Why? Not practical since SAT is hard. Not theoretically interesting since we already know CLIQ \leq SAT.

$\mathrm{CLIQ} \leq \mathrm{SAT}$. Why?

Bill Today we will prove CLIQ \leq SAT.
Yaelle That's stupid! We know CLIQ \leq SAT by Cook-Levin.
Bill Write a program that will, given (G, k) produce ϕ such that

$$
(G, k) \in \mathrm{CLIQ} \text { iff } \phi \in \mathrm{SAT}
$$

Yaelle Deal with Turing Machines? That'sinsane!
Bill Correct. I will show CLIQ \leq SAT in a sane way.
Yaelle Why? Not practical since SAT is hard. Not theoretically interesting since we already know CLIQ \leq SAT.
Bill Because there are awesome SAT Solvers!

Old View, New View

Old View, New View

Old View I want to solve CLIQ. Since SAT \leq CLIQ, CLIQ is probably hard. Darn!

Old View, New View

Old View I want to solve CLIQ. Since SAT \leq CLIQ, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}$.

Old View, New View

Old View I want to solve CLIQ. Since SAT \leq CLIQ, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that CLIQ \leq SAT.
That reduction is insane (hard and blow up).

Old View, New View

Old View I want to solve CLIQ. Since SAT \leq CLIQ, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq$ SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ \leq SAT then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Old View, New View

Old View I want to solve CLIQ. Since SAT \leq CLIQ, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq$ SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ \leq SAT then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

Old View, New View

Old View I want to solve CLIQ. Since SAT \leq CLIQ, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq$ SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ \leq SAT then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

Old View, New View

Old View I want to solve CLIQ. Since SAT \leq CLIQ, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that CLIQ \leq SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ \leq SAT then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.
2. Getting the reductions to not blow up is not always possible.

How to View CLIQ

Does G have a clique of size k ?

How to View CLIQ

Does G have a clique of size k ?
We rephrase that:

How to View CLIQ

Does G have a clique of size k ?
We rephrase that:
Let $G=(V, E)$.

How to View CLIQ

Does G have a clique of size k ?
We rephrase that:
Let $G=(V, E)$.
G has a clique of size k is equivalent to:
There is a 1 -1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k,(f(a), f(b)) \in E$.

How to View CLIQ

Does G have a clique of size k ?
We rephrase that:
Let $G=(V, E)$.
G has a clique of size k is equivalent to:
There is a 1 -1 function $\{1, \ldots, k\} \rightarrow V$ such that for all
$1 \leq a, b \leq k,(f(a), f(b)) \in E$.
I will go to the Zoom whiteboard and do an example, drawing with the mouse.

How to View CLIQ

Does G have a clique of size k ?
We rephrase that:
Let $G=(V, E)$.
G has a clique of size k is equivalent to:
There is a 1 -1 function $\{1, \ldots, k\} \rightarrow V$ such that for all
$1 \leq a, b \leq k,(f(a), f(b)) \in E$.
I will go to the Zoom whiteboard and do an example, drawing with the mouse. Wish me luck.

$\mathrm{CLIQ} \leq \mathrm{SAT}$

We want to know:
Is there a $1-1$ function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k,(f(a), f(b)) \in E$.

$\mathrm{CLIQ} \leq \mathrm{SAT}$

We want to know:
Is there a $\mathbf{1 - 1}$ function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k,(f(a), f(b)) \in E$.
We formulate this as a Boolean Formula.

$\mathrm{CLIQ} \leq \mathrm{SAT}$

We want to know:
Is there a $1-1$ function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k,(f(a), f(b)) \in E$.
We formulate this as a Boolean Formula.
For $1 \leq i \leq k, 1 \leq j \leq n$, have Boolean Vars $x_{i j}$.

$\mathrm{CLIQ} \leq \mathrm{SAT}$

We want to know:
Is there a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k,(f(a), f(b)) \in E$.
We formulate this as a Boolean Formula.
For $1 \leq i \leq k, 1 \leq j \leq n$, have Boolean Vars $x_{i j}$.
Intent

$$
x_{i j}= \begin{cases}T & \text { if numb } i \text { maps to vertex } j \tag{1}\\ F & \text { if numb } i \text { does not maps to vertex } j\end{cases}
$$

Formula: $x_{i j}$ Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

Formula: $x_{i j}$ Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.
Every \boldsymbol{i} maps to at least one \boldsymbol{j}
For $1 \leq i \leq k$

$$
x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}
$$

Formula: $x_{i j}$ Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.
Every \boldsymbol{i} maps to at least one \boldsymbol{j}
For $1 \leq i \leq k$

$$
x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}
$$

Every \boldsymbol{i} maps to at at most one \boldsymbol{j}
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n$

$$
\neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right)
$$

Formula: $x_{i j}$ Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.
Every \boldsymbol{i} maps to at least one \boldsymbol{j}
For $1 \leq i \leq k$

$$
x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}
$$

Every \boldsymbol{i} maps to at at most one \boldsymbol{j}
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n$

$$
\neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right)
$$

The mapping is 1-1
For $1 \leq i_{1}<i_{2} \leq k$, for $1 \leq j \leq n$

$$
\neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right)
$$

Formula: $x_{i j}$ Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.
Every \boldsymbol{i} maps to at least one \boldsymbol{j}
For $1 \leq i \leq k$

$$
x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}
$$

Every \boldsymbol{i} maps to at at most one \boldsymbol{j}
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n$

$$
\neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right)
$$

The mapping is $1-1$
For $1 \leq i_{1}<i_{2} \leq k$, for $1 \leq j \leq n$

$$
\neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right)
$$

Note So far all we've used about G is that it has n vertices.

Formula: The Edges are Preserved

We need that if i_{1} maps to j_{1} and i_{2} maps to j_{2} then $\left(j_{1}, j_{2}\right) \in E$.

Formula: The Edges are Preserved

We need that if i_{1} maps to j_{1} and i_{2} maps to j_{2} then $\left(j_{1}, j_{2}\right) \in E$.
For every $1 \leq i_{1}<i_{2} \leq k$

$$
\bigvee_{\left(j_{1}, j_{2}\right) \in E} x_{i_{1} j_{1}} \wedge x_{i_{2} j_{2}}
$$

How Big is the Formula

We state the parts of the formula and how long they are.

How Big is the Formula

We state the parts of the formula and how long they are.
For $1 \leq i \leq k: x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n} . O(k n)$.

How Big is the Formula

We state the parts of the formula and how long they are.
For $1 \leq i \leq k: x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n} . O(k n)$.
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n \neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right)$. $O\left(k n^{2}\right)$

How Big is the Formula

We state the parts of the formula and how long they are.
For $1 \leq i \leq k: x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n} . O(k n)$.
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n \neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right)$. $O\left(k n^{2}\right)$
For $1 \leq i_{1}<i_{2} \leq k$, for $1 \leq j \leq n \neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right) . O\left(k^{2} n\right)$

How Big is the Formula

We state the parts of the formula and how long they are.
For $1 \leq i \leq k: x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n} . O(k n)$.
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n \neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right)$. $O\left(k n^{2}\right)$
For $1 \leq i_{1}<i_{2} \leq k$, for $1 \leq j \leq n \neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right) . O\left(k^{2} n\right)$
For every $1 \leq i_{1}<i_{2} \leq k, \bigvee_{\left(j_{1}, j_{2}\right) \in E} x_{i_{1} j_{1}} \wedge x_{i_{2} j_{2}} . O\left(k^{2}|E|\right)$

How Big is the Formula

We state the parts of the formula and how long they are.
For $1 \leq i \leq k: x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n} . O(k n)$.
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n \neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right)$. $O\left(k n^{2}\right)$
For $1 \leq i_{1}<i_{2} \leq k$, for $1 \leq j \leq n \neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right)$. $O\left(k^{2} n\right)$
For every $1 \leq i_{1}<i_{2} \leq k, \bigvee_{\left(j_{1}, j_{2}\right) \in E} x_{i_{1} j_{1}} \wedge x_{i_{2} j_{2}} . O\left(k^{2}|E|\right)$

- The formula is of size $O\left(k n^{2}\right)+O\left(k^{2} n\right)+O\left(k^{2}|E|\right)$.

How Big is the Formula

We state the parts of the formula and how long they are.
For $1 \leq i \leq k: x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n} . O(k n)$.
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n \neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right) . O\left(k n^{2}\right)$
For $1 \leq i_{1}<i_{2} \leq k$, for $1 \leq j \leq n \neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right) . O\left(k^{2} n\right)$
For every $1 \leq i_{1}<i_{2} \leq k, \bigvee_{\left(j_{1}, j_{2}\right) \in E} x_{i_{1} j_{1}} \wedge x_{i_{2} j_{2}} . O\left(k^{2}|E|\right)$

- The formula is of size $O\left(k n^{2}\right)+O\left(k^{2} n\right)+O\left(k^{2}|E|\right)$.
- The construction is easy to do. Yaelle could code this up.

How Big is the Formula

We state the parts of the formula and how long they are.
For $1 \leq i \leq k: x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n} . O(k n)$.
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n \neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right) . O\left(k n^{2}\right)$
For $1 \leq i_{1}<i_{2} \leq k$, for $1 \leq j \leq n \neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right) . O\left(k^{2} n\right)$
For every $1 \leq i_{1}<i_{2} \leq k, \bigvee_{\left(j_{1}, j_{2}\right) \in E} x_{i_{1} j_{1}} \wedge x_{i_{2} j_{2}} . O\left(k^{2}|E|\right)$

- The formula is of size $O\left(k n^{2}\right)+O\left(k^{2} n\right)+O\left(k^{2}|E|\right)$.
- The construction is easy to do. Yaelle could code this up.
- The constants are small.

How Big is the Formula

We state the parts of the formula and how long they are.
For $1 \leq i \leq k: x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n} . O(k n)$.
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n \neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right) . O\left(k n^{2}\right)$
For $1 \leq i_{1}<i_{2} \leq k$, for $1 \leq j \leq n \neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right) . O\left(k^{2} n\right)$
For every $1 \leq i_{1}<i_{2} \leq k, \bigvee_{\left(j_{1}, j_{2}\right) \in E} x_{i_{1} j_{1}} \wedge x_{i_{2} j_{2}} . O\left(k^{2}|E|\right)$

- The formula is of size $O\left(k n^{2}\right)+O\left(k^{2} n\right)+O\left(k^{2}|E|\right)$.
- The construction is easy to do. Yaelle could code this up.
- The constants are small.
- Usually $k \ll n$ so the real issue is the n^{2} and the $|E|$.

How Big is the Formula

We state the parts of the formula and how long they are.
For $1 \leq i \leq k: x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}$. $O(k n)$.
For $1 \leq i \leq k$, for $1 \leq j_{1}<j_{2} \leq n \neg\left(x_{i j_{1}} \wedge x_{i j_{2}}\right)$. $O\left(k n^{2}\right)$
For $1 \leq i_{1}<i_{2} \leq k$, for $1 \leq j \leq n \neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right) . O\left(k^{2} n\right)$
For every $1 \leq i_{1}<i_{2} \leq k, \bigvee_{\left(j_{1}, j_{2}\right) \in E} x_{i_{1} j_{1}} \wedge x_{i_{2} j_{2}} . O\left(k^{2}|E|\right)$

- The formula is of size $O\left(k n^{2}\right)+O\left(k^{2} n\right)+O\left(k^{2}|E|\right)$.
- The construction is easy to do. Yaelle could code this up.
- The constants are small.
- Usually $k \ll n$ so the real issue is the n^{2} and the $|E|$.
- Upshot: probably really good on sparse graphs.

