BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Deterministic Finite Automata (DFA): Closure Properties

Regular Lang Closed Under Complimentation

How do you compliment a regular language?

Regular Lang Closed Under Complimentation

How do you compliment a regular language?
Example How do you compliment a^{*} ?

Regular Lang Closed Under Complimentation

How do you compliment a regular language?
Example How do you compliment a^{*} ?
I find the way all of your strings have only a's so lovely!

Regular Lang Closed Under Complimentation

How do you compliment a regular language?
Example How do you compliment a^{*} ?
I find the way all of your strings have only a's so lovely!
Compliment An expression of admiration.

Regular Lang Closed Under Complimentation

How do you compliment a regular language?
Example How do you compliment a^{*} ?
I find the way all of your strings have only a's so lovely!
Compliment An expression of admiration.
Complement The complement of L is $\Sigma^{*}-L$.

Regular Lang Closed Under Complementation

How do you complement a regular language?

Regular Lang Closed Under Complementation

How do you complement a regular language?
Informally Swap the final and non-final states.

Regular Lang Closed Under Complementation

How do you complement a regular language?
Informally Swap the final and non-final states.
Formally If L is regular via

$$
(Q, \Sigma, \delta, s, F)
$$

then \bar{L} is regular via

$$
(Q, \Sigma, \delta, s, Q-F)
$$

Regular Lang Closed Under Complementation

How do you complement a regular language?
Informally Swap the final and non-final states.
Formally If L is regular via

$$
(Q, \Sigma, \delta, s, F)
$$

then \bar{L} is regular via

$$
(Q, \Sigma, \delta, s, Q-F)
$$

Note If DFA for L has n states then DFA for \bar{L} has n states.

Regular Lang Closed Under Union

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cup L_{2}$ is regular.

Regular Lang Closed Under Union

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cup L_{2}$ is regular. Informally Create a DFA that runs both the DFA for L_{1} and L_{2} at the same time.

Regular Lang Closed Under Union

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cup L_{2}$ is regular. Informally Create a DFA that runs both the DFA for L_{1} and L_{2} at the same time.
Formally If L_{1} is regular via $\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$
and L_{2} is regular via $\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$
then $L_{1} \cup L_{2}$ is regular via:

Regular Lang Closed Under Union

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cup L_{2}$ is regular.
Informally Create a DFA that runs both the DFA for L_{1} and L_{2} at the same time.
Formally If L_{1} is regular via ($Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}$) and L_{2} is regular via $\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ then $L_{1} \cup L_{2}$ is regular via:

$$
\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F\right)
$$

where

$$
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)
$$

and

Regular Lang Closed Under Union

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cup L_{2}$ is regular.
Informally Create a DFA that runs both the DFA for L_{1} and L_{2} at the same time.
Formally If L_{1} is regular via ($Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}$)

$$
\text { and } L_{2} \text { is regular via }\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)
$$

then $L_{1} \cup L_{2}$ is regular via:

$$
\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F\right)
$$

where

$$
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)
$$

and

$$
F=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)
$$

Regular Lang Closed Under Union

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cup L_{2}$ is regular.
Informally Create a DFA that runs both the DFA for L_{1} and L_{2} at the same time.
Formally If L_{1} is regular via ($Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}$) and L_{2} is regular via $\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ then $L_{1} \cup L_{2}$ is regular via:

$$
\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F\right)
$$

where

$$
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)
$$

and

$$
F=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)
$$

Note The number of states in DFA for $L_{1} \cup L_{2}$ is $n_{1} n_{2}$.

Regular Lang Closed Under Intersection

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cap L_{2}$ is regular.

Regular Lang Closed Under Intersection

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cap L_{2}$ is regular.
Formally If L_{1} is regular via $\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and L_{2} is regular via $\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$

Regular Lang Closed Under Intersection

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cap L_{2}$ is regular.
Formally If L_{1} is regular via $\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$
and L_{2} is regular via $\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$
then $L_{1} \cap L_{2}$ is regular via:

Regular Lang Closed Under Intersection

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cap L_{2}$ is regular.
Formally If L_{1} is regular via $\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$
and L_{2} is regular via $\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$
then $L_{1} \cap L_{2}$ is regular via:

$$
\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F\right)
$$

where

$$
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)
$$

and

Regular Lang Closed Under Intersection

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cap L_{2}$ is regular.
Formally If L_{1} is regular via $\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$
and L_{2} is regular via $\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$
then $L_{1} \cap L_{2}$ is regular via:

$$
\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F\right)
$$

where

$$
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)
$$

and

$$
F=F_{1} \times F_{2}
$$

Regular Lang Closed Under Intersection

IF L_{1}, L_{2} are regular we want to show that $L_{1} \cap L_{2}$ is regular.
Formally If L_{1} is regular via $\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$
and L_{2} is regular via $\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$
then $L_{1} \cap L_{2}$ is regular via:

$$
\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F\right)
$$

where

$$
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)
$$

and

$$
F=F_{1} \times F_{2}
$$

Note The number of states in DFA for $L_{1} \cap L_{2}$ is $n_{1} n_{2}$.

Regular Lang Closed Under Concatenation?

Question Is the following true?
IF L_{1}, L_{2} are regular then $L_{1} \cdot L_{2}$ is regular.

Regular Lang Closed Under Concatenation?

Question Is the following true?
IF L_{1}, L_{2} are regular then $L_{1} \cdot L_{2}$ is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.

Regular Lang Closed Under Concatenation?

Question Is the following true?
IF L_{1}, L_{2} are regular then $L_{1} \cdot L_{2}$ is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE. YES

Regular Lang Closed Under Concatenation?

Question Is the following true?
IF L_{1}, L_{2} are regular then $L_{1} \cdot L_{2}$ is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.
YES
Good News There is a way to prove it using DFAs.

Regular Lang Closed Under Concatenation?

Question Is the following true?
IF L_{1}, L_{2} are regular then $L_{1} \cdot L_{2}$ is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.
YES
Good News There is a way to prove it using DFAs.
Bad News Proof is a mess!

Regular Lang Closed Under Concatenation?

Question Is the following true?
IF L_{1}, L_{2} are regular then $L_{1} \cdot L_{2}$ is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.
YES
Good News There is a way to prove it using DFAs.
Bad News Proof is a mess!
Good News We can have a nice proof after we establish equivalence of DFAs and NFAs.

Regular Lang Closed Under $*$?

Question Is the following true?
IF L is regular then L^{*} is regular.

Regular Lang Closed Under $*$?

Question Is the following true?
IF L is regular then L^{*} is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.

Regular Lang Closed Under $*$?

Question Is the following true?
IF L is regular then L^{*} is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE. YES

Regular Lang Closed Under $*$?

Question Is the following true?
IF L is regular then L^{*} is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE. YES
Good News There is a way to prove it using DFAs.

Regular Lang Closed Under $*$?

Question Is the following true?
IF L is regular then L^{*} is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.
YES
Good News There is a way to prove it using DFAs.
Bad News Proof is a mess!

Regular Lang Closed Under $*$?

Question Is the following true?
IF L is regular then L^{*} is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.
YES
Good News There is a way to prove it using DFAs.
Bad News Proof is a mess!
Good News We can have a nice proof after we establish equivalence of DFAs and NFAs.

Summary of Closure Properties and Proofs

X means Can't Prove Easily
$n_{1}+n_{2}$ (and similar) is number of states in new machine if L_{i} reg via n_{i}-state machine.

Closure Property	DFA
$L_{1} \cup L_{2}$	$n_{1} n_{2}$
$L_{1} \cap L_{2}$	$n_{1} n_{2}$
$L_{1} \cdot L_{2}$	X
\bar{L}	n
L^{*}	X

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

