
BILL AND NATHAN
START RECORDING

Review for the Midterm

Rules
1. Begin Midterm ON Gradescope: Tuesday March 23,

8:00PM-10:00PM. (IF this is a problem for you contact me
ASAP!!)

2. Resources Midterm is open-everything. The web, my notes,
my HW solutions, all fine to use. Cannot ask any other
human. Can talk to your cat. Honor System. I trust and
respect you.

3. Caveat You must hand in your own work and you must
understand what you hand in.

4. Warning Mindlessly copying does not work.

5. Neat LaTex is best. Good handwriting okay. Draw Aut, or
use LateX tool posted.

6. Our Intent This is exam I intended to give out originally.
The extra time is meant for you to format and put in LaTeX.

7. Scope of the Exam
Short Answer HWs and lectures.

Long Answer This Presentation.

Rules
1. Begin Midterm ON Gradescope: Tuesday March 23,

8:00PM-10:00PM. (IF this is a problem for you contact me
ASAP!!)

2. Resources Midterm is open-everything. The web, my notes,
my HW solutions, all fine to use. Cannot ask any other
human. Can talk to your cat. Honor System. I trust and
respect you.

3. Caveat You must hand in your own work and you must
understand what you hand in.

4. Warning Mindlessly copying does not work.

5. Neat LaTex is best. Good handwriting okay. Draw Aut, or
use LateX tool posted.

6. Our Intent This is exam I intended to give out originally.
The extra time is meant for you to format and put in LaTeX.

7. Scope of the Exam
Short Answer HWs and lectures.

Long Answer This Presentation.

Rules
1. Begin Midterm ON Gradescope: Tuesday March 23,

8:00PM-10:00PM. (IF this is a problem for you contact me
ASAP!!)

2. Resources Midterm is open-everything. The web, my notes,
my HW solutions, all fine to use. Cannot ask any other
human. Can talk to your cat. Honor System. I trust and
respect you.

3. Caveat You must hand in your own work and you must
understand what you hand in.

4. Warning Mindlessly copying does not work.

5. Neat LaTex is best. Good handwriting okay. Draw Aut, or
use LateX tool posted.

6. Our Intent This is exam I intended to give out originally.
The extra time is meant for you to format and put in LaTeX.

7. Scope of the Exam
Short Answer HWs and lectures.

Long Answer This Presentation.

Rules
1. Begin Midterm ON Gradescope: Tuesday March 23,

8:00PM-10:00PM. (IF this is a problem for you contact me
ASAP!!)

2. Resources Midterm is open-everything. The web, my notes,
my HW solutions, all fine to use. Cannot ask any other
human. Can talk to your cat. Honor System. I trust and
respect you.

3. Caveat You must hand in your own work and you must
understand what you hand in.

4. Warning Mindlessly copying does not work.

5. Neat LaTex is best. Good handwriting okay. Draw Aut, or
use LateX tool posted.

6. Our Intent This is exam I intended to give out originally.
The extra time is meant for you to format and put in LaTeX.

7. Scope of the Exam
Short Answer HWs and lectures.

Long Answer This Presentation.

Rules
1. Begin Midterm ON Gradescope: Tuesday March 23,

8:00PM-10:00PM. (IF this is a problem for you contact me
ASAP!!)

2. Resources Midterm is open-everything. The web, my notes,
my HW solutions, all fine to use. Cannot ask any other
human. Can talk to your cat. Honor System. I trust and
respect you.

3. Caveat You must hand in your own work and you must
understand what you hand in.

4. Warning Mindlessly copying does not work.

5. Neat LaTex is best. Good handwriting okay. Draw Aut, or
use LateX tool posted.

6. Our Intent This is exam I intended to give out originally.
The extra time is meant for you to format and put in LaTeX.

7. Scope of the Exam
Short Answer HWs and lectures.

Long Answer This Presentation.

Rules
1. Begin Midterm ON Gradescope: Tuesday March 23,

8:00PM-10:00PM. (IF this is a problem for you contact me
ASAP!!)

2. Resources Midterm is open-everything. The web, my notes,
my HW solutions, all fine to use. Cannot ask any other
human. Can talk to your cat. Honor System. I trust and
respect you.

3. Caveat You must hand in your own work and you must
understand what you hand in.

4. Warning Mindlessly copying does not work.

5. Neat LaTex is best. Good handwriting okay. Draw Aut, or
use LateX tool posted.

6. Our Intent This is exam I intended to give out originally.
The extra time is meant for you to format and put in LaTeX.

7. Scope of the Exam
Short Answer HWs and lectures.

Long Answer This Presentation.

Rules
1. Begin Midterm ON Gradescope: Tuesday March 23,

8:00PM-10:00PM. (IF this is a problem for you contact me
ASAP!!)

2. Resources Midterm is open-everything. The web, my notes,
my HW solutions, all fine to use. Cannot ask any other
human. Can talk to your cat. Honor System. I trust and
respect you.

3. Caveat You must hand in your own work and you must
understand what you hand in.

4. Warning Mindlessly copying does not work.

5. Neat LaTex is best. Good handwriting okay. Draw Aut, or
use LateX tool posted.

6. Our Intent This is exam I intended to give out originally.
The extra time is meant for you to format and put in LaTeX.

7. Scope of the Exam
Short Answer HWs and lectures.

Long Answer This Presentation.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}

For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w

2. {a, b}∗a{a, b}n (DFA: 2n+1, NFA: n + 2, CFG: log n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

3. DFA, NFA, REGEX. Equivalence of all of these.

4. Closure Properties.

5. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Context Free Languages

1. Examples of CFL’s

{ak1nbk2n : n ∈ N}
{w : #a(w) = #b(w)}
{w : k1#a(w) = k2#b(w)}
{an} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

3. Closure Properties.

4. Non-CFL’s:
If L ⊆ a∗ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., {anbncn : n ∈ N}

What We Have Covered: Context Free Languages

1. Examples of CFL’s

{ak1nbk2n : n ∈ N}

{w : #a(w) = #b(w)}
{w : k1#a(w) = k2#b(w)}
{an} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

3. Closure Properties.

4. Non-CFL’s:
If L ⊆ a∗ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., {anbncn : n ∈ N}

What We Have Covered: Context Free Languages

1. Examples of CFL’s

{ak1nbk2n : n ∈ N}
{w : #a(w) = #b(w)}

{w : k1#a(w) = k2#b(w)}
{an} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

3. Closure Properties.

4. Non-CFL’s:
If L ⊆ a∗ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., {anbncn : n ∈ N}

What We Have Covered: Context Free Languages

1. Examples of CFL’s

{ak1nbk2n : n ∈ N}
{w : #a(w) = #b(w)}
{w : k1#a(w) = k2#b(w)}

{an} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

3. Closure Properties.

4. Non-CFL’s:
If L ⊆ a∗ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., {anbncn : n ∈ N}

What We Have Covered: Context Free Languages

1. Examples of CFL’s

{ak1nbk2n : n ∈ N}
{w : #a(w) = #b(w)}
{w : k1#a(w) = k2#b(w)}
{an} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

3. Closure Properties.

4. Non-CFL’s:
If L ⊆ a∗ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., {anbncn : n ∈ N}

What We Have Covered: Context Free Languages

1. Examples of CFL’s

{ak1nbk2n : n ∈ N}
{w : #a(w) = #b(w)}
{w : k1#a(w) = k2#b(w)}
{an} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

3. Closure Properties.

4. Non-CFL’s:
If L ⊆ a∗ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., {anbncn : n ∈ N}

What We Have Covered: Context Free Languages

1. Examples of CFL’s

{ak1nbk2n : n ∈ N}
{w : #a(w) = #b(w)}
{w : k1#a(w) = k2#b(w)}
{an} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

3. Closure Properties.

4. Non-CFL’s:
If L ⊆ a∗ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., {anbncn : n ∈ N}

What We Have Covered: Context Free Languages

1. Examples of CFL’s

{ak1nbk2n : n ∈ N}
{w : #a(w) = #b(w)}
{w : k1#a(w) = k2#b(w)}
{an} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

3. Closure Properties.

4. Non-CFL’s:
If L ⊆ a∗ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., {anbncn : n ∈ N}

Equivalence of DFA, NFA, REGEX

1. L DFA → L REGEX: R(i , j , k) Dynamic Programming. |α| is
exp in number of states.

2. L REGEX → L NFA: induction on formation of a REGEX.

3. L NFA → L DFA: powerset construction. States blowup
exponentially.

Equivalence of DFA, NFA, REGEX

1. L DFA → L REGEX:

R(i , j , k) Dynamic Programming. |α| is
exp in number of states.

2. L REGEX → L NFA: induction on formation of a REGEX.

3. L NFA → L DFA: powerset construction. States blowup
exponentially.

Equivalence of DFA, NFA, REGEX

1. L DFA → L REGEX: R(i , j , k) Dynamic Programming. |α| is
exp in number of states.

2. L REGEX → L NFA: induction on formation of a REGEX.

3. L NFA → L DFA: powerset construction. States blowup
exponentially.

Equivalence of DFA, NFA, REGEX

1. L DFA → L REGEX: R(i , j , k) Dynamic Programming. |α| is
exp in number of states.

2. L REGEX → L NFA:

induction on formation of a REGEX.

3. L NFA → L DFA: powerset construction. States blowup
exponentially.

Equivalence of DFA, NFA, REGEX

1. L DFA → L REGEX: R(i , j , k) Dynamic Programming. |α| is
exp in number of states.

2. L REGEX → L NFA: induction on formation of a REGEX.

3. L NFA → L DFA: powerset construction. States blowup
exponentially.

Equivalence of DFA, NFA, REGEX

1. L DFA → L REGEX: R(i , j , k) Dynamic Programming. |α| is
exp in number of states.

2. L REGEX → L NFA: induction on formation of a REGEX.

3. L NFA → L DFA:

powerset construction. States blowup
exponentially.

Equivalence of DFA, NFA, REGEX

1. L DFA → L REGEX: R(i , j , k) Dynamic Programming. |α| is
exp in number of states.

2. L REGEX → L NFA: induction on formation of a REGEX.

3. L NFA → L DFA: powerset construction. States blowup
exponentially.

Closure Properties

1. Union What to use?

DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?
NFA: transitions from final to new start/final to start.
REGEX: By Def.

Closure Properties

1. Union What to use?
DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?
NFA: transitions from final to new start/final to start.
REGEX: By Def.

Closure Properties

1. Union What to use?
DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?

DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?
NFA: transitions from final to new start/final to start.
REGEX: By Def.

Closure Properties

1. Union What to use?
DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?
NFA: transitions from final to new start/final to start.
REGEX: By Def.

Closure Properties

1. Union What to use?
DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?

DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?
NFA: transitions from final to new start/final to start.
REGEX: By Def.

Closure Properties

1. Union What to use?
DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?
NFA: transitions from final to new start/final to start.
REGEX: By Def.

Closure Properties

1. Union What to use?
DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?

NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?
NFA: transitions from final to new start/final to start.
REGEX: By Def.

Closure Properties

1. Union What to use?
DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?
NFA: transitions from final to new start/final to start.
REGEX: By Def.

Closure Properties

1. Union What to use?
DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?

NFA: transitions from final to new start/final to start.
REGEX: By Def.

Closure Properties

1. Union What to use?
DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Def.

5. Star What to use?
NFA: transitions from final to new start/final to start.
REGEX: By Def.

Pumping Lemma

Pumping Lemma If L is regular then there exists n0 and n1 such
that the following holds:
For all w ∈ L, |w | ≥ n0 there exists x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | ≤ n1.

3. For all i ≥ 0, xy iz ∈ L.

Proof is picture on the next slide.

Pumping Lemma

Pumping Lemma If L is regular then there exists n0 and n1 such
that the following holds:
For all w ∈ L, |w | ≥ n0 there exists x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | ≤ n1.

3. For all i ≥ 0, xy iz ∈ L.

Proof is picture on the next slide.

Pumping Lemma

Pumping Lemma If L is regular then there exists n0 and n1 such
that the following holds:
For all w ∈ L, |w | ≥ n0 there exists x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | ≤ n1.

3. For all i ≥ 0, xy iz ∈ L.

Proof is picture on the next slide.

Pumping Lemma

Pumping Lemma If L is regular then there exists n0 and n1 such
that the following holds:
For all w ∈ L, |w | ≥ n0 there exists x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | ≤ n1.

3. For all i ≥ 0, xy iz ∈ L.

Proof is picture on the next slide.

Proof by Pictures

q0 · · · qi · · · qm
σ

x y z

σ σ

· · ·

σ

How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.
Pumping Lemma If L is reg then for large enough strings w in
L there exists x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | is short .

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.
Pumping Lemma If L is reg then for large enough strings w in
L there exists x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | is short .

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.
Pumping Lemma If L is reg then for large enough strings w in
L there exists x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | is short .

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.
Pumping Lemma If L is reg then for large enough strings w in
L there exists x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | is short .

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

L1 = {anbn : n ∈ N} is Not Regular

Assume L1 reg. by PL for long enough string anbn ∈ L1 there
exists x , y , z such that:

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = am1 , y = am2 , z = an−m1−m2bn. Note m2 ≥ 1.
Take i = 2 to get

am1am2am2an−m1−m2bn ∈ L1

an+m2bn ∈ L1

Contradiction since m2 ≥ 1.

L1 = {anbn : n ∈ N} is Not Regular

Assume L1 reg. by PL for long enough string anbn ∈ L1 there
exists x , y , z such that:

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = am1 , y = am2 , z = an−m1−m2bn. Note m2 ≥ 1.
Take i = 2 to get

am1am2am2an−m1−m2bn ∈ L1

an+m2bn ∈ L1

Contradiction since m2 ≥ 1.

L1 = {anbn : n ∈ N} is Not Regular

Assume L1 reg. by PL for long enough string anbn ∈ L1 there
exists x , y , z such that:

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = am1 , y = am2 , z = an−m1−m2bn. Note m2 ≥ 1.
Take i = 2 to get

am1am2am2an−m1−m2bn ∈ L1

an+m2bn ∈ L1

Contradiction since m2 ≥ 1.

L1 = {anbn : n ∈ N} is Not Regular

Assume L1 reg. by PL for long enough string anbn ∈ L1 there
exists x , y , z such that:

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = am1 , y = am2 , z = an−m1−m2bn. Note m2 ≥ 1.
Take i = 2 to get

am1am2am2an−m1−m2bn ∈ L1

an+m2bn ∈ L1

Contradiction since m2 ≥ 1.

L1 = {anbn : n ∈ N} is Not Regular

Assume L1 reg. by PL for long enough string anbn ∈ L1 there
exists x , y , z such that:

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.

x = am1 , y = am2 , z = an−m1−m2bn. Note m2 ≥ 1.
Take i = 2 to get

am1am2am2an−m1−m2bn ∈ L1

an+m2bn ∈ L1

Contradiction since m2 ≥ 1.

L1 = {anbn : n ∈ N} is Not Regular

Assume L1 reg. by PL for long enough string anbn ∈ L1 there
exists x , y , z such that:

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = am1 , y = am2 , z = an−m1−m2bn. Note m2 ≥ 1.

Take i = 2 to get

am1am2am2an−m1−m2bn ∈ L1

an+m2bn ∈ L1

Contradiction since m2 ≥ 1.

L1 = {anbn : n ∈ N} is Not Regular

Assume L1 reg. by PL for long enough string anbn ∈ L1 there
exists x , y , z such that:

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = am1 , y = am2 , z = an−m1−m2bn. Note m2 ≥ 1.
Take i = 2 to get

am1am2am2an−m1−m2bn ∈ L1

an+m2bn ∈ L1

Contradiction since m2 ≥ 1.

L1 = {anbn : n ∈ N} is Not Regular

Assume L1 reg. by PL for long enough string anbn ∈ L1 there
exists x , y , z such that:

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = am1 , y = am2 , z = an−m1−m2bn. Note m2 ≥ 1.
Take i = 2 to get

am1am2am2an−m1−m2bn ∈ L1

an+m2bn ∈ L1

Contradiction since m2 ≥ 1.

L1 = {anbn : n ∈ N} is Not Regular

Assume L1 reg. by PL for long enough string anbn ∈ L1 there
exists x , y , z such that:

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = am1 , y = am2 , z = an−m1−m2bn. Note m2 ≥ 1.
Take i = 2 to get

am1am2am2an−m1−m2bn ∈ L1

an+m2bn ∈ L1

Contradiction since m2 ≥ 1.

L2 = {w :]a(w) =]b(w)} is Not Regular

Proof: Same Proof as L1 not Reg : Still look at ambm.
Key Pumping Lemma says for ALL long enough w ∈ L.

L4 = {an2
: n ∈ N} is Not Regular

Proof
By Pumping Lemma for long enough an

2 ∈ L4 there exists x = an1 ,
y = an2 , z = an3 such that

an1(an2)ian3 ∈ L4

(∀i ≥ 0)[n1 + in2 + n3 is a square].

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

L4 = {an2
: n ∈ N} is Not Regular

Proof
By Pumping Lemma for long enough an

2 ∈ L4 there exists x = an1 ,
y = an2 , z = an3 such that

an1(an2)ian3 ∈ L4

(∀i ≥ 0)[n1 + in2 + n3 is a square].

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

L4 = {an2
: n ∈ N} is Not Regular

Proof
By Pumping Lemma for long enough an

2 ∈ L4 there exists x = an1 ,
y = an2 , z = an3 such that

an1(an2)ian3 ∈ L4

(∀i ≥ 0)[n1 + in2 + n3 is a square].

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

L4 = {an2
: n ∈ N} is Not Regular

Proof
By Pumping Lemma for long enough an

2 ∈ L4 there exists x = an1 ,
y = an2 , z = an3 such that

an1(an2)ian3 ∈ L4

(∀i ≥ 0)[n1 + in2 + n3 is a square].

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

L4 = {an2
: n ∈ N} is Not Regular

Proof
By Pumping Lemma for long enough an

2 ∈ L4 there exists x = an1 ,
y = an2 , z = an3 such that

an1(an2)ian3 ∈ L4

(∀i ≥ 0)[n1 + in2 + n3 is a square].

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

L4 = {an2
: n ∈ N} is Not Regular

Proof
By Pumping Lemma for long enough an

2 ∈ L4 there exists x = an1 ,
y = an2 , z = an3 such that

an1(an2)ian3 ∈ L4

(∀i ≥ 0)[n1 + in2 + n3 is a square].

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

L4 = {an2
: n ∈ N} is Not Regular (cont)

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

(n1 + n3) + in2 ≥ x2 + 2ix + i2

(n1 + n3) + in2 ≥ i2

(n1 + n3)

i
+ n2 ≥ i

As i increases the LHS decreases and the RHS goes to infinity, so
this cannot hold for all i .

L4 = {an2
: n ∈ N} is Not Regular (cont)

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

(n1 + n3) + in2 ≥ x2 + 2ix + i2

(n1 + n3) + in2 ≥ i2

(n1 + n3)

i
+ n2 ≥ i

As i increases the LHS decreases and the RHS goes to infinity, so
this cannot hold for all i .

L4 = {an2
: n ∈ N} is Not Regular (cont)

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

(n1 + n3) + in2 ≥ x2 + 2ix + i2

(n1 + n3) + in2 ≥ i2

(n1 + n3)

i
+ n2 ≥ i

As i increases the LHS decreases and the RHS goes to infinity, so
this cannot hold for all i .

L4 = {an2
: n ∈ N} is Not Regular (cont)

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

(n1 + n3) + in2 ≥ x2 + 2ix + i2

(n1 + n3) + in2 ≥ i2

(n1 + n3)

i
+ n2 ≥ i

As i increases the LHS decreases and the RHS goes to infinity, so
this cannot hold for all i .

L4 = {an2
: n ∈ N} is Not Regular (cont)

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

(n1 + n3) + in2 ≥ x2 + 2ix + i2

(n1 + n3) + in2 ≥ i2

(n1 + n3)

i
+ n2 ≥ i

As i increases the LHS decreases and the RHS goes to infinity, so
this cannot hold for all i .

L4 = {an2
: n ∈ N} is Not Regular (cont)

(n1 + n3) = x2

(n1 + n3) + n2 ≥ (x + 1)2

(n1 + n3) + 2n2 ≥ (x + 2)2

(n1 + n3) + in2 ≥ x2 + 2ix + i2

(n1 + n3) + in2 ≥ i2

(n1 + n3)

i
+ n2 ≥ i

As i increases the LHS decreases and the RHS goes to infinity, so
this cannot hold for all i .

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular

Problematic Neither pumping on the left or on the right works.
(I give proof that uses i = 0 case. Students came up with two
other proofs. (1) Use closure of REG under PREFIX, (2) Carefully
pump in the middle-not safe for work.

So what to do? Let’s go back to the pumping lemma with a
carefully chosen string.

w = anbn−1cn.

x = an1 , y = an2 , z = an−n1−n2bn−1cn.

For all i ≥ 0, xy iz ∈ L8.

xy iz = an1+in2+(n−n1−n2)bn−1cn

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular

Problematic Neither pumping on the left or on the right works.
(I give proof that uses i = 0 case. Students came up with two
other proofs. (1) Use closure of REG under PREFIX, (2) Carefully
pump in the middle-not safe for work.
So what to do? Let’s go back to the pumping lemma with a
carefully chosen string.

w = anbn−1cn.

x = an1 , y = an2 , z = an−n1−n2bn−1cn.

For all i ≥ 0, xy iz ∈ L8.

xy iz = an1+in2+(n−n1−n2)bn−1cn

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular

Problematic Neither pumping on the left or on the right works.
(I give proof that uses i = 0 case. Students came up with two
other proofs. (1) Use closure of REG under PREFIX, (2) Carefully
pump in the middle-not safe for work.
So what to do? Let’s go back to the pumping lemma with a
carefully chosen string.

w = anbn−1cn.

x = an1 , y = an2 , z = an−n1−n2bn−1cn.

For all i ≥ 0, xy iz ∈ L8.

xy iz = an1+in2+(n−n1−n2)bn−1cn

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular

Problematic Neither pumping on the left or on the right works.
(I give proof that uses i = 0 case. Students came up with two
other proofs. (1) Use closure of REG under PREFIX, (2) Carefully
pump in the middle-not safe for work.
So what to do? Let’s go back to the pumping lemma with a
carefully chosen string.

w = anbn−1cn.

x = an1 , y = an2 , z = an−n1−n2bn−1cn.

For all i ≥ 0, xy iz ∈ L8.

xy iz = an1+in2+(n−n1−n2)bn−1cn

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular

Problematic Neither pumping on the left or on the right works.
(I give proof that uses i = 0 case. Students came up with two
other proofs. (1) Use closure of REG under PREFIX, (2) Carefully
pump in the middle-not safe for work.
So what to do? Let’s go back to the pumping lemma with a
carefully chosen string.

w = anbn−1cn.

x = an1 , y = an2 , z = an−n1−n2bn−1cn.

For all i ≥ 0, xy iz ∈ L8.

xy iz = an1+in2+(n−n1−n2)bn−1cn

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular

Problematic Neither pumping on the left or on the right works.
(I give proof that uses i = 0 case. Students came up with two
other proofs. (1) Use closure of REG under PREFIX, (2) Carefully
pump in the middle-not safe for work.
So what to do? Let’s go back to the pumping lemma with a
carefully chosen string.

w = anbn−1cn.

x = an1 , y = an2 , z = an−n1−n2bn−1cn.

For all i ≥ 0, xy iz ∈ L8.

xy iz = an1+in2+(n−n1−n2)bn−1cn

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = an1+in2+(n−n1−n2)bn−1cn

For all i xy iz = an1+in2+(n−n1−n2)bn−1cn ∈ L8.

Key We are used to thinking of i large. But we can also take
i = 0, cut out that part of the word. We take i = 0 to get

xy0z = an−n2bn−1cn

Since n2 ≥ 1, we have that]a(xy0z) < n ≤ n − 1 =]b(xy0z).
Hence xy0z /∈ L8.
(There were two other proofs by students: One used that REG
closed under PREFIX, and one managed to pump in the middle.)

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = an1+in2+(n−n1−n2)bn−1cn

For all i xy iz = an1+in2+(n−n1−n2)bn−1cn ∈ L8.

Key We are used to thinking of i large. But we can also take
i = 0, cut out that part of the word. We take i = 0 to get

xy0z = an−n2bn−1cn

Since n2 ≥ 1, we have that]a(xy0z) < n ≤ n − 1 =]b(xy0z).
Hence xy0z /∈ L8.
(There were two other proofs by students: One used that REG
closed under PREFIX, and one managed to pump in the middle.)

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = an1+in2+(n−n1−n2)bn−1cn

For all i xy iz = an1+in2+(n−n1−n2)bn−1cn ∈ L8.

Key We are used to thinking of i large. But we can also take
i = 0, cut out that part of the word. We take i = 0 to get

xy0z = an−n2bn−1cn

Since n2 ≥ 1, we have that]a(xy0z) < n ≤ n − 1 =]b(xy0z).
Hence xy0z /∈ L8.
(There were two other proofs by students: One used that REG
closed under PREFIX, and one managed to pump in the middle.)

L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = an1+in2+(n−n1−n2)bn−1cn

For all i xy iz = an1+in2+(n−n1−n2)bn−1cn ∈ L8.

Key We are used to thinking of i large. But we can also take
i = 0, cut out that part of the word. We take i = 0 to get

xy0z = an−n2bn−1cn

Since n2 ≥ 1, we have that]a(xy0z) < n ≤ n − 1 =]b(xy0z).
Hence xy0z /∈ L8.
(There were two other proofs by students: One used that REG
closed under PREFIX, and one managed to pump in the middle.)

i = 0 Case as a Picture

q0 q1 · · · qi · · · qm
σ σ σ

· · ·

σ σ

q0 q1 · · · qi · · · qm
σ σ σ σ σ

Answer to SUBSEQ Problem: CFL

If L is CFL than SUBSEQ(L) is CFL.

YES.
Let M be a CFL for L in Chomsky Normal Form.

We form a CFL SUBSEQ(L).

For every rule A→ σ we add A→ ε.

Answer to SUBSEQ Problem: CFL

If L is CFL than SUBSEQ(L) is CFL. YES.

Let M be a CFL for L in Chomsky Normal Form.

We form a CFL SUBSEQ(L).

For every rule A→ σ we add A→ ε.

Answer to SUBSEQ Problem: CFL

If L is CFL than SUBSEQ(L) is CFL. YES.
Let M be a CFL for L in Chomsky Normal Form.

We form a CFL SUBSEQ(L).

For every rule A→ σ we add A→ ε.

Context Free Languages

Definition
A Context Free Grammar (CFL) is (V ,Σ,P, S)

I V is set of nonterminals

I Σ is the alphabet , also called terminals

I P ⊆ V × (V ∪ Σ)∗ are the productions or rules

I S ∈ V is the start symbol.

L(G) is the set of strings generated by CFL G .
A Context Free Lang (CFL) is a lang that is L(G) for some CFL
G .

A CFL is in Chomsky Normal Form CNF) if all of he
productions are either of the form
A→ BC
A→ σ where σ ∈ Σ
A→ e (I didn’t include it in class, but I am now.)
Note: If G is a CFL hen there exists a CNF CFL that generates it.

Context Free Languages

Definition
A Context Free Grammar (CFL) is (V ,Σ,P, S)

I V is set of nonterminals

I Σ is the alphabet , also called terminals

I P ⊆ V × (V ∪ Σ)∗ are the productions or rules

I S ∈ V is the start symbol.

L(G) is the set of strings generated by CFL G .
A Context Free Lang (CFL) is a lang that is L(G) for some CFL
G .

A CFL is in Chomsky Normal Form CNF) if all of he
productions are either of the form
A→ BC
A→ σ where σ ∈ Σ
A→ e (I didn’t include it in class, but I am now.)
Note: If G is a CFL hen there exists a CNF CFL that generates it.

Context Free Languages

Definition
A Context Free Grammar (CFL) is (V ,Σ,P, S)

I V is set of nonterminals

I Σ is the alphabet , also called terminals

I P ⊆ V × (V ∪ Σ)∗ are the productions or rules

I S ∈ V is the start symbol.

L(G) is the set of strings generated by CFL G .
A Context Free Lang (CFL) is a lang that is L(G) for some CFL
G .

A CFL is in Chomsky Normal Form CNF) if all of he
productions are either of the form
A→ BC
A→ σ where σ ∈ Σ
A→ e (I didn’t include it in class, but I am now.)
Note: If G is a CFL hen there exists a CNF CFL that generates it.

Examples of CFL’s that are NOT Regular

{anbn : n ∈ N}
S → aSb|e

{w : #a(w) = #b(w)}
S → aSbS
S → bSaS
S → SS
S → e
To prove it works requires a proof by induction
Not to worry, I will ASSUME you could do such a proof and hence
WILL NOT make you.

Examples of CFL’s that are NOT Regular

{anbn : n ∈ N}
S → aSb|e

{w : #a(w) = #b(w)}
S → aSbS
S → bSaS
S → SS
S → e
To prove it works requires a proof by induction

Not to worry, I will ASSUME you could do such a proof and hence
WILL NOT make you.

Examples of CFL’s that are NOT Regular

{anbn : n ∈ N}
S → aSb|e

{w : #a(w) = #b(w)}
S → aSbS
S → bSaS
S → SS
S → e
To prove it works requires a proof by induction
Not to worry, I will ASSUME you could do such a proof and hence
WILL NOT make you.

Examples of Langs with Small CFL’s, Large NFA’s

L = {an}
I NFA requires ≥ n − 2 states. Lets prove it

If M is an NFA with ≤ n − 2 states then find a path from the
start state to the final state. Let am be the shortest string
that take you from the start state to the final state. Since the
number of states is ≤ n − 2, m ≤ n − 2. So we have am

accepted when it should not be. Contradiction.

I There is a CNF CFL with ≤ 2 log2 n rules.
For n = 2n VERY EASY. If not then have to write n as a sum
of powers of 2. Example on next slide.

Examples of Langs with Small CFL’s, Large NFA’s

L = {an}
I NFA requires ≥ n − 2 states. Lets prove it

If M is an NFA with ≤ n − 2 states then find a path from the
start state to the final state. Let am be the shortest string
that take you from the start state to the final state. Since the
number of states is ≤ n − 2, m ≤ n − 2. So we have am

accepted when it should not be. Contradiction.

I There is a CNF CFL with ≤ 2 log2 n rules.
For n = 2n VERY EASY. If not then have to write n as a sum
of powers of 2. Example on next slide.

CNF CFG for {a10}

10 = 23 + 21

S → XY We make X ⇒ a8 and Y ⇒ a2.
X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a
Y → Y1Y1

Y1 → a
Can shorten a bit: We need Y ⇒ aa, so can just use X2.
S → XX2

X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a

CNF CFG for {a10}

10 = 23 + 21

S → XY

We make X ⇒ a8 and Y ⇒ a2.
X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a
Y → Y1Y1

Y1 → a
Can shorten a bit: We need Y ⇒ aa, so can just use X2.
S → XX2

X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a

CNF CFG for {a10}

10 = 23 + 21

S → XY We make X ⇒ a8 and Y ⇒ a2.

X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a
Y → Y1Y1

Y1 → a
Can shorten a bit: We need Y ⇒ aa, so can just use X2.
S → XX2

X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a

CNF CFG for {a10}

10 = 23 + 21

S → XY We make X ⇒ a8 and Y ⇒ a2.
X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a
Y → Y1Y1

Y1 → a

Can shorten a bit: We need Y ⇒ aa, so can just use X2.
S → XX2

X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a

CNF CFG for {a10}

10 = 23 + 21

S → XY We make X ⇒ a8 and Y ⇒ a2.
X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a
Y → Y1Y1

Y1 → a
Can shorten a bit: We need Y ⇒ aa, so can just use X2.

S → XX2

X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a

CNF CFG for {a10}

10 = 23 + 21

S → XY We make X ⇒ a8 and Y ⇒ a2.
X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a
Y → Y1Y1

Y1 → a
Can shorten a bit: We need Y ⇒ aa, so can just use X2.
S → XX2

X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a

