BILL AND NATHAN RECORD LECTURE!!!!

BILL AND NATHAN RECORD LECTURE!!!

Proving a Lang is Not Regular

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.
$M(e)=q_{0} .(M(x)=q$ means M ran on x ends in state q.

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.
$M(e)=q_{0} .(M(x)=q$ means M ran on x ends in state q. $)$
$M(a)=q_{1}$.

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.
$M(e)=q_{0} .(M(x)=q$ means M ran on x ends in state q. $)$
$M(a)=q_{1}$.

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.
$M(e)=q_{0} .(M(x)=q$ means M ran on x ends in state q.
$M(a)=q_{1}$.
$M\left(a^{m}\right)=q_{m}$.

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.
$M(e)=q_{0} .(M(x)=q$ means M ran on x ends in state q. $)$
$M(a)=q_{1}$.
$M\left(a^{m}\right)=q_{m}$.
There exists $0 \leq i<j \leq m$ such that $q_{i}=q_{j}=q$. $M\left(a^{i}\right)=M\left(a^{j}\right)$, so

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.
$M(e)=q_{0} .(M(x)=q$ means M ran on x ends in state q. $)$
$M(a)=q_{1}$.
$M\left(a^{m}\right)=q_{m}$.
There exists $0 \leq i<j \leq m$ such that $q_{i}=q_{j}=q$. $M\left(a^{i}\right)=M\left(a^{j}\right)$, so

$$
M\left(a^{i} \cdot a^{m-i} b^{m}\right)=M\left(a^{j} \cdot a^{m-i} b^{m}\right)
$$

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.
$M(e)=q_{0} .(M(x)=q$ means M ran on x ends in state q.
$M(a)=q_{1}$.
$M\left(a^{m}\right)=q_{m}$.
There exists $0 \leq i<j \leq m$ such that $q_{i}=q_{j}=q$. $M\left(a^{i}\right)=M\left(a^{j}\right)$, so

$$
M\left(a^{i} \cdot a^{m-i} b^{m}\right)=M\left(a^{j} \cdot a^{m-i} b^{m}\right)
$$

But
$a^{i} \cdot a^{m-i} b^{m}=a^{m} b^{m} \in L_{1}$, so $M\left(a^{i} \cdot a^{m-i} b^{m}\right)=q \in F$.

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.
$M(e)=q_{0} .(M(x)=q$ means M ran on x ends in state q. $)$
$M(a)=q_{1}$.
$M\left(a^{m}\right)=q_{m}$.
There exists $0 \leq i<j \leq m$ such that $q_{i}=q_{j}=q$. $M\left(a^{i}\right)=M\left(a^{j}\right)$, so

$$
M\left(a^{i} \cdot a^{m-i} b^{m}\right)=M\left(a^{j} \cdot a^{m-i} b^{m}\right)
$$

But
$a^{i} \cdot a^{m-i} b^{m}=a^{m} b^{m} \in L_{1}$, so $M\left(a^{i} \cdot a^{m-i} b^{m}\right)=q \in F$.
$a^{j} \cdot a^{m-i} b^{m}=a^{m+j-i} b^{m} \notin L_{1}$, so $M\left(a^{j} \cdot a^{m-i} b^{m}\right)=q \notin F$.

$L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg via DFA M with m states.
Run M on $a^{m} b^{m}$ which is $2 m$ long.
$M(e)=q_{0} .(M(x)=q$ means M ran on x ends in state q. $)$
$M(a)=q_{1}$.
$M\left(a^{m}\right)=q_{m}$.
There exists $0 \leq i<j \leq m$ such that $q_{i}=q_{j}=q$. $M\left(a^{i}\right)=M\left(a^{j}\right)$, so

$$
M\left(a^{i} \cdot a^{m-i} b^{m}\right)=M\left(a^{j} \cdot a^{m-i} b^{m}\right)
$$

But
$a^{i} \cdot a^{m-i} b^{m}=a^{m} b^{m} \in L_{1}$, so $M\left(a^{i} \cdot a^{m-i} b^{m}\right)=q \in F$.
$a^{j} \cdot a^{m-i} b^{m}=a^{m+j-i} b^{m} \notin L_{1}$, so $M\left(a^{j} \cdot a^{m-i} b^{m}\right)=q \notin F$.
Contradiction.

Picture of What is Going On

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is Not Regular

Same Proof as L_{1} not reg: Still look at $a^{m} b^{m}$.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is Not Regular

Same Proof as L_{1} not reg: Still look at $a^{m} b^{m}$.
The reason

$$
a^{m+j-i} b^{m} \notin L_{1}
$$

was that

$$
\#_{a}\left(a^{m+j-i} b^{m}\right) \neq \#_{b}\left(a^{m+j-i} b^{m}\right)
$$

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is Not Regular

Same Proof as L_{1} not reg: Still look at $a^{m} b^{m}$.
The reason

$$
a^{m+j-i} b^{m} \notin L_{1} .
$$

was that

$$
\#_{a}\left(a^{m+j-i} b^{m}\right) \neq \#_{b}\left(a^{m+j-i} b^{m}\right)
$$

So we have

$$
\#_{a}\left(a^{m+j-i} b^{m}\right) \neq \#_{b}\left(a^{m+j-i} b^{m}\right) \Longrightarrow a^{m+j-i} b^{m} \notin L_{2} .
$$

Pumping Lemma

[^0]
We Need a General Technique

We proved L_{1} and L_{2} not regular in a clunky way. We will prove a lemma that can be used for those and others.

We Need a General Technique

We proved L_{1} and L_{2} not regular in a clunky way. We will prove a lemma that can be used for those and others.
Pumping Lemma If L is regular then there exists n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exists x, y, z such that:

We Need a General Technique

We proved L_{1} and L_{2} not regular in a clunky way. We will prove a lemma that can be used for those and others.
Pumping Lemma If L is regular then there exists n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exists x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

We Need a General Technique

We proved L_{1} and L_{2} not regular in a clunky way. We will prove a lemma that can be used for those and others.
Pumping Lemma If L is regular then there exists n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exists x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y| \leq n_{1}$.

We Need a General Technique

We proved L_{1} and L_{2} not regular in a clunky way. We will prove a lemma that can be used for those and others.
Pumping Lemma If L is regular then there exists n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exists x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y| \leq n_{1}$.
3. For all $i \geq 0, x y^{i} z \in L$.

Proof is picture on the next slide.

Proof by Pictures

How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.
Pumping Lemma If L is reg then for large enough strings \mathbf{w} in L there exists x, y, z such that:

How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.
Pumping Lemma If L is reg then for large enough strings \mathbf{w} in L there exists x, y, z such that:

1. $w=x y z$ and $y \neq e$.

How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.
Pumping Lemma If L is reg then for large enough strings \mathbf{w} in L there exists x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.

How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.
Pumping Lemma If L is reg then for large enough strings \mathbf{w} in L there exists x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.
3. for all $i, x y^{i} z \in L$.

We then find some i such that $x y^{i} z \notin L$ for the contradiction.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg. by PL for long enough string $a^{n} b^{n} \in L_{1}$ there exists x, y, z such that:

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg. by PL for long enough string $a^{n} b^{n} \in L_{1}$ there exists x, y, z such that:

1. $y \neq e$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg. by PL for long enough string $a^{n} b^{n} \in L_{1}$ there exists x, y, z such that:

1. $y \neq e$.
2. $|x y|$ is short.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg. by PL for long enough string $a^{n} b^{n} \in L_{1}$ there exists x, y, z such that:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg. by PL for long enough string $a^{n} b^{n} \in L_{1}$ there exists x, y, z such that:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg. by PL for long enough string $a^{n} b^{n} \in L_{1}$ there exists x, y, z such that:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{m_{1}}, y=a^{m_{2}}, z=a^{n-m_{1}-m_{2}} b^{n}$. Note $m_{2} \geq 1$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg. by PL for long enough string $a^{n} b^{n} \in L_{1}$ there exists x, y, z such that:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's. $x=a^{m_{1}}, y=a^{m_{2}}, z=a^{n-m_{1}-m_{2}} b^{n}$. Note $m_{2} \geq 1$.
Take $i=2$ to get

$$
\begin{gathered}
a^{m_{1}} a^{m_{2}} a^{m_{2}} a^{n-m_{1}-m_{2}} b^{n} \in L_{1} \\
a^{n+m_{2}} b^{n} \in L_{1}
\end{gathered}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} reg. by PL for long enough string $a^{n} b^{n} \in L_{1}$ there exists x, y, z such that:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{m_{1}}, y=a^{m_{2}}, z=a^{n-m_{1}-m_{2}} b^{n}$. Note $m_{2} \geq 1$.
Take $i=2$ to get

$$
\begin{gathered}
a^{m_{1}} a^{m_{2}} a^{m_{2}} a^{n-m_{1}-m_{2}} b^{n} \in L_{1} \\
a^{n+m_{2}} b^{n} \in L_{1}
\end{gathered}
$$

Contradiction since $m_{2} \geq 1$.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is Not Regular

Proof: Same Proof as L_{1} not Reg: Still look at $a^{m} b^{m}$. Key Pumping Lemma says for ALL long enough $w \in L$.

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

Go To Breakout Rooms To Work on it in Groups

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

Go To Breakout Rooms To Work on it in Groups
Pumping Lemma Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a 's EQUAL the number of b 's.

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

Go To Breakout Rooms To Work on it in Groups
Pumping Lemma Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a's EQUAL the number of b 's.
So what do to?

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

Go To Breakout Rooms To Work on it in Groups
Pumping Lemma Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a's EQUAL the number of b 's.
So what do to?
If L_{3} is regular then $\overline{L_{3}}=L_{2}$ is regular. But we know that L_{2} is not regular. DONE!

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Proof

By Pumping Lemma for long enough $a^{n^{2}} \in L_{4}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that

$$
a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{4}
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Proof

By Pumping Lemma for long enough $a^{n^{2}} \in L_{4}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that

$$
a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{4}
$$

$(\forall i \geq 0)\left[n_{1}+i n_{2}+n_{3}\right.$ is a square $]$.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Proof

By Pumping Lemma for long enough $a^{n^{2}} \in L_{4}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that

$$
a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{4}
$$

$(\forall i \geq 0)\left[n_{1}+i n_{2}+n_{3}\right.$ is a square $]$.

$$
\left(n_{1}+n_{3}\right)=x^{2}
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Proof

By Pumping Lemma for long enough $a^{n^{2}} \in L_{4}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that

$$
a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{4}
$$

$(\forall i \geq 0)\left[n_{1}+i n_{2}+n_{3}\right.$ is a square $]$.

$$
\left(n_{1}+n_{3}\right)=x^{2}
$$

$$
\left(n_{1}+n_{3}\right)+n_{2} \geq(x+1)^{2}
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Proof

By Pumping Lemma for long enough $a^{n^{2}} \in L_{4}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that

$$
a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{4}
$$

$(\forall i \geq 0)\left[n_{1}+i n_{2}+n_{3}\right.$ is a square $]$.

$$
\left(n_{1}+n_{3}\right)=x^{2}
$$

$$
\left(n_{1}+n_{3}\right)+n_{2} \geq(x+1)^{2}
$$

$$
\left(n_{1}+n_{3}\right)+2 n_{2} \geq(x+2)^{2}
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

$$
\left(n_{1}+n_{3}\right)=x^{2}
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

$$
\left(n_{1}+n_{3}\right)=x^{2}
$$

$$
\left(n_{1}+n_{3}\right)+n_{2} \geq(x+1)^{2}
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

$$
\left(n_{1}+n_{3}\right)=x^{2}
$$

$$
\begin{aligned}
& \left(n_{1}+n_{3}\right)+n_{2} \geq(x+1)^{2} \\
& \left(n_{1}+n_{3}\right)+2 n_{2} \geq(x+2)^{2}
\end{aligned}
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

$$
\left(n_{1}+n_{3}\right)=x^{2}
$$

$$
\begin{aligned}
& \left(n_{1}+n_{3}\right)+n_{2} \geq(x+1)^{2} \\
& \left(n_{1}+n_{3}\right)+2 n_{2} \geq(x+2)^{2}
\end{aligned}
$$

$$
\left(n_{1}+n_{3}\right)+i n_{2} \geq x^{2}+2 i x+i^{2}
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

$$
\begin{gathered}
\left(n_{1}+n_{3}\right)=x^{2} \\
\left(n_{1}+n_{3}\right)+n_{2} \geq(x+1)^{2} \\
\left(n_{1}+n_{3}\right)+2 n_{2} \geq(x+2)^{2} \\
\left(n_{1}+n_{3}\right)+i n_{2} \geq x^{2}+2 i x+i^{2} \\
\left(n_{1}+n_{3}\right)+i n_{2} \geq i^{2}
\end{gathered}
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

$$
\begin{gathered}
\left(n_{1}+n_{3}\right)=x^{2} \\
\left(n_{1}+n_{3}\right)+n_{2} \geq(x+1)^{2} \\
\left(n_{1}+n_{3}\right)+2 n_{2} \geq(x+2)^{2} \\
\left(n_{1}+n_{3}\right)+i n_{2} \geq x^{2}+2 i x+i^{2} \\
\left(n_{1}+n_{3}\right)+i n_{2} \geq i^{2} \\
\frac{\left(n_{1}+n_{3}\right)}{i}+n_{2} \geq i
\end{gathered}
$$

As i increases the LHS decreases and the RHS goes to infinity, so this cannot hold for all i.
$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular goto breakout rooms

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

GOTO BREAKOUT ROOMS

By Pumping Lemma for long enough $a^{p} \in L_{5}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that $a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{5}$.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

GOTO BREAKOUT ROOMS

By Pumping Lemma for long enough $a^{p} \in L_{5}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that $a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{5}$.

$$
(\forall i \geq 0)\left[\left(n_{1}+n_{3}\right)+i n_{2} \text { is a prime }\right] .
$$

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

GOTO BREAKOUT ROOMS

By Pumping Lemma for long enough $a^{p} \in L_{5}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that $a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{5}$.

$$
(\forall i \geq 0)\left[\left(n_{1}+n_{3}\right)+i n_{2} \text { is a prime }\right] .
$$

Take $i=n_{1}+n_{2}+n_{3}+1$.

$$
\left(n_{1}+n_{3}\right)+\left(n_{1}+n_{2}+n_{3}+1\right) n_{2} \text { is a prime. }
$$

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

GOTO BREAKOUT ROOMS

By Pumping Lemma for long enough $a^{p} \in L_{5}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that $a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{5}$.

$$
(\forall i \geq 0)\left[\left(n_{1}+n_{3}\right)+i n_{2} \text { is a prime }\right] .
$$

Take $i=n_{1}+n_{2}+n_{3}+1$.

$$
\begin{aligned}
& \left(n_{1}+n_{3}\right)+\left(n_{1}+n_{2}+n_{3}+1\right) n_{2} \text { is a prime. } \\
& \left(n_{1}+n_{3}\right)+n_{1} n_{2}+n_{2} n_{2}+n_{3} n_{2}+n_{2} \text { is a prime. }
\end{aligned}
$$

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

GOTO BREAKOUT ROOMS

By Pumping Lemma for long enough $a^{p} \in L_{5}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that $a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{5}$.

$$
(\forall i \geq 0)\left[\left(n_{1}+n_{3}\right)+i n_{2} \text { is a prime }\right] .
$$

Take $i=n_{1}+n_{2}+n_{3}+1$.

$$
\begin{aligned}
& \left(n_{1}+n_{3}\right)+\left(n_{1}+n_{2}+n_{3}+1\right) n_{2} \text { is a prime. } \\
& \left(n_{1}+n_{3}\right)+n_{1} n_{2}+n_{2} n_{2}+n_{3} n_{2}+n_{2} \text { is a prime. } \\
& \left(n_{1}+n_{2}+n_{3}\right)+n_{1} n_{2}+n_{2} n_{2}+n_{3} n_{2} \text { is a prime. }
\end{aligned}
$$

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

GOTO BREAKOUT ROOMS

By Pumping Lemma for long enough $a^{p} \in L_{5}$ there exists $x=a^{n_{1}}$, $y=a^{n_{2}}, z=a^{n_{3}}$ such that $a^{n_{1}}\left(a^{n_{2}}\right)^{i} a^{n_{3}} \in L_{5}$.

$$
(\forall i \geq 0)\left[\left(n_{1}+n_{3}\right)+i n_{2} \text { is a prime }\right] .
$$

Take $i=n_{1}+n_{2}+n_{3}+1$.

$$
\begin{aligned}
& \left(n_{1}+n_{3}\right)+\left(n_{1}+n_{2}+n_{3}+1\right) n_{2} \text { is a prime. } \\
& \left(n_{1}+n_{3}\right)+n_{1} n_{2}+n_{2} n_{2}+n_{3} n_{2}+n_{2} \text { is a prime. } \\
& \left(n_{1}+n_{2}+n_{3}\right)+n_{1} n_{2}+n_{2} n_{2}+n_{3} n_{2} \text { is a prime. } \\
& \quad\left(n_{1}+n_{2}+n_{3}\right)\left(1+n_{2}\right) \text { is a prime. }
\end{aligned}
$$

$L_{6}=\left\{\#_{a}(w)>\#_{b}(w)\right\}$ is Not Regular

We will be brief here.

$L_{6}=\left\{\#_{a}(w)>\#_{b}(w)\right\}$ is Not Regular

We will be brief here.
Take $w=b^{n} a^{n+1}$, long enough so the y-part is in the b^{\prime} s.

$L_{6}=\left\{\#_{a}(w)>\#_{b}(w)\right\}$ is Not Regular

We will be brief here.
Take $w=b^{n} a^{n+1}$, long enough so the y-part is in the b^{\prime} s. Pump the y to get more b 's than a's.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

BREAKOUT ROOMS

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Can take w long and pump a's, but that won't get out of the language.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Can take w long and pump a's, but that won't get out of the language.
So what to do? Revise Pumping Lemma

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Can take w long and pump a's, but that won't get out of the language.
So what to do? Revise Pumping Lemma
Pumping Lemma had a bound on $|x y|$.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Can take w long and pump a's, but that won't get out of the language.
So what to do? Revise Pumping Lemma
Pumping Lemma had a bound on $|x y|$.
Can also bound $|y z|$ by same proof.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Can take w long and pump a's, but that won't get out of the language.
So what to do? Revise Pumping Lemma
Pumping Lemma had a bound on $|x y|$.
Can also bound $|y z|$ by same proof.
Do that and then you can get y to be all b's, pump b's, and get out of the language.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

BREAKOUT ROOMS

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.
$w=a^{n} b^{n-1} c^{n}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$$
\begin{aligned}
& w=a^{n} b^{n-1} c^{n} . \\
& x=a^{n_{1}}, y=a^{n_{2}}, z=a^{n-n_{1}-n_{2}} b^{n-1} c^{n} .
\end{aligned}
$$

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{n_{1}}, y=a^{n_{2}}, z=a^{n-n_{1}-n_{2}} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{n_{1}}, y=a^{n_{2}}, z=a^{n-n_{1}-n_{2}} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8}$.

$$
x y^{i} z=a^{n_{1}+i n_{2}+\left(n-n_{1}-n_{2}\right)} b^{n-1} c^{n}
$$

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{n_{1}+i n_{2}+\left(n-n_{1}-n_{2}\right)} b^{n-1} c^{n}
$$

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{n_{1}+i n_{2}+\left(n-n_{1}-n_{2}\right)} b^{n-1} c^{n}
$$

For all $i x y^{i} z=a^{n_{1}+i n_{2}+\left(n-n_{1}-n_{2}\right)} b^{n-1} c^{n} \in L_{8}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{n_{1}+i n_{2}+\left(n-n_{1}-n_{2}\right)} b^{n-1} c^{n}
$$

For all $i x y^{i} z=a^{n_{1}+i n_{2}+\left(n-n_{1}-n_{2}\right)} b^{n-1} c^{n} \in L_{8}$.
Key We are used to thinking of i large. But we can also take $i=0$, cut out that part of the word. We take $i=0$ to get

$$
x y^{0} z=a^{n-n_{2}} b^{n-1} c^{n}
$$

Since $n_{2} \geq 1$, we have that $\#_{a}\left(x y^{0} z\right)<n \leq n-1=\#_{b}\left(x y^{0} z\right)$. Hence $x y^{0} z \notin L_{8}$.

$i=0$ Case as a Picture

[^0]: 4ロ〉4司〉4 三〉

