BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Tricks for Divisibility and DFA's

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$.

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$.
Strings are numbers in base 10. The string

$$
d_{n} \cdots d_{0}
$$

is the number

$$
d_{n} \times 10^{n}+\cdots+d_{1} \times 10^{1}+d_{0} \times 10^{0}
$$

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$.
Strings are numbers in base 10. The string

$$
d_{n} \cdots d_{0}
$$

is the number

$$
d_{n} \times 10^{n}+\cdots+d_{1} \times 10^{1}+d_{0} \times 10^{0}
$$

We feed a number into a DFA right-to-left: d_{0}, then d_{1} etc.

Trick for Mod 2. \equiv is Mod 2

Did you know? $n \equiv 0$ iff its last digit is $\equiv 0$.

Trick for Mod 2. \equiv is Mod 2

Did you know? $n \equiv 0$ iff its last digit is $\equiv 0$.
We state this a different way so can generalize later.

Trick for Mod 2. \equiv is Mod 2

Did you know? $n \equiv 0$ iff its last digit is $\equiv 0$.
We state this a different way so can generalize later.
Thm $d_{n} \cdots d_{0} \equiv d_{0}(\bmod 2)$.

Trick for Mod 2. \equiv is Mod 2

Did you know? $n \equiv 0$ iff its last digit is $\equiv 0$.
We state this a different way so can generalize later.
Thm $d_{n} \cdots d_{0} \equiv d_{0}(\bmod 2)$.
Pf

$$
d_{n} \times 10^{n}+\cdots+d_{1} \times 10+d_{0}=10\left(d_{n} \times 10^{n-1}+\cdots+d_{1}\right)+d_{0} \equiv d_{0}
$$

DFA for Mod 2

4ロ〉4岛 1 三

DFA for Mod 2

Trick for Mod 3. \equiv is Mod 3

Did you Know? $d \equiv 0$ iff sum of digits is $\equiv 0$.

Trick for Mod 3. \equiv is Mod 3

Did you Know? $d \equiv 0$ iff sum of digits is $\equiv 0$.
We state this a different way which gives more information.

Trick for Mod 3. \equiv is Mod 3

Did you Know? $d \equiv 0$ iff sum of digits is $\equiv 0$.
We state this a different way which gives more information.
Thm $d_{n} \cdots d_{0} \equiv d_{n}+\cdots+d_{0}$.

Trick for Mod 3. \equiv is Mod 3

Did you Know? $d \equiv 0$ iff sum of digits is $\equiv 0$.
We state this a different way which gives more information.
Thm $d_{n} \cdots d_{0} \equiv d_{n}+\cdots+d_{0}$.
Pf I'll have 250 H prove by induction: $(\forall n)\left[10^{n} \equiv 1\right]$. Hence

Trick for Mod 3. \equiv is Mod 3

Did you Know? $d \equiv 0$ iff sum of digits is $\equiv 0$.
We state this a different way which gives more information.
Thm $d_{n} \cdots d_{0} \equiv d_{n}+\cdots+d_{0}$.
Pf I'll have 250 H prove by induction: $(\forall n)\left[10^{n} \equiv 1\right]$. Hence

$$
d_{n} \times 10^{n}+\cdots+d_{1} \times 10+d_{0} \times 10^{0}
$$

Trick for Mod 3. \equiv is Mod 3

Did you Know? $d \equiv 0$ iff sum of digits is $\equiv 0$.
We state this a different way which gives more information.
Thm $d_{n} \cdots d_{0} \equiv d_{n}+\cdots+d_{0}$.
Pf I'll have 250 H prove by induction: $(\forall n)\left[10^{n} \equiv 1\right]$. Hence

$$
\begin{gathered}
d_{n} \times 10^{n}+\cdots+d_{1} \times 10+d_{0} \times 10^{0} \\
\equiv d_{n} \times 1+\cdots+d_{1} \times 1+d_{0} \times 1
\end{gathered}
$$

Trick for Mod 3. \equiv is Mod 3

Did you Know? $d \equiv 0$ iff sum of digits is $\equiv 0$.
We state this a different way which gives more information.
Thm $d_{n} \cdots d_{0} \equiv d_{n}+\cdots+d_{0}$.
Pf I'll have 250 H prove by induction: $(\forall n)\left[10^{n} \equiv 1\right]$. Hence

$$
\begin{gathered}
d_{n} \times 10^{n}+\cdots+d_{1} \times 10+d_{0} \times 10^{0} \\
\equiv d_{n} \times 1+\cdots+d_{1} \times 1+d_{0} \times 1 \\
\equiv d_{n}+\cdots+d_{1}+d_{0}
\end{gathered}
$$

DFA for Divisible by 3

DFA for Divisible by 3

$0,3,6,9$

Trick for Mod 4. All \equiv are Mod 4

Did you Know? $n \equiv 0$ iff

Trick for Mod 4. All \equiv are Mod 4

Did you Know? $n \equiv 0$ iff last 2 digits are a number $\equiv 0$.

Trick for Mod 4. All \equiv are Mod 4

Did you Know? $n \equiv 0$ iff last 2 digits are a number $\equiv 0$. Thm $d_{n} \cdots d_{0} \equiv 2 d_{1}+d_{0}$.

Trick for Mod 4. All \equiv are Mod 4

Did you Know? $n \equiv 0$ iff last 2 digits are a number $\equiv 0$.
Thm $d_{n} \cdots d_{0} \equiv 2 d_{1}+d_{0}$.
Pf I'll have 250 H prove by induction $(\forall n \geq 2)\left[10^{n} \equiv 0\right]$. Hence

Trick for Mod 4. All \equiv are Mod 4

Did you Know? $n \equiv 0$ iff last 2 digits are a number $\equiv 0$.
Thm $d_{n} \cdots d_{0} \equiv 2 d_{1}+d_{0}$.
Pf I'll have 250 H prove by induction $(\forall n \geq 2)\left[10^{n} \equiv 0\right]$. Hence

$$
d_{n} \times 10^{n}+\cdots+d_{1} \times 10+d_{0}
$$

Trick for Mod 4. All \equiv are Mod 4

Did you Know? $n \equiv 0$ iff last 2 digits are a number $\equiv 0$.
Thm $d_{n} \cdots d_{0} \equiv 2 d_{1}+d_{0}$.
Pf I'll have 250 H prove by induction $(\forall n \geq 2)\left[10^{n} \equiv 0\right]$. Hence

$$
\begin{gathered}
d_{n} \times 10^{n}+\cdots+d_{1} \times 10+d_{0} \\
\equiv d_{1} \times 10+d_{0}
\end{gathered}
$$

Trick for Mod 4. All \equiv are Mod 4

Did you Know? $n \equiv 0$ iff last 2 digits are a number $\equiv 0$.
Thm $d_{n} \cdots d_{0} \equiv 2 d_{1}+d_{0}$.
Pf I'll have 250 H prove by induction $(\forall n \geq 2)\left[10^{n} \equiv 0\right]$. Hence

$$
\begin{gathered}
d_{n} \times 10^{n}+\cdots+d_{1} \times 10+d_{0} \\
\equiv d_{1} \times 10+d_{0} \\
\quad \equiv 2 d_{1}+d_{0}
\end{gathered}
$$

DFA for Divisible by 4

DFA for Divisible by 4

Key to all of these Problems

For all of these problems we need to find a pattern of $10^{n}(\bmod a)$.

Key to all of these Problems

For all of these problems we need to find a pattern of $10^{n}(\bmod a)$. Mod 2: Pattern is $1,0,0,0, \ldots$. DFA only cared about first digit.

Key to all of these Problems

For all of these problems we need to find a pattern of $10^{n}(\bmod a)$. Mod 2: Pattern is $1,0,0,0, \ldots$, DFA only cared about first digit. Mod 3: Pattern is $1,1,1,1, \ldots$, DFA tracked sum of digits mod 3.

Key to all of these Problems

For all of these problems we need to find a pattern of $10^{n}(\bmod a)$. Mod 2: Pattern is $1,0,0,0, \ldots$, DFA only cared about first digit. Mod 3: Pattern is $1,1,1,1, \ldots$, DFA tracked sum of digits mod 3. Mod 4: Pattern is $1,2,0,0,0, \ldots$, DFA only cared about first 2 digits.

Tricks for Mod 5 and Mod 6

These may be on a HW.

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for $\bmod 11$?
Did you Know? $n \equiv 0$ iff \pm sum of digits is $\equiv 0$.

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for $\bmod 11$?
Did you Know? $n \equiv 0$ iff \pm sum of digits is $\equiv 0$.
Thm $d_{n} \cdots d_{0} \equiv d_{0}-d_{1}+d_{2}-\cdots d_{n}$.

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
Did you Know? $n \equiv 0$ iff \pm sum of digits is $\equiv 0$.
Thm $d_{n} \cdots d_{0} \equiv d_{0}-d_{1}+d_{2}-\cdots d_{n}$.
Proof may be on HW or Midterm or Final or some combination.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.

$$
Q=\{0, \ldots, 10\} \times\{0,1\}
$$

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.

$$
\begin{aligned}
& Q=\{0, \ldots, 10\} \times\{0,1\} \\
& s=(0,0)
\end{aligned}
$$

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.

$$
\begin{aligned}
& Q=\{0, \ldots, 10\} \times\{0,1\} \\
& s=(0,0)
\end{aligned}
$$

Final state: Not going to have these, this is DFA-classifier.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.

$$
\begin{aligned}
& Q=\{0, \ldots, 10\} \times\{0,1\} \\
& s=(0,0)
\end{aligned}
$$

Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{lll}
(i+\sigma & (\bmod 11), j+1 & (\bmod 2)) \text { if } j=0 \tag{1}\\
(i-\sigma & (\bmod 11), j+1 & (\bmod 2)) \text { if } j=1
\end{array}\right.
$$

We keep track of a running weighted sum mod 11 and position of the symbol mod 2 .

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

We keep track of a running weighted sum mod 11 and position of the symbol mod 2 .
22 states.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

We keep track of a running weighted sum mod 11 and position of the symbol mod 2 .
22 states.
Classifier If end in $(i, 0)$ or $(i, 1)$ then number is $\equiv i$.

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7 ? VOTE

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7? VOTE
Answer Depends what you call a trick.

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$
$10^{5} \equiv 10^{4} \times 10 \equiv 4 \times 3 \equiv 12 \equiv 5$

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$
$10^{5} \equiv 10^{4} \times 10 \equiv 4 \times 3 \equiv 12 \equiv 5$
$10^{6} \equiv 10^{5} \times 10 \equiv 5 \times 3 \equiv 15 \equiv 1$

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7 ? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$
$10^{5} \equiv 10^{4} \times 10 \equiv 4 \times 3 \equiv 12 \equiv 5$
$10^{6} \equiv 10^{5} \times 10 \equiv 5 \times 3 \equiv 15 \equiv 1$
Pattern is $1,3,2,6,4,5,1,3,2,6,4,5,1, \ldots$.

Is There a Mod 7 Trick? \equiv is Mod 7

Is there a trick for mod 7 ? VOTE
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$
$10^{5} \equiv 10^{4} \times 10 \equiv 4 \times 3 \equiv 12 \equiv 5$
$10^{6} \equiv 10^{5} \times 10 \equiv 5 \times 3 \equiv 15 \equiv 1$
Pattern is $1,3,2,6,4,5,1,3,2,6,4,5,1, \ldots$.
Can we use this?

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 . All arith is $\bmod 7$. $4 \times 1+5 \times 3+5 \times 2+6 \times 6+7 \times 4+8 \times 5+3 \times 1$

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 . All arith is $\bmod 7$.
$4 \times 1+5 \times 3+5 \times 2+6 \times 6+7 \times 4+8 \times 5+3 \times 1$
We do this mod 7 so the numbers do not get that big

$$
4+15+10+36+28+40+3
$$

$$
\equiv 4+1+3+1+0+5+3 \equiv(4+3+1)+(3+1+5+3) \equiv 1+5 \equiv 6
$$

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 . All arith is $\bmod 7$.
$4 \times 1+5 \times 3+5 \times 2+6 \times 6+7 \times 4+8 \times 5+3 \times 1$
We do this mod 7 so the numbers do not get that big

$$
4+15+10+36+28+40+3
$$

$\equiv 4+1+3+1+0+5+3 \equiv(4+3+1)+(3+1+5+3) \equiv 1+5 \equiv 6$.
DFA States will keep track of

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 . All arith is mod 7 .
$4 \times 1+5 \times 3+5 \times 2+6 \times 6+7 \times 4+8 \times 5+3 \times 1$
We do this mod 7 so the numbers do not get that big

$$
4+15+10+36+28+40+3
$$

$\equiv 4+1+3+1+0+5+3 \equiv(4+3+1)+(3+1+5+3) \equiv 1+5 \equiv 6$.
DFA States will keep track of
Running weighted sum mod 7

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 . All arith is mod 7 .
$4 \times 1+5 \times 3+5 \times 2+6 \times 6+7 \times 4+8 \times 5+3 \times 1$
We do this mod 7 so the numbers do not get that big

$$
\begin{gathered}
4+15+10+36+28+40+3 \\
\equiv 4+1+3+1+0+5+3 \equiv(4+3+1)+(3+1+5+3) \equiv 1+5 \equiv 6
\end{gathered}
$$

DFA States will keep track of
Running weighted sum mod 7
Position of digit mod 6 so know which weights to use.

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 . All arith is mod 7 .
$4 \times 1+5 \times 3+5 \times 2+6 \times 6+7 \times 4+8 \times 5+3 \times 1$
We do this mod 7 so the numbers do not get that big

$$
4+15+10+36+28+40+3
$$

$\equiv 4+1+3+1+0+5+3 \equiv(4+3+1)+(3+1+5+3) \equiv 1+5 \equiv 6$.
DFA States will keep track of
Running weighted sum mod 7
Position of digit mod 6 so know which weights to use.
So there are $7 \times 6=42$ states.

Is the Method a Trick?

Is the Method a Trick?

YES A DFA can do it.

Is the Method a Trick?

YES A DFA can do it.
NO A human can't do it easily- the pattern is not like $1,1,1, \ldots$ or mostly 0 's.

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

[^0]
The DFA for $\{n: n \equiv 0(\bmod 7)\}$

BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$.

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Yaelle.

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Yaelle.
BILL: Yaelle, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$.

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Yaelle.
BILL: Yaelle, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Saadiq.

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Yaelle.
BILL: Yaelle, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Saadiq.
BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$.

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Yaelle.
BILL: Yaelle, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Saadiq.
BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Yaelle.

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Yaelle.
BILL: Yaelle, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Saadiq.
BILL: Saadiq, please draw a DFA for $\{n: n \equiv 0(\bmod 7)\}$. SAADIQ: No. Ask Yaelle.
!
Might make it a HW to do as a table.

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$?

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$?
Method One Divide and take remainder.

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$?
Method One Divide and take remainder.
Method Two Use the DFA.

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$?
Method One Divide and take remainder.
Method Two Use the DFA.
Question Which is faster?

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$?
Method One Divide and take remainder.
Method Two Use the DFA.
Question Which is faster?
Might be hard to tell because today's computers are so fast!

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

[^0]: aracter yac

