Closure Properties of P and NP

Exposition by William Gasarch-U of MD

Closure of P

Exposition by William Gasarch-U of MD

Closure of P under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.

Closure of \mathbf{P} under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.

Closure of \mathbf{P} under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

Closure of \mathbf{P} under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ OR $b_{2}=Y$ then output Y, else output N.

Closure of \mathbf{P} under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ OR $b_{2}=Y$ then output Y, else output N.

This algorithm takes $\sim p_{1}(n)+p_{2}(n)$, which is poly.

Closure of \mathbf{P} under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ OR $b_{2}=Y$ then output Y, else output N.

This algorithm takes $\sim p_{1}(n)+p_{2}(n)$, which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of \mathbf{P} under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.

Closure of \mathbf{P} under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.

Closure of \mathbf{P} under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

Closure of \mathbf{P} under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ AND $b_{2}=Y$ then output Y, else output N.

Closure of \mathbf{P} under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ AND $b_{2}=Y$ then output Y, else output N.

This algorithm takes $\sim p_{1}(n)+p_{2}(n)$, which is poly.

Closure of \mathbf{P} under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ AND $b_{2}=Y$ then output Y, else output N.

This algorithm takes $\sim p_{1}(n)+p_{2}(n)$, which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.

Closure of Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.

Closure of Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

Closure of Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.) Let $x=x_{1} \cdots x_{n}$
2. For $0 \leq i \leq n$
2.1 Run $M_{1}\left(x_{1} \cdots x_{i}\right)$ and $M_{2}\left(x_{i+1} \cdots x_{n}\right)$. If both say Y then output Y and STOP. (Time:

$$
\left.p_{1}(i)+p_{2}(n-i) \leq p_{1}(n)+p_{2}(n) .\right)
$$

3. Output N

Closure of Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.) Let $x=x_{1} \cdots x_{n}$
2. For $0 \leq i \leq n$
2.1 Run $M_{1}\left(x_{1} \cdots x_{i}\right)$ and $M_{2}\left(x_{i+1} \cdots x_{n}\right)$. If both say Y then output Y and STOP. (Time:

$$
\left.p_{1}(i)+p_{2}(n-i) \leq p_{1}(n)+p_{2}(n) .\right)
$$

3. Output N

This algorithm takes $\leq(n+1) \times\left(p_{1}(n)+p_{2}(n)\right)$ which is poly.

Closure of Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.) Let $x=x_{1} \cdots x_{n}$
2. For $0 \leq i \leq n$
2.1 Run $M_{1}\left(x_{1} \cdots x_{i}\right)$ and $M_{2}\left(x_{i+1} \cdots x_{n}\right)$. If both say Y then output Y and STOP. (Time:

$$
\left.p_{1}(i)+p_{2}(n-i) \leq p_{1}(n)+p_{2}(n) .\right)
$$

3. Output N

This algorithm takes $\leq(n+1) \times\left(p_{1}(n)+p_{2}(n)\right)$ which is poly. Note Key is that the set of polynomials is closed under addition and mult by n.

Closure of Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.

Closure of Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.
$L \in \mathrm{P}$ via TM M which works in time $p(n)$.

Closure of Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.
$L \in \mathrm{P}$ via TM M which works in time $p(n)$.
The following algorithm recognizes \bar{L} in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M(x)$. Answer is b.
3. If $b=Y$ then output N , if $b=N$ then output Y .

Run time is $\sim p(n)$, a poly.

Closure of Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.
$L \in \mathrm{P}$ via TM M which works in time $p(n)$.
The following algorithm recognizes \bar{L} in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M(x)$. Answer is b.
3. If $b=Y$ then output N , if $b=N$ then output Y .

Run time is $\sim p(n)$, a poly.
Note No note needed.

Closure of P Under *

Thm If $L \in \mathrm{P}$ then $L^{*} \in \mathrm{P}$. Proof
First lets talk about what you should not do.

Closure of P Under *

Thm If $L \in \mathrm{P}$ then $L^{*} \in \mathrm{P}$.

Proof

First lets talk about what you should not do.
A contrast

- $x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$.

Closure of P Under *

Thm If $L \in \mathrm{P}$ then $L^{*} \in \mathrm{P}$.
Proof
First lets talk about what you should not do.

A contrast

$-x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this. Break string into 3 piece: $\binom{n}{2}$ ways to do this. :

Break string into n piece: $\binom{n}{n}$ ways to do this.

Closure of P Under *

Thm If $L \in \mathrm{P}$ then $L^{*} \in \mathrm{P}$.
Proof
First lets talk about what you should not do.

A contrast

- $x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this. Break string into 3 piece: $\binom{n}{2}$ ways to do this. :
Break string into n piece: $\binom{n}{n}$ ways to do this.
So total number of ways to break up the string is

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

What is another name for this?

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^{n}. Now,
You got sum, I got 2^{n}. What does that mean?

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^{n}. Now,
You got sum, I got 2^{n}. What does that mean?
D: That one of us is wrong.

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^{n}.
Now,
You got sum, I got 2^{n}. What does that mean?
D: That one of us is wrong.
B: No. It means our answers are equal:

$$
2^{n}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}
$$

D: Really!
B: Yes, really!

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$
New Problem Given $x=x_{1} \cdots x_{n}$ want to know:

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$
New Problem Given $x=x_{1} \cdots x_{n}$ want to know:
$e \in L^{*}$
$x_{1} \in L^{*}$
$x_{1} x_{2} \in L^{*}$
:
$x_{1} x_{2} \cdots x_{n} \in L^{*}$.

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$ New Problem Given $x=x_{1} \cdots x_{n}$ want to know:
$e \in L^{*}$
$x_{1} \in L^{*}$
$x_{1} x_{2} \in L^{*}$
\vdots
$x_{1} x_{2} \cdots x_{n} \in L^{*}$.
Intuition $x_{1} \cdots x_{i} \in L^{*}$ IFF it can be broken into TWO pieces, the first one in L^{*}, and the second in L.

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=$ FALSE
$A[0]=$ TRUE
for $i=1$ to n do
for $j=0$ to $i-1$ do
if $A[j]$ AND $M\left(x_{j+1} \cdots x_{i}\right)=Y$ then $A[i]=$ TRUE
output $A[n]$

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=$ FALSE
$A[0]=$ TRUE
for $i=1$ to n do for $j=0$ to $i-1$ do
if $A[j]$ AND $M\left(x_{j+1} \cdots x_{i}\right)=Y$ then $A[i]=$ TRUE
output $A[n]$
$O\left(n^{2}\right)$ calls to M on inputs of length $\leq n$. Runtime $\leq O\left(n^{2} p(n)\right)$.

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.

$$
\begin{aligned}
& \text { Input } x=x_{1} \cdots x_{n} \\
& \begin{array}{l}
A[1]=A[2]=\ldots=A[n]=\text { FALSE } \\
A[0]=\mathrm{TRUE} \\
\text { for } i=1 \text { to } n \text { do } \\
\quad \text { for } j=0 \text { to } i-1 \text { do } \\
\quad \text { if } A[j] \text { AND } M\left(x_{j+1} \cdots x_{i}\right)=Y \text { then } A[i]=\text { TRUE }
\end{array}
\end{aligned}
$$

output $A[n]$
$O\left(n^{2}\right)$ calls to M on inputs of length $\leq n$. Runtime $\leq O\left(n^{2} p(n)\right)$. Note Key is that the set of polynomials is closed under mult by n^{2}.

Closure of NP

Exposition by William Gasarch-U of MD

Closure of NP under ...

We will now show that NP is closed under \cup, \cap, \cdot, and *.

Closure of NP under . . .

We will now show that NP is closed under \cup, \cap, \cdot, and *.

1. Our proofs will use that poly's are closed under stuff, as did the proofs of closure under P. But we will not state this.

Closure of NP under ...

We will now show that NP is closed under \cup, \cap, \cdot, and *.

1. Our proofs will use that poly's are closed under stuff, as did the proofs of closure under P. But we will not state this.
2. None of the proofs is anywhere near as hard as the proof that P is closed under *.

Closure of NP under . . .

We will now show that NP is closed under \cup, \cap, \cdot, and *.

1. Our proofs will use that poly's are closed under stuff, as did the proofs of closure under P. But we will not state this.
2. None of the proofs is anywhere near as hard as the proof that P is closed under *.
3. Note that we did not include complementation. We'll get to that later.

Closure of NP under Union

Thm If $L_{1} \in N P$ and $L_{2} \in N P$ then $L_{1} \cup L_{2} \in N P$.

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$
$[$
$|y|=p_{1}(|x|)+p_{2}(|x|)+1 \wedge$

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.

```
L
[
|y|=\mp@subsup{p}{1}{}(|x|)+\mp@subsup{p}{2}{}(|x|)+1^
y= y1 $\mp@subsup{y}{2}{}\mathrm{ where }|\mp@subsup{y}{1}{}|=\mp@subsup{p}{1}{}(|x|) and |\mp@subsup{y}{2}{}|=\mp@subsup{p}{2}{}(|x|)^
```


Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$
[
$|y|=p_{1}(|x|)+p_{2}(|x|)+1 \wedge$
$y=y_{1} \$ y_{2}$ where $\left|y_{1}\right|=p_{1}(|x|)$ and $\left|y_{2}\right|=p_{2}(|x|) \wedge$
$\left.\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}\right)$
]\}

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$
[
$|y|=p_{1}(|x|)+p_{2}(|x|)+1 \wedge$
$y=y_{1} \$ y_{2}$ where $\left|y_{1}\right|=p_{1}(|x|)$ and $\left|y_{2}\right|=p_{2}(|x|) \wedge$
$\left.\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}\right)$
]\}
Witness $|y|=p_{1}(|x|)+p_{2}(|x|)+1$ is short.

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$
[
$|y|=p_{1}(|x|)+p_{2}(|x|)+1 \wedge$
$y=y_{1} \$ y_{2}$ where $\left|y_{1}\right|=p_{1}(|x|)$ and $\left|y_{2}\right|=p_{2}(|x|) \wedge$
$\left.\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}\right)$
]\}
Witness $|y|=p_{1}(|x|)+p_{2}(|x|)+1$ is short.
Verification $\left.\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}\right)$, is quick.

Closure of NP under Intersection

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cap L_{2} \in$ NP.

Closure of NP under Intersection

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cap L_{2} \in$ NP. Similar to UNION.

Closure of Concatenation

Thm If $L_{1} \in \mathrm{NP}$ and $L_{2} \in \mathrm{NP}$ then $L_{1} L_{2} \in \mathrm{NP}$.

Closure of Concatenation

Thm If $L_{1} \in \mathrm{NP}$ and $L_{2} \in \mathrm{NP}$ then $L_{1} L_{2} \in \mathrm{NP}$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

Closure of Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in$ NP then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

Closure of Concatenation

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} L_{2} \in$ NP.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

Closure of Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in$ NP then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$

Closure of Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in$ NP then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$
- $\left|y_{1}\right|=p_{1}\left(\left|x_{1}\right|\right)$

Closure of Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in$ NP then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$
- $\left|y_{1}\right|=p_{1}\left(\left|x_{1}\right|\right)$
- $\left|y_{2}\right|=p_{2}\left(\left|x_{2}\right|\right)$

Closure of Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in$ NP then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$
- $\left|y_{1}\right|=p_{1}\left(\left|x_{1}\right|\right)$
- $\left|y_{2}\right|=p_{2}\left(\left|x_{2}\right|\right)$
- $\left(x_{1}, y_{1}\right) \in B_{1}$

Closure of Concatenation

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$
- $\left|y_{1}\right|=p_{1}\left(\left|x_{1}\right|\right)$
- $\left|y_{2}\right|=p_{2}\left(\left|x_{2}\right|\right)$
- $\left(x_{1}, y_{1}\right) \in B_{1}$
- $\left(x_{2}, y_{2}\right) \in B_{2}$

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in N P$.

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in \mathrm{NP}$.
$L=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}$

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in$ NP.
$L=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}$
The following defines L^{*} in an NP-way

$$
\left\{x:\left(\exists z_{1}, \ldots, z_{k}, y_{1}, \ldots, y_{k}\right)\right.
$$

- $x=z_{1} \cdots z_{k}$
- $(\forall i)\left[\left|y_{i}\right|=p\left(\left|z_{i}\right|\right)\right]$
- $(\forall i)\left[\left(z_{i}, y_{i}\right) \in B\right]$

]\}

Is NP closed under Complementation

Vote

Is NP closed under Complementation

Vote

1. There is a proof that if $L \in$ NP then $\bar{L} \in N P$. (Hence NP is closed under complementation and we know this.)

Is NP closed under Complementation

Vote

1. There is a proof that if $L \in$ NP then $\bar{L} \in N P$. (Hence NP is closed under complementation and we know this.)
2. There is a language $L \in$ NP with $\bar{L} \notin$ NP. (Hence NP is not closed under complementation and we know this.)

Is NP closed under Complementation

Vote

1. There is a proof that if $L \in$ NP then $\bar{L} \in N P$. (Hence NP is closed under complementation and we know this.)
2. There is a language $L \in$ NP with $\bar{L} \notin$ NP. (Hence NP is not closed under complementation and we know this.)
3. The question of whether or not NP is closed under complementation is Unknown to Science!

Is NP closed under Complementation

Vote

1. There is a proof that if $L \in$ NP then $\bar{L} \in N P$. (Hence NP is closed under complementation and we know this.)
2. There is a language $L \in$ NP with $\bar{L} \notin$ NP. (Hence NP is not closed under complementation and we know this.)
3. The question of whether or not NP is closed under complementation is Unknown to Science!
Answer Unknown to Science!

What is the Conventional Wisdom (is there one?)

Vote

What is the Conventional Wisdom (is there one?)

Vote

1. Most Complexity Theorists think NP is closed under complementation.

What is the Conventional Wisdom (is there one?)

Vote

1. Most Complexity Theorists think NP is closed under complementation.
2. Most Complexity Theorists think NP is not closed under complementation.

What is the Conventional Wisdom (is there one?)

Vote

1. Most Complexity Theorists think NP is closed under complementation.
2. Most Complexity Theorists think NP is not closed under complementation.
3. There is no real consensus.

What is the Conventional Wisdom (is there one?)

Vote

1. Most Complexity Theorists think NP is closed under complementation.
2. Most Complexity Theorists think NP is not closed under complementation.
3. There is no real consensus.

Note I have done three polls on what complexity theorists think of P vs NP and related issues, so this is not guesswork on my part.

What is the Conventional Wisdom (is there one?)

Vote

1. Most Complexity Theorists think NP is closed under complementation.
2. Most Complexity Theorists think NP is not closed under complementation.
3. There is no real consensus.

Note I have done three polls on what complexity theorists think of P vs NP and related issues, so this is not guesswork on my part. Most Complexity Theorists think NP is not closed under complementation.

Thought Experiment

Most Complexity Theorists think NP is not closed under complementation.

Thought Experiment

Most Complexity Theorists think NP is not closed under complementation.
Contrast Alice is all powerful, Bob is Poly Time.

Thought Experiment

Most Complexity Theorists think NP is not closed under complementation.
Contrast Alice is all powerful, Bob is Poly Time.

- Alice wants to convince Bob that $\phi \in$ SAT. She can! She gives Bob a satisfying assignment \vec{b} (which is short) and he can check $\phi(\vec{b})$ (which is poly time).

Thought Experiment

Most Complexity Theorists think NP is not closed under complementation.
Contrast Alice is all powerful, Bob is Poly Time.

- Alice wants to convince Bob that $\phi \in$ SAT. She can! She gives Bob a satisfying assignment \vec{b} (which is short) and he can check $\phi(\vec{b})$ (which is poly time).
- Alice wants to convince Bob that $\phi \notin$ SAT. What can she do? Give him the entire truth table. Too long!

Thought Experiment

Most Complexity Theorists think NP is not closed under complementation.
Contrast Alice is all powerful, Bob is Poly Time.

- Alice wants to convince Bob that $\phi \in$ SAT. She can! She gives Bob a satisfying assignment \vec{b} (which is short) and he can check $\phi(\vec{b})$ (which is poly time).
- Alice wants to convince Bob that $\phi \notin$ SAT. What can she do? Give him the entire truth table. Too long!

It is thought that there is no way for Alice to do this.

