The Cook-Levin Thm

Exposition by William Gasarch—U of MD

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Variants of SAT

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals.
- 3. k-SAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of exactly k literals.
- 4. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \vee \cdots \vee C_m$ where each C_i is an \wedge of literals.
- 5. k-DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of exactly k literals.

Turing Machines Def

Def A *Turing Machine* is a tuple $(Q, \Sigma, \delta, s, h)$ where

- Q is a finite set of states. It has the state h.
- $ightharpoonup \Sigma$ is a finite alphabet. It contains the symbol #.
- ▶ $s \in Q$ is the start state, h is the halt state.

Note There are many variants of Turing Machines- more tapes, more heads. All equivalent.

Conventions for our Turing Machines

- 1. Tape has a left endpoint; however, the tape goes off to infinity to the right.
- 2. The alphabet has symbols $\{a, b, \#, \$, Y, N\}$.
- 3. # is the blank symbol.
- 4. \$ is a separator symbol.
- Y and N are only used when the machine goes into a halt state. They are YES and NO.
- 6. The input is written on the left. So the input *abba* would be on the tape as

7. The head is initially on the rightmost symbol of the input. So it he above it would be on the *a* just before the # symbol.

Let M be a Turing Machine and $x \in \Sigma^*$. We represent the computation M(x) as follows:

Example The tape has:

If the machine is in state q and the head is looking at the c then we represent this by:

$$abba\#ab(c,q)ab\#a\#\#\#\cdots$$

Convention—extend alphabet and allow symbols $\Sigma \times Q$. The symbol (c,q) means the symbol is c, the state is q, and that square is where the head of the machine is.

Configurations

We need a term for strings like:

Def Strings in $\Sigma^*(\Sigma \times Q)\Sigma^*$ are configuration.

The Computation M(x) is represented by a sequence of configs.

Key A config is finite since what we don't see is #.

Example

If
$$\delta(s,b)=(q,L)$$
 and $\delta(q,b)=(p,a)$

а	а	b	Ь	(b,s)	#
а	а	b	(b,q)	Ь	#
а	а	b	(a, p)	Ь	#

- ▶ The left endpoint is the end of the tape.
- lacktriangle The unseen symbols on the right are all #

Let $X \in NP$.

Let $X \in NP$.

Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x,y) = Y]\}$$

Let $X \in NP$.

Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y]\}$$

$$M(x, y)$$
 runs in time $\leq q(|x| + |y|) = q(|x| + p(|x|))$.

Let $X \in NP$.

Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y]\}$$

$$M(x, y)$$
 runs in time $\leq q(|x| + |y|) = q(|x| + p(|x|))$.
Let $t(n) = q(n + p(n))$, a poly.

Let $X \in NP$.

Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y]\}$$

M(x, y) runs in time $\leq q(|x| + |y|) = q(|x| + p(|x|))$.

Let t(n) = q(n + p(n)), a poly.

Here is ALL that matters:

- Numb of steps M(x, y) takes is $\leq t(|x|)$. Hence $\leq t(|x|)$ configs.
- ▶ Computation can only look at the first t(|x|) tapes squares on any config.

New Convention

Old Convention

$$\boxed{ \# \mid a \mid a \mid b \mid b \mid (s,b) \mid \# }$$

means that off to the right there are an infinite number of #.

New Convention

Old Convention

means that off to the right there are an infinite number of #. New Convention

$$| \# | a | a | b | b | (s,b) | \# | \cdots | \#$$

Tape is t(|x|) long so **know** when stops. Can include entire tape. Key Config is finite since what we don't see is never used.

Summary of What's Important

Let $X \in NP$ via poly q and TM M, so

$$X = \{x : (\exists y)[|y| = q(|x|) \land M(x, y) = Y]$$

Summary of What's Important

Let $X \in NP$ via poly q and TM M, so

$$X = \{x : (\exists y)[|y| = q(|x|) \land M(x,y) = Y]$$

$$x \in X$$
 implies $(\exists y)[|y| = q(|x|) \land M(x,y) = Y]$ implies $(\exists y, C_1, \ldots, C_t)[C_1, \ldots, C_t$ is an accepting comp of $M(x,y)$

Cook-Levin Thm

Theorem

SAT is NP-complete.

We need to prove two things:

1. SAT $\in NP$.

$$SAT = \{ \phi : (\exists \vec{y}) [\phi(\vec{y}) = T] \}$$

Formally

$$B = \{ (\phi, \vec{y}) : \phi(\vec{y}) = T \}$$

The satisfying assignment is the witness.

2. For all $X \in NP$, $X \leq SAT$. This is the bulk of the proof.

$x \in X \to \dots$

If $x \in X$ then there is a y of length p(|x|) such that M(x,y) = Y. If $x \in X$ then there is a y and a sequence of configurations C_1, C_2, \ldots, C_t such that

- ▶ C_1 is the configuration that says 'input is x\$y, and I am in the starting state.'
- For all i, C_{i+1} follows from C_i (note that M is deterministic) using δ .
- $ightharpoonup C_t$ is the configuration that is in state h and the output is Y.
- t = q(|x| + p(|x|)).

How to make all of this into a formula?

How to Represent Sequence of Configs as Fml

KEY 1: We have variables for every possible entry in every possible configuration. The variables are

$$\{z_{i,j,\sigma}: 1 \leq i, j \leq t, \sigma \in \Sigma \cup (Q \times \Sigma)\}$$

If there is an accepting sequence of configurations then $z_{i,j,\sigma} = T$ iff the *j*th symbol in the *i*th configuration is σ .

Making the $z_{i,j,\sigma}$ Make Sense

Need that for all $1 \le i, j \le t$ there exists exactly one σ such that $z_{ij\sigma}$ is TRUE.

$$\bigvee_{\sigma \in \Sigma \cup (\Sigma \times Q)} z_{i,j,\sigma}$$

for each $\sigma \in \Sigma \cup (\Sigma \times Q)$

$$z_{i,j,\sigma} \to \bigwedge_{\tau \in \Sigma \cup (\Sigma \times Q) - \{\sigma\}} \neg z_{i,j,\tau}$$

C₁ is Start Config

 C_1 is the \bigwedge of the following: C_1 starts with x. Let $x = x_1 \cdots x_n$.

$$z_{1,1,x_1} \wedge \cdots \wedge z_{1,n-1,x_{n-1}}, z_{1,n,(x_n,s)} \wedge z_{1,n+1,\$}$$

 C_1 then has q(|x|) symbols from $\{a,b\}$, so NOT the funny symbols.

$$\bigwedge_{j=n+2}^{n+q(|x|)+1} \bigvee_{\sigma \in \{a,b\}} z_{1,j,\sigma}$$

 C_1 then has all blanks:

$$\wedge \bigwedge_{j=q(n)+n+3}^{t(n)} z_{1,j,\#}$$

C₁ is Start Config: Example

x = ab, $p(n) = n^2$, and q(n) = 2n|y| = 4. Input to M is of length 2 + 4 + 1 = 7, so M(x, y) runs $\leq 2 \times 7 = 14$ steps.

Formula saying C_1 codes x as input is

$$z_{1,1,a} \wedge z_{1,2,(b,s)} \wedge z_{1,3,\$} \wedge$$

$$(z_{1,4,a} \lor z_{1,4,b}) \land (z_{1,5,a} \lor z_{1,5,b}) \land (z_{1,6,a} \lor z_{1,6,b}) \land (z_{1,7,a} \lor z_{1,7,b}) \land$$

$$z_{1,8,\#} \wedge \cdots \wedge z_{1,23,\#}$$

C_t is an Accept Config

Convention M(x, y) accepts means M(x, y) leaves a Y on the left most square and the head is on the left most square. The state in C_t is h, the halt state,

$$Z_{t,1,(Y,h)}$$

C_i leads to C_{i+1}

Thought Experiment: What if $\delta(q, a) = (p, b)$. Then:

σ_1	(a,q)	σ_2
σ_1	(b,p)	σ_2

Formula is a \bigwedge over relevant i, j, σ_1, σ_2 of:

$$\left(z_{ij\sigma_1} \land z_{i(j+1),(a,q)} \land z_{i,(j+2)\sigma_2}\right) \rightarrow$$

$$(z_{(i+1)j\sigma_1} \wedge z_{(i+1)(j+1),(b,p)} \wedge z_{(i+1),(j+2)\sigma_2})$$

C_i leads to C_{i+1}

Thought Experiment: What if $\delta(q, a) = (p, L)$. Then:

σ_1	(a,q)	σ_2
(σ_1, p)	а	σ_2

One can make a formula out of this as well. (Leave for HW.)

C_i leads to C_{i+1}

Note that only the symbols at or near the head get changed.

Also need a formula saying that if the (i,j) spot is NOT near the head and $z_{i,j,\sigma}$ then $z_{i+1,j,\sigma}$.

Putting it All Together

On input x you output a formula ϕ constructed as follows

- 1. t(|x|) = q(|x| + p(|x|)). We call this t.
- 2. Variables $\{z_{i,j,\tau}: 1 \leq i, j \leq t, \tau \in \Sigma \cup (\Sigma \times Q)\}$.
- 3. Formula saying:
 - 3.1 For all $1 \le i, j \le t$, exists ONE σ with $z_{i,j,\sigma} = T$.
 - 3.2 C_1 is the start config with x.
 - 3.3 C_t is the accept config.
 - 3.4 For each instruction of the TM have a formula saying C_i goes to C_{i+1} if that instruction is relevant.
 - 3.5 If head is not within 2 square of (i,j) and $z_{ij\sigma}$ then $z_{(i+1)j\sigma}$.

Important Upshot

- ▶ If $SAT \in P$ then every set in NP is in P, so we would have P = NP.
- ▶ We will soon have more NP-complete problems.
- ▶ If any NP-complete problem is in P then P = NP.
- ▶ In the year 2000 the Clay Math Institute posted seven math problems and offered \$1,000,000 for the solution to any of them. Resolving P vs NP was one of them.

1. SAT is the set of all boolean formulas that are satisfiable.

1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$.

1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals.

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals. NP-complete.

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.
- 3. k-SAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of exactly k literals.

Variants of SAT: Which ones are Hard? I

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.
- 3. k-SAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of exactly k literals. 3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? II

1. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \vee \cdots \vee C_m$ where each C_i is an \wedge of literals.

Variants of SAT: Which ones are Hard? II

- 1. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \vee \cdots \vee C_m$ where each C_i is an \wedge of literals. Poly Time. If some C_i does not have (say) both x and $\neg x$ then satisfiable, else not.
- 2. k-DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of exactly k literals.

Variants of SAT: Which ones are Hard? II

- 1. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \vee \cdots \vee C_m$ where each C_i is an \wedge of literals. Poly Time. If some C_i does not have (say) both x and $\neg x$ then satisfiable, else not.
- 2. k-DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of exactly k literals. Poly Time since DNFSAT is Poly Time.

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! \$1,000,000 is mine!

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! \$1,000,000 is mine!

Bad News This does not work.

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! \$1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! \$1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I'd rather have the \$1,000,000 than be enlightened.

Vote on CNF vs DNF

Vote on whether the following statement is TRUE or FALSE: There is a proof that CNFSAT \leq DNFSAT is NOT true. That is, there is NO poly time algorithm that will transform ϕ in CNF form to ψ in DNF form such that $\phi \in SAT$ iff $\psi \in SAT$.

Vote on CNF vs DNF

Vote on whether the following statement is TRUE or FALSE: There is a **proof** that CNFSAT \leq DNFSAT is NOT true. That is, there is NO poly time algorithm that will transform ϕ in CNF form to ψ in DNF form such that $\phi \in SAT$ iff $\psi \in SAT$. TRUE, we Do have a proof! Hard to believe.

Work on in Breakout Rooms

Convert the following into CNF form

- 1. $(x_1 \vee y_1)$
- 2. $(x_1 \vee y_1) \wedge (x_2 \vee y_2)$
- 3. $(x_1 \vee y_1) \wedge (x_2 \vee y_2) \wedge (x_3 \vee y_3)$
- **4**. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3) \land (x_4 \land y_4)$

Convert the following into DNF form

1. $(x_1 \vee y_1)$

Convert the following into DNF form

- 1. $(x_1 \vee y_1)$ $x_1 \vee y_1$
- 2. $(x_1 \lor y_1) \land (x_2 \lor y_2)$

Convert the following into DNF form

- 1. $(x_1 \lor y_1)$ $x_1 \lor y_1$
- 2. $(x_1 \lor y_1) \land (x_2 \lor y_2)$ $(x_1 \land x_2) \lor (x_1 \land y_2) \lor (y_1 \land x_2) \lor (y_1 \lor y_2)$.
- 3. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)$

Convert the following into DNF form

- 1. $(x_1 \lor y_1)$ $x_1 \lor y_1$
- 2. $(x_1 \lor y_1) \land (x_2 \lor y_2)$ $(x_1 \land x_2) \lor (x_1 \land y_2) \lor (y_1 \land x_2) \lor (y_1 \lor y_2).$
- 3. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)$

$$(x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge y_3) \vee (x_1 \wedge y_2 \wedge x_3) \vee (x_1 \wedge y_2 \wedge y_3) \vee$$

$$(y_1 \wedge x_2 \wedge x_3) \vee (y_1 \wedge x_2 \wedge y_3) \vee (y_1 \wedge y_2 \wedge x_3) \vee (y_1 \wedge y_2 \wedge y_3)$$

4. $(x_1 \vee y_1) \wedge (x_2 \vee y_2) \wedge (x_3 \vee y_3) \wedge (x_4 \wedge y_4)$

Convert the following into DNF form

- 1. $(x_1 \lor y_1)$ $x_1 \lor y_1$
- 2. $(x_1 \lor y_1) \land (x_2 \lor y_2)$ $(x_1 \land x_2) \lor (x_1 \land y_2) \lor (y_1 \land x_2) \lor (y_1 \lor y_2).$
- 3. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)$

$$(x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge y_3) \vee (x_1 \wedge y_2 \wedge x_3) \vee (x_1 \wedge y_2 \wedge y_3) \vee$$

$$(y_1 \wedge x_2 \wedge x_3) \vee (y_1 \wedge x_2 \wedge y_3) \vee (y_1 \wedge y_2 \wedge x_3) \vee (y_1 \wedge y_2 \wedge y_3)$$

4. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3) \land (x_4 \land y_4)$ Not going to do it but it would take 16 clauses.

