BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Deterministic Finite Automata (DFA)

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$. Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.

$$
\Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\}
$$

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.

$$
\begin{aligned}
& \Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\} \\
& \Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\}
\end{aligned}
$$

Alphabets and Strings
Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.

$$
\begin{aligned}
& \Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\} \\
& \Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\} \\
& \Sigma^{i}=\left\{\sigma_{1} \cdots \sigma_{i}: \sigma_{1}, \ldots, \sigma_{i} \in \Sigma\right\}
\end{aligned}
$$

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.
$\Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\}$.
$\Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\}$.
$\Sigma^{i}=\left\{\sigma_{1} \cdots \sigma_{i}: \sigma_{1}, \ldots, \sigma_{i} \in \Sigma\right\}$
$i=1$ case is just $\Sigma^{1}=\Sigma$.

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.
$\Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\}$.
$\Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\}$.
$\Sigma^{i}=\left\{\sigma_{1} \cdots \sigma_{i}: \sigma_{1}, \ldots, \sigma_{i} \in \Sigma\right\}$
$i=1$ case is just $\Sigma^{1}=\Sigma$.
What about $i=0$ case?

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.
$\Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\}$.
$\Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\}$.
$\Sigma^{i}=\left\{\sigma_{1} \cdots \sigma_{i}: \sigma_{1}, \ldots, \sigma_{i} \in \Sigma\right\}$
$i=1$ case is just $\Sigma^{1}=\Sigma$.
What about $i=0$ case?
$\Sigma^{0}=\{e\}$, the empty string.

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.
$\Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\}$.
$\Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\}$.
$\Sigma^{i}=\left\{\sigma_{1} \cdots \sigma_{i}: \sigma_{1}, \ldots, \sigma_{i} \in \Sigma\right\}$
$i=1$ case is just $\Sigma^{1}=\Sigma$.
What about $i=0$ case?
$\Sigma^{0}=\{e\}$, the empty string.
The empty string is useful for the same reason 0 and 1 are useful:

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.
$\Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\}$.
$\Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\}$.
$\Sigma^{i}=\left\{\sigma_{1} \cdots \sigma_{i}: \sigma_{1}, \ldots, \sigma_{i} \in \Sigma\right\}$
$i=1$ case is just $\Sigma^{1}=\Sigma$.
What about $i=0$ case?
$\Sigma^{0}=\{e\}$, the empty string.
The empty string is useful for the same reason 0 and 1 are useful: If $w \in \mathbb{R}$ then $w+0=w$.

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.
$\Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\}$.
$\Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\}$.
$\Sigma^{i}=\left\{\sigma_{1} \cdots \sigma_{i}: \sigma_{1}, \ldots, \sigma_{i} \in \Sigma\right\}$
$i=1$ case is just $\Sigma^{1}=\Sigma$.
What about $i=0$ case?
$\Sigma^{0}=\{e\}$, the empty string.
The empty string is useful for the same reason 0 and 1 are useful:
If $w \in \mathbb{R}$ then $w+0=w$.
If $w \in \mathbb{R}$ then $w \times 1=w$.

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.
$\Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\}$.
$\Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\}$.
$\Sigma^{i}=\left\{\sigma_{1} \cdots \sigma_{i}: \sigma_{1}, \ldots, \sigma_{i} \in \Sigma\right\}$
$i=1$ case is just $\Sigma^{1}=\Sigma$.
What about $i=0$ case?
$\Sigma^{0}=\{e\}$, the empty string.
The empty string is useful for the same reason 0 and 1 are useful:
If $w \in \mathbb{R}$ then $w+0=w$.
If $w \in \mathbb{R}$ then $w \times 1=w$.
If w is a string of a 's and b 's, then $w \cdot e=w$ (this is concatenation).

Alphabets and Strings

Σ will be our alphabet. Usually $\Sigma=\{0,1\}$ or $\Sigma=\{a, b\}$.
Sometimes $\Sigma=\{a, b, c\}$ or bigger.
A sequence of symbols of an alphabet is a string.
$\Sigma^{2}=\Sigma \Sigma=\left\{\sigma_{1} \sigma_{2}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma\right\}$.
$\Sigma^{3}=\Sigma \Sigma \Sigma=\left\{\sigma_{1} \sigma_{2} \sigma_{3}: \sigma_{1} \in \Sigma \wedge \sigma_{2} \in \Sigma \wedge \sigma_{3} \in \Sigma\right\}$.
$\Sigma^{i}=\left\{\sigma_{1} \cdots \sigma_{i}: \sigma_{1}, \ldots, \sigma_{i} \in \Sigma\right\}$
$i=1$ case is just $\Sigma^{1}=\Sigma$.
What about $i=0$ case?
$\Sigma^{0}=\{e\}$, the empty string.
The empty string is useful for the same reason 0 and 1 are useful:
If $w \in \mathbb{R}$ then $w+0=w$.
If $w \in \mathbb{R}$ then $w \times 1=w$.
If w is a string of a 's and b 's, then $w \cdot e=w$ (this is concatenation).
Notation $\Sigma^{*}=\Sigma^{0} \cup \Sigma^{1} \cup \cdots$. is the set of all strings including e.

Concatenation, number-of-a's, Prefix

Let $x, y \in \Sigma^{*}$. Then $x y$ is the concatenation of x and y. We sometimes write it as $x \cdot y$.

Concatenation, number-of-a's, Prefix

Let $x, y \in \Sigma^{*}$. Then $x y$ is the concatenation of x and y. We sometimes write it as $x \cdot y$.
If $A, B \subseteq \Sigma^{*}$ then $A \cdot B=\{x \cdot y: x \in A \wedge y \in B\}$.

Concatenation, number-of-a's, Prefix

Let $x, y \in \Sigma^{*}$. Then $x y$ is the concatenation of x and y. We sometimes write it as $x \cdot y$.
If $A, B \subseteq \Sigma^{*}$ then $A \cdot B=\{x \cdot y: x \in A \wedge y \in B\}$.
Note that $\Sigma \Sigma$ is $\Sigma \cdot \Sigma$.

Concatenation, number-of-a's, Prefix

Let $x, y \in \Sigma^{*}$. Then $x y$ is the concatenation of x and y. We sometimes write it as $x \cdot y$.
If $A, B \subseteq \Sigma^{*}$ then $A \cdot B=\{x \cdot y: x \in A \wedge y \in B\}$.
Note that $\Sigma \Sigma$ is $\Sigma \cdot \Sigma$.
If $x \in\{a, b\}^{*}$ then $\#_{a}(x)$ is the number of a 's in x.

Concatenation, number-of-a's, Prefix

Let $x, y \in \Sigma^{*}$. Then $x y$ is the concatenation of x and y. We sometimes write it as $x \cdot y$.
If $A, B \subseteq \Sigma^{*}$ then $A \cdot B=\{x \cdot y: x \in A \wedge y \in B\}$.
Note that $\Sigma \Sigma$ is $\Sigma \cdot \Sigma$.
If $x \in\{a, b\}^{*}$ then $\#_{a}(x)$ is the number of a 's in x.
Same for $\#_{b}, \#_{0}$, etc.

Concatenation, number-of-a's, Prefix

Let $x, y \in \Sigma^{*}$. Then $x y$ is the concatenation of x and y. We sometimes write it as $x \cdot y$.
If $A, B \subseteq \Sigma^{*}$ then $A \cdot B=\{x \cdot y: x \in A \wedge y \in B\}$.
Note that $\Sigma \Sigma$ is $\Sigma \cdot \Sigma$.
If $x \in\{a, b\}^{*}$ then $\#_{a}(x)$ is the number of a 's in x.
Same for $\#_{b}, \#_{0}$, etc.
If $x, y \in\{a, b\}^{*}$ then $x \preceq y$ means that x is a prefix of y.

Concatenation, number-of-a's, Prefix

Let $x, y \in \Sigma^{*}$. Then $x y$ is the concatenation of x and y. We sometimes write it as $x \cdot y$.
If $A, B \subseteq \Sigma^{*}$ then $A \cdot B=\{x \cdot y: x \in A \wedge y \in B\}$.
Note that $\Sigma \Sigma$ is $\Sigma \cdot \Sigma$.
If $x \in\{a, b\}^{*}$ then $\#_{a}(x)$ is the number of a 's in x.
Same for $\#_{b}, \#_{0}$, etc.
If $x, y \in\{a, b\}^{*}$ then $x \preceq y$ means that x is a prefix of y.
For example, $a a b$ is a prefix of aabbaaba.

Modular Arithmetic: Definitions

Modular Arithmetic: Definitions

- $x \equiv y(\bmod N)$ if and only if N divides $x-y$.

Modular Arithmetic: Definitions

- $x \equiv y(\bmod N)$ if and only if N divides $x-y$.
- $25 \equiv 35(\bmod 10)$.

Modular Arithmetic: Definitions

- $x \equiv y(\bmod N)$ if and only if N divides $x-y$.
- $25 \equiv 35(\bmod 10)$.
- $100 \equiv 2(\bmod 7)$ since $100=7 \times 14+2$.

Modular Arithmetic II: Convention

Common usage:

$$
100 \equiv 2 \quad(\bmod 7)
$$

Modular Arithmetic II: Convention

Common usage:

$$
100 \equiv 2 \quad(\bmod 7)
$$

Commonly if we are in $\bmod n$ we have a large number on the left and then a number between 0 and $n-1$ on the right.

Modular Arithmetic II: Convention

Common usage:

$$
100 \equiv 2 \quad(\bmod 7)
$$

Commonly if we are in $\bmod n$ we have a large number on the left and then a number between 0 and $n-1$ on the right.

When dealing with mod n we assume the entire universe is $\{0,1, \ldots, n-1\}$.

Modular Arithmetic:,,$+- \times$

\equiv is mod 26 for this slide. (This slide is from CMSC456.)

Modular Arithmetic:,,$+- \times$

\equiv is $\bmod 26$ for this slide. (This slide is from CMSC456.)

1. Addition: $x+y$ is easy: wrap around. E.g., $20+10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

Modular Arithmetic:,,$+- \times$

\equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: $x+y$ is easy: wrap around. E.g., $20+10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.
2. $-7 \equiv x$ where $0 \leq x \leq 25$.

Modular Arithmetic:,,$+- \times$

\equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: $x+y$ is easy: wrap around. E.g., $20+10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.
2. $-7 \equiv x$ where $0 \leq x \leq 25$.

Pedantic: $-y$ is the number such that $y+(-y) \equiv 0$.

Modular Arithmetic:,,$+- \times$

\equiv is $\bmod 26$ for this slide. (This slide is from CMSC456.)

1. Addition: $x+y$ is easy: wrap around. E.g., $20+10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.
2. $-7 \equiv x$ where $0 \leq x \leq 25$.

Pedantic: $-y$ is the number such that $y+(-y) \equiv 0$. $-7 \equiv 19(\bmod 26)$ because $19+7 \equiv 0(\bmod 26)$.

Modular Arithmetic:,,$+- \times$

\equiv is $\bmod 26$ for this slide. (This slide is from CMSC456.)

1. Addition: $x+y$ is easy: wrap around. E.g., $20+10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.
2. $-7 \equiv x$ where $0 \leq x \leq 25$.

Pedantic: $-y$ is the number such that $y+(-y) \equiv 0$. $-7 \equiv 19(\bmod 26)$ because $19+7 \equiv 0(\bmod 26)$.
Shortcut: $-y \equiv 26-y$.

Modular Arithmetic:,,$+- \times$

\equiv is $\bmod 26$ for this slide. (This slide is from CMSC456.)

1. Addition: $x+y$ is easy: wrap around. E.g., $20+10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.
2. $-7 \equiv x$ where $0 \leq x \leq 25$.

Pedantic: $-y$ is the number such that $y+(-y) \equiv 0$. $-7 \equiv 19(\bmod 26)$ because $19+7 \equiv 0(\bmod 26)$.
Shortcut: $-y \equiv 26-y$.
3. Mult: $x y$ is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$.

Modular Arithmetic:,,$+- \times$

\equiv is $\bmod 26$ for this slide. (This slide is from CMSC456.)

1. Addition: $x+y$ is easy: wrap around. E.g., $20+10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.
2. $-7 \equiv x$ where $0 \leq x \leq 25$.

Pedantic: $-y$ is the number such that $y+(-y) \equiv 0$. $-7 \equiv 19(\bmod 26)$ because $19+7 \equiv 0(\bmod 26)$. Shortcut: $-y \equiv 26-y$.
3. Mult: $x y$ is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$. Shortcut to avoid big numbers:

Modular Arithmetic:,,$+- \times$

\equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: $x+y$ is easy: wrap around. E.g., $20+10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.
2. $-7 \equiv x$ where $0 \leq x \leq 25$.

Pedantic: $-y$ is the number such that $y+(-y) \equiv 0$. $-7 \equiv 19(\bmod 26)$ because $19+7 \equiv 0(\bmod 26)$.
Shortcut: $-y \equiv 26-y$.
3. Mult: $x y$ is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$. Shortcut to avoid big numbers:

$$
20 \times 10 \equiv-6 \times 10 \equiv-2 \times 30 \equiv-2 \times 4 \equiv-8 \equiv 18
$$

Modular Arithmetic:,,$+- \times$

\equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: $x+y$ is easy: wrap around. E.g., $20+10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.
2. $-7 \equiv x$ where $0 \leq x \leq 25$.

Pedantic: $-y$ is the number such that $y+(-y) \equiv 0$. $-7 \equiv 19(\bmod 26)$ because $19+7 \equiv 0(\bmod 26)$.
Shortcut: $-y \equiv 26-y$.
3. Mult: $x y$ is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$. Shortcut to avoid big numbers:

$$
20 \times 10 \equiv-6 \times 10 \equiv-2 \times 30 \equiv-2 \times 4 \equiv-8 \equiv 18
$$

4. Division: Next Slide.

Modular Arithmetic: \div

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.

Modular Arithmetic: \div

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.
Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$.

Modular Arithmetic: \div

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.
Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$.
$\frac{1}{3} \equiv 9$ since $9 \times 3=27 \equiv 1$.

Modular Arithmetic: \div

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.
Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$.
$\frac{1}{3} \equiv 9$ since $9 \times 3=27 \equiv 1$.
Shortcut:

Modular Arithmetic: \div

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.
Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$.
$\frac{1}{3} \equiv 9$ since $9 \times 3=27 \equiv 1$.
Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly.

Modular Arithmetic: \div

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.
Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$.
$\frac{1}{3} \equiv 9$ since $9 \times 3=27 \equiv 1$.
Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly.
We will NOT study the algorithm later.

Modular Arithmetic: :

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.
Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$.
$\frac{1}{3} \equiv 9$ since $9 \times 3=27 \equiv 1$.
Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly.
We will NOT study the algorithm later.
$\frac{1}{2} \equiv x$ where $0 \leq x \leq 25$.

Modular Arithmetic: \div

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.
Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$.
$\frac{1}{3} \equiv 9$ since $9 \times 3=27 \equiv 1$.
Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly.
We will NOT study the algorithm later.
$\frac{1}{2} \equiv x$ where $0 \leq x \leq 25$. Think about it.

Modular Arithmetic: :

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.
Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$.
$\frac{1}{3} \equiv 9$ since $9 \times 3=27 \equiv 1$.
Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly.
We will NOT study the algorithm later.
$\frac{1}{2} \equiv x$ where $0 \leq x \leq 25$. Think about it.
No such x exists.

Modular Arithmetic: \div

\equiv is $\bmod 26$ for this slide.
$\frac{1}{3} \equiv x$ where $0 \leq x \leq 25$.
Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$.
$\frac{1}{3} \equiv 9$ since $9 \times 3=27 \equiv 1$.
Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly.
We will NOT study the algorithm later.
$\frac{1}{2} \equiv x$ where $0 \leq x \leq 25$. Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no common factors. Numbers that have an inverse mod 26:

$$
\{1,3,5,7,9,11,15,17,19,21,23,25\}
$$

Examples of DFA's Before Formal Def

We do examples of DFA's before defining them formally.
$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \# b(w) \equiv 2(\bmod 3)\right\}$

$\left\{w: \#_{a}(w)(\bmod 2) \wedge \#_{b}(w)(\bmod 3)\right\}$

$\left\{w: \#_{a}(w)(\bmod 2) \wedge \#_{b}(w)(\bmod 3)\right\}$

A DFA-classifier does not ACCEPT and REJECT. It classifies.

$\left\{w: \#_{a}(w)(\bmod 2) \wedge \#_{b}(w)(\bmod 3)\right\}$

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

$$
\left(\#_{a}(w) \quad(\bmod 2), \#_{b}(w) \quad(\bmod 3)\right)
$$

$\left\{w: \#_{a}(w)(\bmod 2) \wedge \#_{b}(w)(\bmod 3)\right\}$

A DFA-classifier does not ACCEPT and REJECT. It classifies. If w is fed to the DFA in the last slide, the resulting state is

$$
\left(\#_{a}(w) \quad(\bmod 2), \#_{b}(w) \quad(\bmod 3)\right)
$$

The first DFA accepted (1,2)-strings and rejected the rest.

$\left\{w: \#_{a}(w)(\bmod 2) \wedge \#_{b}(w)(\bmod 3)\right\}$

A DFA-classifier does not ACCEPT and REJECT. It classifies. If w is fed to the DFA in the last slide, the resulting state is

$$
\left(\#_{a}(w) \quad(\bmod 2), \#_{b}(w) \quad(\bmod 3)\right)
$$

The first DFA accepted (1,2)-strings and rejected the rest.
The second DFA classifies strings without judgment.

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.
On input a goes to state q_{a}.

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.
On input a goes to state q_{a}.
On input b goes to state q_{b}.

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.
On input a goes to state q_{a}.
On input b goes to state q_{b}.
On input $b b$ goes to state $q_{b b}$.

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.
On input a goes to state q_{a}.
On input b goes to state q_{b}.
On input $b b$ goes to state $q_{b b}$.
On input $a b$ goes to state $q_{a b}$.

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.
On input a goes to state q_{a}.
On input b goes to state q_{b}.
On input $b b$ goes to state $q_{b b}$.
On input $a b$ goes to state $q_{a b}$.
On input $a b b$ goes to state $q_{a b b}$.

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.
On input a goes to state q_{a}.
On input b goes to state q_{b}.
On input $b b$ goes to state $q_{b b}$.
On input $a b$ goes to state $q_{a b}$.
On input $a b b$ goes to state $q_{a b b}$.
Since ≤ 5 states two of these go to the same state, say $q_{a a}$ and $q_{b b}$.

$\{w: \# a(w) \equiv 1(\bmod 2) \wedge \# b(w) \equiv 2(\bmod 3)\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.
On input a goes to state q_{a}.
On input b goes to state q_{b}.
On input $b b$ goes to state $q_{b b}$.
On input $a b$ goes to state $q_{a b}$.
On input $a b b$ goes to state $q_{a b b}$.
Since ≤ 5 states two of these go to the same state, say $q_{a a}$ and $q_{b b}$.
$a a \cdot a b b$ goes to state q which must accept since $a a a b b \in L$.

$\{w: \# a(w) \equiv 1(\bmod 2) \wedge \# b(w) \equiv 2(\bmod 3)\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.
On input a goes to state q_{a}.
On input b goes to state q_{b}.
On input $b b$ goes to state $q_{b b}$.
On input $a b$ goes to state $q_{a b}$.
On input $a b b$ goes to state $q_{a b b}$.
Since ≤ 5 states two of these go to the same state, say $q_{a a}$ and
$q_{b b}$.
$a a \cdot a b b$ goes to state q which must accept since $a a a b b \in L$. $b b \cdot a b b$ goes to state q which accepts. OH, but $b b a b b \notin L$. Contradiction.

$\{w: \# a(w) \equiv 1(\bmod 2) \wedge \# b(w) \equiv 2(\bmod 3)\}$

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state q_{e}.
On input a goes to state q_{a}.
On input b goes to state q_{b}.
On input $b b$ goes to state $q_{b b}$.
On input $a b$ goes to state $q_{a b}$.
On input $a b b$ goes to state $q_{a b b}$.
Since ≤ 5 states two of these go to the same state, say $q_{a a}$ and
$q_{b b}$.
$a a \cdot a b b$ goes to state q which must accept since $a \operatorname{aabb} \in L$. $b b \cdot a b b$ goes to state q which accepts. OH, but $b b a b b \notin L$. Contradiction.
Would need to do this argument with all pairs OR do it in a more general way. Might be on a HW, MIDTERM, or FINAL.

$\left\{w: \#_{a}(w) \equiv 0(\bmod 8)\right\}$

DFA-Classifier for $\left\{w: \#_{a}(w) \equiv 0(\bmod 8)\right\}$

$L=\left\{w: \#_{a}(w) \equiv 0(\bmod 8)\right\}$

Thm Any DFA for L has at least 8 states.

$L=\left\{w: \#_{a}(w) \equiv 0(\bmod 8)\right\}$

Thm Any DFA for L has at least 8 states.
Might be on a HW or exam.

Example of DFA: $\{w: a a b \preceq w\}$

Example of DFA: $\{w: a a b \preceq w\}$

Example of DFA: $\{w: w \preceq a a b\}$

Example of DFA: $\{w: w \preceq a a b\}$

Example of DFA: \{aaaa $\}$

Number of states: \{aaaa\}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Number of states: \{aaaa\}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.
Start state is q_{0}.

Number of states: \{aaaa\}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.
Start state is q_{0}.
On input a end in q_{1}. From here a^{4} gets to an accept.

Number of states: \{aaaa\}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.
Start state is q_{0}.
On input a end in q_{1}. From here a^{4} gets to an accept. On input a^{2} end in q_{2}. From here a^{3} gets to an accept.

Number of states: \{aaaa\}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.
Start state is q_{0}.
On input a end in q_{1}. From here a^{4} gets to an accept. On input a^{2} end in q_{2}. From here a^{3} gets to an accept.
On input a^{3} end in q_{3}. From here a^{2} gets to an accept.

Number of states: \{aaaa\}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.
Start state is q_{0}.
On input a end in q_{1}. From here a^{4} gets to an accept. On input a^{2} end in q_{2}. From here a^{3} gets to an accept.
On input a^{3} end in q_{3}. From here a^{2} gets to an accept.
On input a^{4} end in q_{4}. From here a^{1} gets to an accept.

Number of states: \{aaaa\}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.
Start state is q_{0}.
On input a end in q_{1}. From here a^{4} gets to an accept. On input a^{2} end in q_{2}. From here a^{3} gets to an accept.
On input a^{3} end in q_{3}. From here a^{2} gets to an accept.
On input a^{4} end in q_{4}. From here a^{1} gets to an accept.
On input a^{5} end in q_{5} which accepts.

Number of states: \{aaaa\}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.
Start state is q_{0}.
On input a end in q_{1}. From here a^{4} gets to an accept. On input a^{2} end in q_{2}. From here a^{3} gets to an accept.
On input a^{3} end in q_{3}. From here a^{2} gets to an accept.
On input a^{4} end in q_{4}. From here a^{1} gets to an accept.
On input a^{5} end in q_{5} which accepts.
On input a^{6} end in q_{6}.

Number of states: \{aaaa\}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.
Start state is q_{0}.
On input a end in q_{1}. From here a^{4} gets to an accept.
On input a^{2} end in q_{2}. From here a^{3} gets to an accept.
On input a^{3} end in q_{3}. From here a^{2} gets to an accept.
On input a^{4} end in q_{4}. From here a^{1} gets to an accept.
On input a^{5} end in q_{5} which accepts.
On input a^{6} end in q_{6}.
Two of q_{i}, q_{j} are the same state. See next slide.

Continuing proof

Assume $i<j$ and $q_{i}=q_{j}=q$.
Note that $i \leq 5$.
Input a^{i} ends in state q_{i}.
Input a^{j} ends in state q_{j}.
$a^{i} a^{5-i}=a^{5}$ ends in ACCEPT state.
$a^{j} a^{5-i}=a^{5+j-i}$ ends in REJECT state since $5+j-i>5$.
But these strings end in SAME state, so contradiction.

Example of DFA: $\{b b, a b a\}$

Example of DFA: $\{b b, a b a\}$

Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.

Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.
Draw a DFA with a diff state for every string of length $\leq n$.

Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.
Draw a DFA with a diff state for every string of length $\leq n$.
Make the states for strings in L accept states.

Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.
Draw a DFA with a diff state for every string of length $\leq n$.
Make the states for strings in L accept states.
This will take $\sim 2^{n}$ states. For many finite sets can do it with far fewer states.

DFA Intuitively

1. A DFA reads the input a letter at a time and never looks at it again. So one-scan.
2. A DFA only has a finite number of states, so $O(1)$ memory.
3. Contrast:
3.1 A DFA can keep track of $\#_{a}(w)(\bmod 17)$.
3.2 A DFA cannot keep track of $\#_{a}(w)$.

DFA Formally

Def A DFA is a tuple $(Q, \Sigma, \delta, s, F)$ where:

1. Q is a finite set of states.
2. Σ is a finite alphabet.
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.
4. $s \in Q$ is the start state.
5. $F \subseteq Q$ is the set of final states.

DFA Formally

Def A DFA is a tuple $(Q, \Sigma, \delta, s, F)$ where:

1. Q is a finite set of states.
2. Σ is a finite alphabet.
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.
4. $s \in Q$ is the start state.
5. $F \subseteq Q$ is the set of final states.

Def If M is a DFA and $x \in \Sigma^{*}$ then $M(x)$ accepts if when you run M on x you end up in a final state.

DFA Formally

Def A DFA is a tuple $(Q, \Sigma, \delta, s, F)$ where:

1. Q is a finite set of states.
2. Σ is a finite alphabet.
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.
4. $s \in Q$ is the start state.
5. $F \subseteq Q$ is the set of final states.

Def If M is a DFA and $x \in \Sigma^{*}$ then $M(x)$ accepts if when you run M on x you end up in a final state.
Def If M is a DFA then $L(M)=\{x: M(x)$ accepts $\}$.

DFA Formally

Def A DFA is a tuple $(Q, \Sigma, \delta, s, F)$ where:

1. Q is a finite set of states.
2. Σ is a finite alphabet.
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.
4. $s \in Q$ is the start state.
5. $F \subseteq Q$ is the set of final states.

Def If M is a DFA and $x \in \Sigma^{*}$ then $M(x)$ accepts if when you run M on x you end up in a final state.
Def If M is a DFA then $L(M)=\{x: M(x)$ accepts $\}$.
Def Let $L \subseteq \Sigma^{*}$. If there exists a DFA M such that $L(M)=L$ then
L is regular.

Can Represent DFA's as Diagram or Transition Table

- If it's a particular example and not too many states, like those drawn a few slides ago, then draw it.

Can Represent DFA's as Diagram or Transition Table

- If it's a particular example and not too many states, like those drawn a few slides ago, then draw it.
- If it is many states or a general case (next slide) then give the transition table (the definition of δ).

$\left\{w: \#_{a}(w) \equiv 0(\bmod n) \wedge \#_{b} \equiv 0(\bmod m)\right\}$

$$
Q=\{0, \ldots, n-1\} \times\{0, \ldots, m-1\}
$$

$\left\{w: \#_{a}(w) \equiv 0(\bmod n) \wedge \#_{b} \equiv 0(\bmod m)\right\}$

$$
\begin{aligned}
& Q=\{0, \ldots, n-1\} \times\{0, \ldots, m-1\} \\
& s=(0,0)
\end{aligned}
$$

$\left\{w: \#_{a}(w) \equiv 0(\bmod n) \wedge \#_{b} \equiv 0(\bmod m)\right\}$

$$
\begin{aligned}
& Q=\{0, \ldots, n-1\} \times\{0, \ldots, m-1\} \\
& s=(0,0) \\
& F=\{(0,0)\}
\end{aligned}
$$

$\left\{w: \#_{a}(w) \equiv 0(\bmod n) \wedge \#_{b} \equiv 0(\bmod m)\right\}$

$$
\begin{aligned}
& Q=\{0, \ldots, n-1\} \times\{0, \ldots, m-1\} \\
& s=(0,0) \\
& F=\{(0,0)\} \\
& \delta((i, j), a)=(i+1(\bmod n), j) . \\
& \delta((i, j), b)=(i, j+1(\bmod m)) .
\end{aligned}
$$

$\left\{w: \#_{a}(w) \equiv 0(\bmod n) \wedge \#_{b} \equiv 0(\bmod m)\right\}$

$Q=\{0, \ldots, n-1\} \times\{0, \ldots, m-1\}$
$s=(0,0)$
$F=\{(0,0)\}$
$\delta((i, j), a)=(i+1(\bmod n), j)$.
$\delta((i, j), b)=(i, j+1(\bmod m))$.
Number of states is $n m$. Is there a DFA for this lang with a smaller DFA?

$\left\{w: \#_{a}(w) \equiv 0(\bmod n) \wedge \#_{b} \equiv 0(\bmod m)\right\}$

$Q=\{0, \ldots, n-1\} \times\{0, \ldots, m-1\}$
$s=(0,0)$
$F=\{(0,0)\}$
$\delta((i, j), a)=(i+1(\bmod n), j)$.
$\delta((i, j), b)=(i, j+1(\bmod m))$.
Number of states is $n m$. Is there a DFA for this lang with a smaller DFA?
No.

$\left\{w: \#_{a}(w) \equiv 0(\bmod n) \wedge \#_{b} \equiv 0(\bmod m)\right\}$

$Q=\{0, \ldots, n-1\} \times\{0, \ldots, m-1\}$
$s=(0,0)$
$F=\{(0,0)\}$
$\delta((i, j), a)=(i+1(\bmod n), j)$.
$\delta((i, j), b)=(i, j+1(\bmod m))$.
Number of states is $n m$. Is there a DFA for this lang with a smaller DFA?
No. We may prove this later in the term.

