BILL AND NATHAN RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

BILL AND NATHAN RECORD LECTURE!!!

Proving a Lang is Not Regular

Assume L_1 reg via DFA M with m states.

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long.

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long. $M(e) = q_0$. (M(x) = q means M ran on x ends in state q.)

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long. $M(e) = q_0$. (M(x) = q means M ran on x ends in state q.) $M(a) = q_1$.

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long. $M(e) = q_0$. (M(x) = q means M ran on x ends in state q.) $M(a) = q_1$.

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long. $M(e) = q_0$. (M(x) = q means M ran on x ends in state q.) $M(a) = q_1$.

ション ふゆ アメリア メリア しょうくしゃ

 $M(a^m) = q_m.$

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long. $M(e) = q_0$. (M(x) = q means M ran on x ends in state q.) $M(a) = q_1$. \vdots $M(a^m) = q_m$.

ション ふゆ アメリア メリア しょうくしゃ

There exists $0 \le i < j \le m$ such that $q_i = q_j = q$. $M(a^i) = M(a^j)$, so

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long. $M(e) = q_0$. (M(x) = q means M ran on x ends in state q.) $M(a) = q_1$. \vdots

 $M(a^m) = q_m.$ There exists $0 \le i < j \le m$ such that $q_i = q_j = q.$ $M(a^i) = M(a^j)$, so

$$M(a^{i} \cdot a^{m-i}b^{m}) = M(a^{j} \cdot a^{m-i}b^{m})$$

ション ふゆ アメリア メリア しょうくしゃ

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long. $M(e) = q_0$. (M(x) = q means M ran on x ends in state q.) $M(a) = q_1$. \vdots $M(a^m) = q_m$. There exists $0 \le i < j \le m$ such that $q_i = q_j = q$.

 $M(a^i) = M(a^j)$, so

$$M(a^i \cdot a^{m-i}b^m) = M(a^j \cdot a^{m-i}b^m)$$

But $a^i \cdot a^{m-i}b^m = a^m b^m \in L_1$, so $M(a^i \cdot a^{m-i}b^m) = q \in F$.

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long. $M(e) = q_0$. (M(x) = q means M ran on x ends in state q.) $M(a) = q_1$. \vdots $M(a^m) = q_m$. There exists $0 \le i < j \le m$ such that $q_i = q_j = q$. $M(a^i) = M(a^j)$, so

$$M(a^i \cdot a^{m-i}b^m) = M(a^j \cdot a^{m-i}b^m)$$

But

$$a^i \cdot a^{m-i}b^m = a^m b^m \in L_1$$
, so $M(a^i \cdot a^{m-i}b^m) = q \in F$.
 $a^j \cdot a^{m-i}b^m = a^{m+j-i}b^m \notin L_1$, so $M(a^j \cdot a^{m-i}b^m) = q \notin F$.

Assume L_1 reg via DFA M with m states. Run M on $a^m b^m$ which is 2m long. $M(e) = q_0$. (M(x) = q means M ran on x ends in state q.) $M(a) = q_1$. \vdots $M(a^m) = q_m$. There exists $0 \le i < j \le m$ such that $q_i = q_j = q$. $M(a^i) = M(a^j)$, so

$$M(a^i \cdot a^{m-i}b^m) = M(a^j \cdot a^{m-i}b^m)$$

But

 $a^i \cdot a^{m-i}b^m = a^m b^m \in L_1$, so $M(a^i \cdot a^{m-i}b^m) = q \in F$. $a^j \cdot a^{m-i}b^m = a^{m+j-i}b^m \notin L_1$, so $M(a^j \cdot a^{m-i}b^m) = q \notin F$. Contradiction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Picture of What is Going On

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

 $L_2 = \{w : \#_a(w) = \#_b(w)\}$ is Not Regular

Same Proof as L_1 not reg: Still look at $a^m b^m$.

 $L_2 = \{w : \#_a(w) = \#_b(w)\}$ is Not Regular

Same Proof as L_1 not reg: Still look at $a^m b^m$. The reason

$$a^{m+j-i}b^m \notin L_1.$$

was that

$$\#_a(a^{m+j-i}b^m) \neq \#_b(a^{m+j-i}b^m).$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $L_2 = \{w : \#_a(w) = \#_b(w)\}$ is Not Regular

Same Proof as L_1 not reg: Still look at $a^m b^m$. The reason

$$a^{m+j-i}b^m \notin L_1.$$

was that

$$\#_a(a^{m+j-i}b^m) \neq \#_b(a^{m+j-i}b^m).$$

So we have

$$\#_{a}(a^{m+j-i}b^{m}) \neq \#_{b}(a^{m+j-i}b^{m}) \implies a^{m+j-i}b^{m} \notin L_{2}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Pumping Lemma

We proved L_1 and L_2 not regular in a clunky way. We will prove a lemma that can be used for those and others.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

We proved L_1 and L_2 not regular in a clunky way. We will prove a lemma that can be used for those and others.

Pumping Lemma If *L* is regular then there exists n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exists x, y, z such that:

We proved L_1 and L_2 not regular in a clunky way. We will prove a lemma that can be used for those and others.

Pumping Lemma If *L* is regular then there exists n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exists x, y, z such that:

1.
$$w = xyz$$
 and $y \neq e$.

We proved L_1 and L_2 not regular in a clunky way. We will prove a lemma that can be used for those and others.

Pumping Lemma If *L* is regular then there exists n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exists x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.

We proved L_1 and L_2 not regular in a clunky way. We will prove a lemma that can be used for those and others.

Pumping Lemma If *L* is regular then there exists n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exists x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.
- 3. For all $i \ge 0$, $xy^i z \in L$.

Proof is picture on the next slide.

Proof by Pictures

We restate it in the way that we use it. **Pumping Lemma** If *L* is reg then **for large enough strings w in** *L* there exists x, y, z such that:

We restate it in the way that we use it.

Pumping Lemma If *L* is reg then for large enough strings w in *L* there exists x, y, z such that:

1. w = xyz and $y \neq e$.

We restate it in the way that we use it.

Pumping Lemma If *L* is reg then for large enough strings w in *L* there exists x, y, z such that:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- 1. w = xyz and $y \neq e$.
- 2. |xy| is short.

We restate it in the way that we use it.

Pumping Lemma If *L* is reg then for large enough strings w in *L* there exists x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |xy| is short.
- 3. for all $i, xy^i z \in L$.

We then find some *i* such that $xy^i z \notin L$ for the contradiction.

ション ふゆ アメリア メリア しょうくしゃ

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1. $y \neq e$.

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

- 1. $y \neq e$.
- 2. |xy| is short.

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \ge 0$, $xy^i z \in L_1$.

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

ション ふゆ アメリア メリア しょうくしゃ

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \ge 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a's.

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

ション ふゆ アメリア メリア しょうくしゃ

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^{m_1}$, $y = a^{m_2}$, $z = a^{n-m_1-m_2}b^n$. Note $m_2 \ge 1$.

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^{m_1}$, $y = a^{m_2}$, $z = a^{n-m_1-m_2}b^n$. Note $m_2 \ge 1$. Take i = 2 to get

$$a^{m_1}a^{m_2}a^{m_2}a^{n-m_1-m_2}b^n\in L_1$$

$$a^{n+m_2}b^n \in L_1$$

ション ふゆ アメビア メロア しょうくしゃ

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^{m_1}$, $y = a^{m_2}$, $z = a^{n-m_1-m_2}b^n$. Note $m_2 \ge 1$. Take i = 2 to get

$$a^{m_1}a^{m_2}a^{m_2}a^{n-m_1-m_2}b^n \in L_1$$

$$a^{n+m_2}b^n \in L_1$$

Contradiction since $m_2 \ge 1$.
Proof: Same Proof as L_1 **not Reg**: Still look at $a^m b^m$. **Key** Pumping Lemma says for ALL long enough $w \in L$.

Go To Breakout Rooms To Work on it in Groups

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Go To Breakout Rooms To Work on it in Groups

Pumping Lemma Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

Go To Breakout Rooms To Work on it in Groups

Pumping Lemma Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

So what do to?

Go To Breakout Rooms To Work on it in Groups

Pumping Lemma Does Not Help. When you increase the number of y's there is no way to control it so carefully to make the number of a's EQUAL the number of b's.

So what do to?

If L_3 is regular then $\overline{L_3} = L_2$ is regular. But we know that L_2 is not regular. DONE!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that

$$a^{n_1}(a^{n_2})^i a^{n_3} \in L_4$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that

$$a^{n_1}(a^{n_2})^i a^{n_3} \in L_4$$

 $(\forall i \geq 0)[n_1 + in_2 + n_3 \text{ is a square}].$

ション ふゆ アメビア メロア しょうくしゃ

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that

$$a^{n_1}(a^{n_2})^i a^{n_3} \in L_4$$

 $(\forall i \geq 0)[n_1 + in_2 + n_3 \text{ is a square}].$

$$(n_1+n_3)=x^2$$

ション ふゆ アメビア メロア しょうくしゃ

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that

$$a^{n_1}(a^{n_2})^i a^{n_3} \in L_4$$

 $(\forall i \geq 0)[n_1 + in_2 + n_3 \text{ is a square}].$

$$(n_1+n_3)=x^2$$

$$(n_1 + n_3) + n_2 \ge (x + 1)^2$$

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that

$$a^{n_1}(a^{n_2})^i a^{n_3} \in L_4$$

 $(\forall i \geq 0)[n_1 + in_2 + n_3 \text{ is a square}].$

$$(n_1+n_3)=x^2$$

$$(n_1 + n_3) + n_2 \ge (x + 1)^2$$

$$(n_1 + n_3) + 2n_2 \ge (x + 2)^2$$

$$(n_1+n_3)=x^2$$

$$(n_1+n_3)=x^2$$

$$(n_1 + n_3) + n_2 \ge (x + 1)^2$$

$$(n_1+n_3)=x^2$$

$$(n_1 + n_3) + n_2 \ge (x + 1)^2$$

 $(n_1 + n_3) + 2n_2 \ge (x + 2)^2$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$(n_1+n_3)=x^2$$

$$(n_1 + n_3) + n_2 \ge (x + 1)^2$$

$$(n_1 + n_3) + 2n_2 \ge (x + 2)^2$$

$$(n_1 + n_3) + in_2 \ge x^2 + 2ix + i^2$$

*ロト *昼 * * ミ * ミ * ミ * のへぐ

 $L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular (cont) $(n_1 + n_3) = x^2$ $(n_1 + n_3) + n_2 \ge (x + 1)^2$ $(n_1 + n_3) + 2n_2 > (x + 2)^2$ $(n_1 + n_3) + in_2 > x^2 + 2ix + i^2$ $(n_1 + n_3) + in_2 > i^2$

 $L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular (cont) $(n_1 + n_3) = x^2$ $(n_1 + n_3) + n_2 > (x + 1)^2$ $(n_1 + n_3) + 2n_2 \ge (x + 2)^2$ $(n_1 + n_3) + in_2 > x^2 + 2ix + i^2$ $(n_1 + n_3) + in_2 > i^2$ $\frac{(n_1+n_3)}{i}+n_2\geq i$

As i increases the LHS decreases and the RHS goes to infinity, so this cannot hold for all i.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

GOTO BREAKOUT ROOMS

GOTO BREAKOUT ROOMS By Pumping Lemma for long enough $a^p \in L_5$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that $a^{n_1}(a^{n_2})^i a^{n_3} \in L_5$.

GOTO BREAKOUT ROOMS By Pumping Lemma for long enough $a^p \in L_5$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that $a^{n_1}(a^{n_2})^i a^{n_3} \in L_5$.

 $(\forall i \ge 0)[(n_1 + n_3) + in_2 \text{ is a prime}].$

GOTO BREAKOUT ROOMS By Pumping Lemma for long enough $a^p \in L_5$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that $a^{n_1}(a^{n_2})^i a^{n_3} \in L_5$.

 $(\forall i \ge 0)[(n_1 + n_3) + in_2 \text{ is a prime}].$

Take $i = n_1 + n_2 + n_3 + 1$.

 $(n_1 + n_3) + (n_1 + n_2 + n_3 + 1)n_2$ is a prime.

GOTO BREAKOUT ROOMS By Pumping Lemma for long enough $a^p \in L_5$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that $a^{n_1}(a^{n_2})^i a^{n_3} \in L_5$.

 $(\forall i \ge 0)[(n_1 + n_3) + in_2 \text{ is a prime}].$

Take $i = n_1 + n_2 + n_3 + 1$.

 $(n_1 + n_3) + (n_1 + n_2 + n_3 + 1)n_2$ is a prime.

 $(n_1 + n_3) + n_1n_2 + n_2n_2 + n_3n_2 + n_2$ is a prime.

GOTO BREAKOUT ROOMS By Pumping Lemma for long enough $a^p \in L_5$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that $a^{n_1}(a^{n_2})^i a^{n_3} \in L_5$.

 $(\forall i \ge 0)[(n_1 + n_3) + in_2 \text{ is a prime}].$

Take $i = n_1 + n_2 + n_3 + 1$.

$$(n_1 + n_3) + (n_1 + n_2 + n_3 + 1)n_2$$
 is a prime.

 $(n_1 + n_3) + n_1n_2 + n_2n_2 + n_3n_2 + n_2$ is a prime.

 $(n_1 + n_2 + n_3) + n_1 n_2 + n_2 n_2 + n_3 n_2$ is a prime.

GOTO BREAKOUT ROOMS By Pumping Lemma for long enough $a^p \in L_5$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that $a^{n_1}(a^{n_2})^i a^{n_3} \in L_5$.

 $(\forall i \ge 0)[(n_1 + n_3) + in_2 \text{ is a prime}].$

Take $i = n_1 + n_2 + n_3 + 1$.

$$(n_1 + n_3) + (n_1 + n_2 + n_3 + 1)n_2$$
 is a prime.

 $(n_1 + n_3) + n_1n_2 + n_2n_2 + n_3n_2 + n_2$ is a prime.

 $(n_1 + n_2 + n_3) + n_1 n_2 + n_2 n_2 + n_3 n_2$ is a prime.

$$(n_1 + n_2 + n_3)(1 + n_2)$$
 is a prime.

 $L_6 = \{\#_a(w) > \#_b(w)\}$ is Not Regular

We will be brief here.

 $L_6 = \{\#_a(w) > \#_b(w)\}$ is Not Regular

We will be brief here. Take $w = b^n a^{n+1}$, long enough so the y-part is in the b's.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $L_6 = \{\#_a(w) > \#_b(w)\}$ is Not Regular

We will be brief here. Take $w = b^n a^{n+1}$, long enough so the y-part is in the b's. Pump the y to get more b's than a's.

BREAKOUT ROOMS

BREAKOUT ROOMS

Problematic Can take *w* long and pump *a*'s, but that won't get out of the language.

BREAKOUT ROOMS

Problematic Can take *w* long and pump *a*'s, but that won't get out of the language. **So what to do?** Revise Pumping Lemma

BREAKOUT ROOMS

Problematic Can take w long and pump a's, but that won't get out of the language.

So what to do? Revise Pumping Lemma

Pumping Lemma had a bound on |xy|.

BREAKOUT ROOMS

Problematic Can take *w* long and pump *a*'s, but that won't get out of the language.

ション ふゆ アメビア メロア しょうくしゃ

So what to do? Revise Pumping Lemma

Pumping Lemma had a bound on |xy|.

Can **also** bound |yz| by same proof.

BREAKOUT ROOMS

Problematic Can take *w* long and pump *a*'s, but that won't get out of the language.

So what to do? Revise Pumping Lemma

Pumping Lemma had a bound on |xy|.

Can **also** bound |yz| by same proof.

Do that and then you can get y to be all b's, pump b's, and get out of the language.

 $L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$ is Not Regular

BREAKOUT ROOMS

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

 $L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$ is Not Regular

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works.

 $L_8 = \{a^{n_1}b^mc^{n_2} : n_1, n_2 > m\}$ is Not Regular

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works. **So what to do?** Let's go back to the pumping lemma with a carefully chosen string.
BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works. **So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

 $w = a^n b^{n-1} c^n.$

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works. **So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

$$w = a^n b^{n-1} c^n.$$

 $x = a^{n_1}, y = a^{n_2}, z = a^{n-n_1-n_2} b^{n-1} c^n.$

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works. **So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

ション ふゆ アメビア メロア しょうくしゃ

 $w = a^{n}b^{n-1}c^{n}.$ $x = a^{n_{1}}, y = a^{n_{2}}, z = a^{n-n_{1}-n_{2}}b^{n-1}c^{n}.$ For all $i \ge 0$, $xy^{i}z \in L_{8}.$

BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works. **So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

$$w = a^{n}b^{n-1}c^{n}.$$

$$x = a^{n_{1}}, y = a^{n_{2}}, z = a^{n-n_{1}-n_{2}}b^{n-1}c^{n}.$$
For all $i \ge 0$, $xy^{i}z \in L_{8}.$

$$xy^{i}z = a^{n_{1}+in_{2}+(n-n_{1}-n_{2})}b^{n-1}c^{n}$$

$$xy^{i}z = a^{n_{1}+in_{2}+(n-n_{1}-n_{2})}b^{n-1}c^{n}$$

・ロト・日本・モン・モン・モー・ション・

$$xy^{i}z = a^{n_{1}+in_{2}+(n-n_{1}-n_{2})}b^{n-1}c^{n}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For all $i xy^{i}z = a^{n_{1}+in_{2}+(n-n_{1}-n_{2})}b^{n-1}c^{n} \in L_{8}$.

$$xy^{i}z = a^{n_{1}+in_{2}+(n-n_{1}-n_{2})}b^{n-1}c^{n}$$

For all $i xy^{i}z = a^{n_{1}+in_{2}+(n-n_{1}-n_{2})}b^{n-1}c^{n} \in L_{8}$.

Key We are used to thinking of *i* large. But we can also take i = 0, cut out that part of the word. We take i = 0 to get

$$xy^0z = a^{n-n_2}b^{n-1}c^n$$

ション ふゆ アメビア メロア しょうくしゃ

Since $n_2 \ge 1$, we have that $\#_a(xy^0z) < n \le n-1 = \#_b(xy^0z)$. Hence $xy^0z \notin L_8$.

i = 0 Case as a Picture

▲□▶▲□▶▲目▶▲目▶ 目 のへで