Hard Cases for SAT Solvers

William Gasarch-U of MD

Example

The AND of the following:

- 1. $x_{11} \lor x_{12}$
- 2. $x_{21} \lor x_{22}$
- 3. $x_{31} \lor x_{32}$
- **4**. $\neg x_{11} \lor \neg x_{21}$
- 5. $\neg x_{11} \lor \neg x_{31}$
- 6. $\neg x_{21} \lor \neg x_{31}$
- 7. $\neg x_{12} \lor \neg x_{22}$
- 8. $\neg x_{12} \lor \neg x_{32}$
- 9. $\neg x_{22} \lor \neg x_{32}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Example

The AND of the following:

- 1. $x_{11} \lor x_{12}$
- 2. $x_{21} \vee x_{22}$
- 3. $x_{31} \vee x_{32}$
- 4. $\neg x_{11} \lor \neg x_{21}$
- 5. $\neg x_{11} \lor \neg x_{31}$
- 6. $\neg x_{21} \lor \neg x_{31}$
- 7. $\neg x_{12} \lor \neg x_{22}$
- 8. $\neg x_{12} \lor \neg x_{32}$
- 9. $\neg x_{22} \lor \neg x_{32}$

This is Pigeonhole Principle: x_{ij} is putting *i*th pigeon in *j* hole!

Example

The AND of the following:

- 1. $x_{11} \vee x_{12}$
- 2. $x_{21} \lor x_{22}$
- 3. $x_{31} \vee x_{32}$
- 4. $\neg x_{11} \lor \neg x_{21}$
- 5. $\neg x_{11} \lor \neg x_{31}$
- 6. $\neg x_{21} \lor \neg x_{31}$
- 7. $\neg x_{12} \lor \neg x_{22}$
- 8. $\neg x_{12} \lor \neg x_{32}$
- 9. $\neg x_{22} \lor \neg x_{32}$

This is Pigeonhole Principle: x_{ij} is putting *i*th pigeon in *j* hole! Can't put 3 pigeons into 2 holes! So Fml is NOT satisfiable.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

PHP: Pigeon Hole Principle

Let n < m. *n* is NUMBER OF HOLES, *m* is NUMBER OF PIGEONS. x_{ij} will be thought of as Pigeon *i* IS in Hole *j*.

Definition

 PHP_n^m is the AND of the following:

```
1. For 1 \le i \le m

x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}

(Pigeon i is in SOME Hole.)

2. For 1 \le i_1 < i_2 \le m and 1 \le j \le n

\neg x_{i_1} \lor \neg x_{i_2}
```

(Hole *j* does not have BOTH Pigeon i_1 and Pigeon i_2 .)

NOTE: PHP_n^m has nm **VARS** and $O(mn^2)$ **CLAUSES** and is NOT satisfiable.

What is Known

- 1. If n < m then PHP_n^m is not satisfiable.
- 2. The proof of this is by the Pigeon hole principle and not by Truth Table, it was by mathematical reasoning.
- 3. There is a proof technique called **Resolution** that is used to show formulas are **not** satisfiable. It is known that resolution proofs that PHP_n^m is not satisfiable are large.
- Our speculation is that the SAT Solvers we have been studying will take a long time on PHP^m_n.
- 5. Try our out SAT solvers on PHP_n^{n+1} , PHP_n^{n+2} , ... and see if it takes a long time. See what happens as the *m* gets bigger.