Hard Cases for SAT Solvers

William Gasarch-U of MD

Example

The AND of the following:

1. $x_{11} \vee x_{12}$
2. $x_{21} \vee x_{22}$
3. $x_{31} \vee x_{32}$
4. $\neg x_{11} \vee \neg x_{21}$
5. $\neg x_{11} \vee \neg x_{31}$
6. $\neg x_{21} \vee \neg x_{31}$
7. $\neg x_{12} \vee \neg x_{22}$
8. $\neg x_{12} \vee \neg x_{32}$
9. $\neg x_{22} \vee \neg x_{32}$

Example

The AND of the following:

1. $x_{11} \vee x_{12}$
2. $x_{21} \vee x_{22}$
3. $x_{31} \vee x_{32}$
4. $\neg x_{11} \vee \neg x_{21}$
5. $\neg x_{11} \vee \neg x_{31}$
6. $\neg x_{21} \vee \neg x_{31}$
7. $\neg x_{12} \vee \neg x_{22}$
8. $\neg x_{12} \vee \neg x_{32}$
9. $\neg x_{22} \vee \neg x_{32}$

This is Pigeonhole Principle: $x_{i j}$ is putting ith pigeon in j hole!

Example

The AND of the following:

1. $x_{11} \vee x_{12}$
2. $x_{21} \vee x_{22}$
3. $x_{31} \vee x_{32}$
4. $\neg x_{11} \vee \neg x_{21}$
5. $\neg x_{11} \vee \neg x_{31}$
6. $\neg x_{21} \vee \neg x_{31}$
7. $\neg x_{12} \vee \neg x_{22}$
8. $\neg x_{12} \vee \neg x_{32}$
9. $\neg x_{22} \vee \neg x_{32}$

This is Pigeonhole Principle: $x_{i j}$ is putting ith pigeon in j hole! Can't put 3 pigeons into 2 holes! So Fml is NOT satisfiable.

PHP: Pigeon Hole Principle

Let $n<m . n$ is NUMBER OF HOLES, m is NUMBER OF PIGEONS. $x_{i j}$ will be thought of as Pigeon i IS in Hole j.
Definition
$P H P_{n}^{m}$ is the AND of the following:

1. For $1 \leq i \leq m$

$$
x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}
$$

(Pigeon i is in SOME Hole.)
2. For $1 \leq i_{1}<i_{2} \leq m$ and $1 \leq j \leq n$

$$
\neg x_{i_{1} j} \vee \neg x_{i_{2} j}
$$

(Hole j does not have BOTH Pigeon i_{1} and Pigeon i_{2}.) NOTE: $P H P_{n}^{m}$ has $n m$ VARS and $O\left(m n^{2}\right)$ CLAUSES and is NOT satisfiable.

What is Known

1. If $n<m$ then $P H P_{n}^{m}$ is not satisfiable.
2. The proof of this is by the Pigeon hole principle and not by Truth Table, it was by mathematical reasoning.
3. There is a proof technique called Resolution that is used to show formulas are not satisfiable. It is known that resolution proofs that $P H P_{n}^{m}$ is not satisfiable are large.
4. Our speculation is that the SAT Solvers we have been studying will take a long time on $P H P_{n}^{m}$.
5. Try our out SAT solvers on $P H P_{n}^{n+1}, P H P_{n}^{n+2}, \ldots$ and see if it takes a long time. See what happens as the m gets bigger.
