
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



Deterministic Finite
Automata (DFA)



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.

Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.

Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}

i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:

If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .

If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .

If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Alphabets and Strings
Σ will be our alphabet. Usually Σ = {0, 1} or Σ = {a, b}.
Sometimes Σ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
i = 1 case is just Σ1 = Σ.

What about i = 0 case?

Σ0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If w ∈ R then w + 0 = w .
If w ∈ R then w × 1 = w .
If w is a string of a’s and b’s, then w · e = w (this is
concatenation).

Notation Σ∗ = Σ0 ∪ Σ1 ∪ · · · . is the set of all strings including e.



Concatenation, number-of-a’s, Prefix

Let x , y ∈ Σ∗. Then xy is the concatenation of x and y . We
sometimes write it as x · y .

If A,B ⊆ Σ∗ then A · B = {x · y : x ∈ A ∧ y ∈ B}.
Note that ΣΣ is Σ · Σ.

If x ∈ {a, b}∗ then #a(x) is the number of a’s in x .
Same for #b, #0, etc.

If x , y ∈ {a, b}∗ then x � y means that x is a prefix of y .
For example, aab is a prefix of aabbaaba.



Concatenation, number-of-a’s, Prefix

Let x , y ∈ Σ∗. Then xy is the concatenation of x and y . We
sometimes write it as x · y .

If A,B ⊆ Σ∗ then A · B = {x · y : x ∈ A ∧ y ∈ B}.

Note that ΣΣ is Σ · Σ.

If x ∈ {a, b}∗ then #a(x) is the number of a’s in x .
Same for #b, #0, etc.

If x , y ∈ {a, b}∗ then x � y means that x is a prefix of y .
For example, aab is a prefix of aabbaaba.



Concatenation, number-of-a’s, Prefix

Let x , y ∈ Σ∗. Then xy is the concatenation of x and y . We
sometimes write it as x · y .

If A,B ⊆ Σ∗ then A · B = {x · y : x ∈ A ∧ y ∈ B}.
Note that ΣΣ is Σ · Σ.

If x ∈ {a, b}∗ then #a(x) is the number of a’s in x .
Same for #b, #0, etc.

If x , y ∈ {a, b}∗ then x � y means that x is a prefix of y .
For example, aab is a prefix of aabbaaba.



Concatenation, number-of-a’s, Prefix

Let x , y ∈ Σ∗. Then xy is the concatenation of x and y . We
sometimes write it as x · y .

If A,B ⊆ Σ∗ then A · B = {x · y : x ∈ A ∧ y ∈ B}.
Note that ΣΣ is Σ · Σ.

If x ∈ {a, b}∗ then #a(x) is the number of a’s in x .

Same for #b, #0, etc.

If x , y ∈ {a, b}∗ then x � y means that x is a prefix of y .
For example, aab is a prefix of aabbaaba.



Concatenation, number-of-a’s, Prefix

Let x , y ∈ Σ∗. Then xy is the concatenation of x and y . We
sometimes write it as x · y .

If A,B ⊆ Σ∗ then A · B = {x · y : x ∈ A ∧ y ∈ B}.
Note that ΣΣ is Σ · Σ.

If x ∈ {a, b}∗ then #a(x) is the number of a’s in x .
Same for #b, #0, etc.

If x , y ∈ {a, b}∗ then x � y means that x is a prefix of y .
For example, aab is a prefix of aabbaaba.



Concatenation, number-of-a’s, Prefix

Let x , y ∈ Σ∗. Then xy is the concatenation of x and y . We
sometimes write it as x · y .

If A,B ⊆ Σ∗ then A · B = {x · y : x ∈ A ∧ y ∈ B}.
Note that ΣΣ is Σ · Σ.

If x ∈ {a, b}∗ then #a(x) is the number of a’s in x .
Same for #b, #0, etc.

If x , y ∈ {a, b}∗ then x � y means that x is a prefix of y .

For example, aab is a prefix of aabbaaba.



Concatenation, number-of-a’s, Prefix

Let x , y ∈ Σ∗. Then xy is the concatenation of x and y . We
sometimes write it as x · y .

If A,B ⊆ Σ∗ then A · B = {x · y : x ∈ A ∧ y ∈ B}.
Note that ΣΣ is Σ · Σ.

If x ∈ {a, b}∗ then #a(x) is the number of a’s in x .
Same for #b, #0, etc.

If x , y ∈ {a, b}∗ then x � y means that x is a prefix of y .
For example, aab is a prefix of aabbaaba.



Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I 25 ≡ 35 (mod 10).

I 100 ≡ 2 (mod 7) since 100 = 7× 14 + 2.



Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I 25 ≡ 35 (mod 10).

I 100 ≡ 2 (mod 7) since 100 = 7× 14 + 2.



Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I 25 ≡ 35 (mod 10).

I 100 ≡ 2 (mod 7) since 100 = 7× 14 + 2.



Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I 25 ≡ 35 (mod 10).

I 100 ≡ 2 (mod 7) since 100 = 7× 14 + 2.



Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in mod n we have a large number on the left
and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.



Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in mod n we have a large number on the left
and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.



Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in mod n we have a large number on the left
and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.

Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.

−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).

Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.

Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y is the number such that y × 1

y ≡ 1.
1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic: 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic: 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y quickly.

We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic: 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut:

there is an algorithm that finds 1
y quickly.

We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic: 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.

We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic: 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic: 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25.

Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic: 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic: 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about it.
No such x exists.

Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic: 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will NOT study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}



Examples of DFA’s Before Formal Def

We do examples of DFA’s before defining them formally.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

0, 0 1, 0

0, 1 1, 1

0, 2 1, 2

a

a

b b

b b

b

a

a

a

a

b



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

0, 0 1, 0

0, 1 1, 1

0, 2 1, 2

a

a

b b

b b

b

a

a

a

a

b



{w : #a(w) (mod 2)∧#b(w) (mod 3)}

0, 0 1, 0

0, 1 1, 1

0, 2 1, 2

a

a

b b

b b

b

a

a

a

a

b



{w : #a(w) (mod 2)∧#b(w) (mod 3)}

A DFA-classifier does not ACCEPT and REJECT. It classifies.

If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2),#b(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.



{w : #a(w) (mod 2)∧#b(w) (mod 3)}

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2),#b(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.



{w : #a(w) (mod 2)∧#b(w) (mod 3)}

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2),#b(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.



{w : #a(w) (mod 2)∧#b(w) (mod 3)}

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2),#b(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.

On input e, the empty string, goes to state qe .
On input a goes to state qa.
On input b goes to state qb.
On input bb goes to state qbb.
On input ab goes to state qab.
On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .

On input a goes to state qa.
On input b goes to state qb.
On input bb goes to state qbb.
On input ab goes to state qab.
On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .
On input a goes to state qa.

On input b goes to state qb.
On input bb goes to state qbb.
On input ab goes to state qab.
On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .
On input a goes to state qa.
On input b goes to state qb.

On input bb goes to state qbb.
On input ab goes to state qab.
On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .
On input a goes to state qa.
On input b goes to state qb.
On input bb goes to state qbb.

On input ab goes to state qab.
On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .
On input a goes to state qa.
On input b goes to state qb.
On input bb goes to state qbb.
On input ab goes to state qab.

On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .
On input a goes to state qa.
On input b goes to state qb.
On input bb goes to state qbb.
On input ab goes to state qab.
On input abb goes to state qabb.

Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .
On input a goes to state qa.
On input b goes to state qb.
On input bb goes to state qbb.
On input ab goes to state qab.
On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.

aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .
On input a goes to state qa.
On input b goes to state qb.
On input bb goes to state qbb.
On input ab goes to state qab.
On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.

bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .
On input a goes to state qa.
On input b goes to state qb.
On input bb goes to state qbb.
On input ab goes to state qab.
On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.

Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has ≤ 5 states.
On input e, the empty string, goes to state qe .
On input a goes to state qa.
On input b goes to state qb.
On input bb goes to state qbb.
On input ab goes to state qab.
On input abb goes to state qabb.
Since ≤ 5 states two of these go to the same state, say qaa and
qbb.
aa · abb goes to state q which must accept since aaabb ∈ L.
bb · abb goes to state q which accepts. OH, but bbabb /∈ L.
Contradiction.
Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.



{w : #a(w) ≡ 0 (mod 8)}

0 1 2 3

4567

a a a

a

aaa

a

b b b b

b

bb

b



DFA-Classifier for {w : #a(w) ≡ 0 (mod 8)}

0 1 2 3

4567

a a a

a

aaa

a

b b b b

b

bb

b



L = {w : #a(w) ≡ 0 (mod 8)}

Thm Any DFA for L has at least 8 states.

Might be on a HW or exam.



L = {w : #a(w) ≡ 0 (mod 8)}

Thm Any DFA for L has at least 8 states.
Might be on a HW or exam.



Example of DFA: {w : aab � w}

0 1 2 3

4

a a b

a, b

b b a

a, b



Example of DFA: {w : aab � w}

0 1 2 3

4

a a b

a, b

b b a

a, b



Example of DFA: {w : w � aab}

0 1 2 3

4

a a b

a, bb b a

a, b



Example of DFA: {w : w � aab}

0 1 2 3

4

a a b

a, bb b a

a, b



Example of DFA: {aaaaa}

0 1 2 3

456

a a a

a

aa

a



Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Start state is q0.

On input a end in q1. From here a4 gets to an accept.

On input a2 end in q2. From here a3 gets to an accept.

On input a3 end in q3. From here a2 gets to an accept.

On input a4 end in q4. From here a1 gets to an accept.

On input a5 end in q5 which accepts.

On input a6 end in q6.

Two of qi , qj are the same state. See next slide.



Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Start state is q0.

On input a end in q1. From here a4 gets to an accept.

On input a2 end in q2. From here a3 gets to an accept.

On input a3 end in q3. From here a2 gets to an accept.

On input a4 end in q4. From here a1 gets to an accept.

On input a5 end in q5 which accepts.

On input a6 end in q6.

Two of qi , qj are the same state. See next slide.



Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Start state is q0.

On input a end in q1. From here a4 gets to an accept.

On input a2 end in q2. From here a3 gets to an accept.

On input a3 end in q3. From here a2 gets to an accept.

On input a4 end in q4. From here a1 gets to an accept.

On input a5 end in q5 which accepts.

On input a6 end in q6.

Two of qi , qj are the same state. See next slide.



Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Start state is q0.

On input a end in q1. From here a4 gets to an accept.

On input a2 end in q2. From here a3 gets to an accept.

On input a3 end in q3. From here a2 gets to an accept.

On input a4 end in q4. From here a1 gets to an accept.

On input a5 end in q5 which accepts.

On input a6 end in q6.

Two of qi , qj are the same state. See next slide.



Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Start state is q0.

On input a end in q1. From here a4 gets to an accept.

On input a2 end in q2. From here a3 gets to an accept.

On input a3 end in q3. From here a2 gets to an accept.

On input a4 end in q4. From here a1 gets to an accept.

On input a5 end in q5 which accepts.

On input a6 end in q6.

Two of qi , qj are the same state. See next slide.



Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Start state is q0.

On input a end in q1. From here a4 gets to an accept.

On input a2 end in q2. From here a3 gets to an accept.

On input a3 end in q3. From here a2 gets to an accept.

On input a4 end in q4. From here a1 gets to an accept.

On input a5 end in q5 which accepts.

On input a6 end in q6.

Two of qi , qj are the same state. See next slide.



Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Start state is q0.

On input a end in q1. From here a4 gets to an accept.

On input a2 end in q2. From here a3 gets to an accept.

On input a3 end in q3. From here a2 gets to an accept.

On input a4 end in q4. From here a1 gets to an accept.

On input a5 end in q5 which accepts.

On input a6 end in q6.

Two of qi , qj are the same state. See next slide.



Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Start state is q0.

On input a end in q1. From here a4 gets to an accept.

On input a2 end in q2. From here a3 gets to an accept.

On input a3 end in q3. From here a2 gets to an accept.

On input a4 end in q4. From here a1 gets to an accept.

On input a5 end in q5 which accepts.

On input a6 end in q6.

Two of qi , qj are the same state. See next slide.



Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has ≥ 7 states.
Pf Assume there is a DFA with 6 states.

Start state is q0.

On input a end in q1. From here a4 gets to an accept.

On input a2 end in q2. From here a3 gets to an accept.

On input a3 end in q3. From here a2 gets to an accept.

On input a4 end in q4. From here a1 gets to an accept.

On input a5 end in q5 which accepts.

On input a6 end in q6.

Two of qi , qj are the same state. See next slide.



Continuing proof

Assume i < j and qi = qj = q.
Note that i ≤ 5.
Input ai ends in state qi .
Input aj ends in state qj .
aia5−i = a5 ends in ACCEPT state.
aja5−i = a5+j−i ends in REJECT state since 5 + j − i > 5.
But these strings end in SAME state, so contradiction.



Example of DFA: {bb, aba}

0 1 2

3 4 56

a a

b b

a, b

a

a, b

b

a

b
a, b



Example of DFA: {bb, aba}

0 1 2

3 4 56

a a

b b

a, b

a

a, b

b

a

b
a, b



Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.

Draw a DFA with a diff state for every string of length ≤ n.

Make the states for strings in L accept states.

This will take ∼ 2n states. For many finite sets can do it with far
fewer states.



Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.

Draw a DFA with a diff state for every string of length ≤ n.

Make the states for strings in L accept states.

This will take ∼ 2n states. For many finite sets can do it with far
fewer states.



Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.

Draw a DFA with a diff state for every string of length ≤ n.

Make the states for strings in L accept states.

This will take ∼ 2n states. For many finite sets can do it with far
fewer states.



Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.

Draw a DFA with a diff state for every string of length ≤ n.

Make the states for strings in L accept states.

This will take ∼ 2n states. For many finite sets can do it with far
fewer states.



DFA Intuitively

1. A DFA reads the input a letter at a time and never looks at it
again. So one-scan.

2. A DFA only has a finite number of states, so O(1) memory.

3. Contrast:

3.1 A DFA can keep track of #a(w) (mod 17).
3.2 A DFA cannot keep track of #a(w).



DFA Formally

Def A DFA is a tuple (Q,Σ, δ, s,F ) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ→ Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Def If M is a DFA and x ∈ Σ∗ then M(x) accepts if when you
run M on x you end up in a final state.
Def If M is a DFA then L(M) = {x : M(x) accepts}.
Def Let L ⊆ Σ∗. If there exists a DFA M such that L(M) = L then
L is regular.



DFA Formally

Def A DFA is a tuple (Q,Σ, δ, s,F ) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ→ Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Def If M is a DFA and x ∈ Σ∗ then M(x) accepts if when you
run M on x you end up in a final state.

Def If M is a DFA then L(M) = {x : M(x) accepts}.
Def Let L ⊆ Σ∗. If there exists a DFA M such that L(M) = L then
L is regular.



DFA Formally

Def A DFA is a tuple (Q,Σ, δ, s,F ) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ→ Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Def If M is a DFA and x ∈ Σ∗ then M(x) accepts if when you
run M on x you end up in a final state.
Def If M is a DFA then L(M) = {x : M(x) accepts}.

Def Let L ⊆ Σ∗. If there exists a DFA M such that L(M) = L then
L is regular.



DFA Formally

Def A DFA is a tuple (Q,Σ, δ, s,F ) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ→ Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Def If M is a DFA and x ∈ Σ∗ then M(x) accepts if when you
run M on x you end up in a final state.
Def If M is a DFA then L(M) = {x : M(x) accepts}.
Def Let L ⊆ Σ∗. If there exists a DFA M such that L(M) = L then
L is regular.



Can Represent DFA’s as Diagram or Transition
Table

I If it’s a particular example and not too many states, like those
drawn a few slides ago, then draw it.

I If it is many states or a general case (next slide) then give the
transition table (the definition of δ).



Can Represent DFA’s as Diagram or Transition
Table

I If it’s a particular example and not too many states, like those
drawn a few slides ago, then draw it.

I If it is many states or a general case (next slide) then give the
transition table (the definition of δ).



{w : #a(w) ≡ 0 (mod n)∧#b ≡ 0 (mod m)}

Q = {0, . . . , n − 1} × {0, . . . ,m − 1}

s = (0, 0)

F = {(0, 0)}
δ((i , j), a) = (i + 1 (mod n), j).
δ((i , j), b) = (i , j + 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a
smaller DFA?
No. We may prove this later in the term.



{w : #a(w) ≡ 0 (mod n)∧#b ≡ 0 (mod m)}

Q = {0, . . . , n − 1} × {0, . . . ,m − 1}
s = (0, 0)

F = {(0, 0)}
δ((i , j), a) = (i + 1 (mod n), j).
δ((i , j), b) = (i , j + 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a
smaller DFA?
No. We may prove this later in the term.



{w : #a(w) ≡ 0 (mod n)∧#b ≡ 0 (mod m)}

Q = {0, . . . , n − 1} × {0, . . . ,m − 1}
s = (0, 0)

F = {(0, 0)}

δ((i , j), a) = (i + 1 (mod n), j).
δ((i , j), b) = (i , j + 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a
smaller DFA?
No. We may prove this later in the term.



{w : #a(w) ≡ 0 (mod n)∧#b ≡ 0 (mod m)}

Q = {0, . . . , n − 1} × {0, . . . ,m − 1}
s = (0, 0)

F = {(0, 0)}
δ((i , j), a) = (i + 1 (mod n), j).
δ((i , j), b) = (i , j + 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a
smaller DFA?
No. We may prove this later in the term.



{w : #a(w) ≡ 0 (mod n)∧#b ≡ 0 (mod m)}

Q = {0, . . . , n − 1} × {0, . . . ,m − 1}
s = (0, 0)

F = {(0, 0)}
δ((i , j), a) = (i + 1 (mod n), j).
δ((i , j), b) = (i , j + 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a
smaller DFA?

No. We may prove this later in the term.



{w : #a(w) ≡ 0 (mod n)∧#b ≡ 0 (mod m)}

Q = {0, . . . , n − 1} × {0, . . . ,m − 1}
s = (0, 0)

F = {(0, 0)}
δ((i , j), a) = (i + 1 (mod n), j).
δ((i , j), b) = (i , j + 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a
smaller DFA?
No.

We may prove this later in the term.



{w : #a(w) ≡ 0 (mod n)∧#b ≡ 0 (mod m)}

Q = {0, . . . , n − 1} × {0, . . . ,m − 1}
s = (0, 0)

F = {(0, 0)}
δ((i , j), a) = (i + 1 (mod n), j).
δ((i , j), b) = (i , j + 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a
smaller DFA?
No. We may prove this later in the term.


