The Complexity of Grid Coloring

Daniel Apon-NIST
William Gasarch—U of MD
Kevin Lawler-Permanent

Grid Coloring

Notation If $n \in \mathbb{N}$ then $[n]$ is the set $\{1, \ldots, n\}$.

Grid Coloring

Notation If $n \in \mathbb{N}$ then $[n]$ is the set $\{1, \ldots, n\}$. Def $G_{n, m}$ is the grid $[n] \times[m]$.

Grid Coloring

Notation If $n \in \mathbb{N}$ then $[n]$ is the set $\{1, \ldots, n\}$.
Def $G_{n, m}$ is the grid $[n] \times[m]$.

1. $G_{n, m}$ is c-colorable if there is a c-coloring of $G_{n, m}$ such that no rectangle has all four corners the same color.

Grid Coloring

Notation If $n \in \mathbb{N}$ then $[n]$ is the set $\{1, \ldots, n\}$.
Def $G_{n, m}$ is the grid $[n] \times[m]$.

1. $G_{n, m}$ is c-colorable if there is a c-coloring of $G_{n, m}$ such that no rectangle has all four corners the same color.
2. $\chi\left(G_{n, m}\right)$ is the least c such that $G_{n, m}$ is c-colorable.

Examples

A FAILED 2-Coloring of $G_{4,4}$

R	B	B	R
B	R	R	B
B	B	R	R
R	R	R	B

A 2-Coloring of $G_{4,4}$

R	B	B	R
B	R	R	B
B	B	R	R
R	B	R	B

Example: a 3-Coloring of $\mathrm{G}(10,10)$

Example: A 3-Coloring of $G_{10,10}$

R	R	R	R	B	B	G	G	B	G
R	B	B	G	R	R	R	G	G	B
G	R	B	G	R	B	B	R	R	G
G	B	R	B	B	R	G	R	G	R
R	B	G	G	G	B	G	B	R	R
G	R	B	B	G	G	R	B	B	R
B	G	R	B	G	B	R	G	R	B
B	B	G	R	R	G	B	G	B	R
G	G	G	R	B	R	B	B	R	B
B	G	B	R	B	G	R	R	G	G

It is known that cannot 2-color $G_{10,10}$. Hence $\chi\left(G_{10,10}\right)=3$.

Obstruction Sets

Fenner-Gasarch-Glover-Purewall [FGGP] (henceforth 'We') showed:

Obstruction Sets

Fenner-Gasarch-Glover-Purewall [FGGP] (henceforth 'We') showed:

1. For all c there exists $O B S_{c}$, a finite set of grids, such that
$G_{n, m}$ is c-colorable iff no element of $O B S_{c}$ is inside $G_{m, n}$.

Obstruction Sets

Fenner-Gasarch-Glover-Purewall [FGGP] (henceforth 'We') showed:

1. For all c there exists $O B S_{c}$, a finite set of grids, such that

$$
G_{n, m} \text { is } c \text {-colorable iff no element of } O B S_{c} \text { is inside } G_{m, n} \text {. }
$$

2. We have a proof which shows $\left|O B S_{c}\right| \leq 2 c^{2}$.

Obstruction Sets

Fenner-Gasarch-Glover-Purewall [FGGP] (henceforth 'We') showed:

1. For all c there exists $O B S_{c}$, a finite set of grids, such that

$$
G_{n, m} \text { is } c \text {-colorable iff no element of } O B S_{c} \text { is inside } G_{m, n} \text {. }
$$

2. We have a proof which shows $\left|O B S_{c}\right| \leq 2 c^{2}$.
3. If $O B S_{c}$ is known then the set of c-colorable grids is completely characterized.

OBS-2 and OBS-3 Known

We showed

$$
O B S_{2}=\left\{G_{3,7}, G_{5,5}, G_{7,3}\right\}
$$

OBS-2 and OBS-3 Known

We showed

$$
\begin{aligned}
& O B S_{2}=\left\{G_{3,7}, G_{5,5}, G_{7,3}\right\} \\
& O B S_{3}=\left\{G_{4,19}, G_{5,16}, G_{7,13}, G_{10,11}, G_{11,10}, G_{13,7}, G_{16,5}, G_{19,4}\right\}
\end{aligned}
$$

OBS-2 and OBS-3 Known

We showed

$$
\begin{aligned}
& O B S_{2}=\left\{G_{3,7}, G_{5,5}, G_{7,3}\right\} \\
& O B S_{3}=\left\{G_{4,19}, G_{5,16}, G_{7,13}, G_{10,11}, G_{11,10}, G_{13,7}, G_{16,5}, G_{19,4}\right\}
\end{aligned}
$$

2-colorability table. C for Colorable, U for Uncolorability.

	2	3	4	5	6	7
2	C	C	C	C	C	C
3	C	C	C	C	C	U
4	C	C	C	C	C	U
5	C	C	C	U	U	U
6	C	C	C	U	U	U
7	C	U	U	U	U	U

4-Colorability

4-Colorability

1. 2009: We did not know $O B S_{4}$. Status of $G_{17,17}$ was key.

4-Colorability

1. 2009: We did not know $O B S_{4}$. Status of $G_{17,17}$ was key.
2. We had reasons to think $G_{17,17}$ is 4 -colorable but we did not have a 4-coloring.

4-Colorability

1. 2009: We did not know $O B S_{4}$. Status of $G_{17,17}$ was key.
2. We had reasons to think $G_{17,17}$ is 4 -colorable but we did not have a 4-coloring.
3. 2009: Gasarch offered a prize of $\$ 289.00\left(17^{2}\right)$ to the first person to email him a 4-coloring of $G_{17,17}$.

4-Colorability

1. 2009: We did not know $O B S_{4}$. Status of $G_{17,17}$ was key.
2. We had reasons to think $G_{17,17}$ is 4 -colorable but we did not have a 4-coloring.
3. 2009: Gasarch offered a prize of $\$ 289.00\left(17^{2}\right)$ to the first person to email him a 4-coloring of $G_{17,17}$.
4. Brian Hayes, Scientific American Math Editor, popularized the challenge.

Challenge Was Hard

Challenge Was Hard

1. Lots of people worked on it.

Challenge Was Hard

1. Lots of people worked on it.
2. For a while, no progress.

Challenge Was Hard

1. Lots of people worked on it.
2. For a while, no progress.
3. In 2012 Bernd Steinbach and Christian Posthoff [SP]. Clever SAT-solver designed for this purpose. Did not generalize.

Challenge Was Hard

1. Lots of people worked on it.
2. For a while, no progress.
3. In 2012 Bernd Steinbach and Christian Posthoff [SP]. Clever SAT-solver designed for this purpose. Did not generalize.
4. They and others also found colorings that lead to $\mathrm{OBS}_{4}=\{$

$$
\begin{aligned}
& G_{5,41}, G_{6,31}, G_{7,29}, G_{9,25}, G_{18,23}, G_{11,22}, G_{13,21}, G_{17,19}, \\
& G_{41,5}, G_{31,6}, G_{29,7}, G_{25,9}, G_{23,18}, G_{22,11}, G_{21,13}, G_{19,17}
\end{aligned}
$$

\}

Coloring of $G_{18,18}$ on Book Cover!

Recent Progress in the Boolean Domain

Edited by
BERND STEINBACH

Is Grid Coloring Hard?

We view this two ways:

1. Is there an NP-complete problem lurking here somewhere?

Is Grid Coloring Hard?

We view this two ways:

1. Is there an NP-complete problem lurking here somewhere? Yes

Is Grid Coloring Hard?

We view this two ways:

1. Is there an NP-complete problem lurking here somewhere? Yes
2. Is there a Prop Statement about Grid Coloring whose resolution proof requires exp size?

Is Grid Coloring Hard?

We view this two ways:

1. Is there an NP-complete problem lurking here somewhere? Yes
2. Is there a Prop Statement about Grid Coloring whose resolution proof requires exp size?Yes

Part I of Talk—NP Completeness of GCE

THERE IS AN NP-COMPLETE PROBLEM LURKING!

Grid Coloring Hard!-NP stuff

1. Let $c, N, M \in \mathbb{N}$. A partial mapping χ of $N \times M$ to $\{1, \ldots, c\}$ is a extendable to a c-coloring if there is an extension of χ to a total mapping which is a c-coloring of $N \times M$.

Grid Coloring Hard!-NP stuff

1. Let $c, N, M \in \mathbb{N}$. A partial mapping χ of $N \times M$ to $\{1, \ldots, c\}$ is a extendable to a c-coloring if there is an extension of χ to a total mapping which is a c-coloring of $N \times M$.
2.

$$
G C E=\{(N, M, c, \chi) \mid \chi \text { is extendable }\} .
$$

GCE is NP-complete!

GCE is NP-complete

$\phi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \cdots \wedge C_{m}$ is a 3-CNF formula. We determine N, M, C and a partial c-coloring χ of $N \times M$ such that

$$
\phi \in 3 \text {-SAT iff }(N, M, c, \chi) \in G C E
$$

Forcing a Color to Only Appear Once in Main Grid

G								
G								
R		G						
G								
G								
G								
G	G	G	G	G	G	G	G	G

G can only appear once in the main grid, where it is, but what about R? (The double lines are not part of the construction. They are there to separate the main grid from the rest.)

Forcing a Color to Only Appear Once in Main Grid

R	G								
R	G								
R	R		G						
R	G								
R	G								
R	G								
R	G	G	G	G	G	G	G	G	G
R	G	R	R	R	R	R	R	R	R

G can only appear once in the main grid, where it is. \mathbf{R} cannot appear anywhere in the main grid.

Using Variables

D means that the color is some distinct, unique color.

	D										
\bar{x}_{1}		D	T	F							
x_{1}		D	D	D	D	D	D	T	F	T	F
\bar{x}_{1}		D	D	D	D	T	F	T	F	D	D
x_{1}		D	D	T	F	T	F	D	D	D	D
\bar{x}_{1}		T	F	T	F	D	D	D	D	D	D
x_{1}		T	F	D							

The labeled x_{1}, \bar{x}_{1} are not part of the grid. They are visual aids.

Using Variables

D means that the color is some distinct, unique color.

	D										
\bar{x}_{1}		D	T	F							
x_{1}		D	D	D	D	D	D	T	F	T	F
\bar{x}_{1}		D	D	D	D	T	F	T	F	D	D
x_{1}		D	D	T	F	T	F	D	D	D	D
\bar{x}_{1}		T	F	T	F	D	D	D	D	D	D
x_{1}		T	F	D							

The labeled x_{1}, \bar{x}_{1} are not part of the grid. They are visual aids.
First col forced to be T-F-T-F-T-F or F-T-F-T-F-T

Coding a Clause

$C_{1}=L_{1} \vee L_{2} \vee L_{3}$. Where L_{1}, L_{2}, L_{3} are literals (vars or their negations).

	\cdots	D	T	T
	\vdots	\vdots	\vdots	\vdots
L_{1}	\cdots		D	F
	\vdots	\vdots	\vdots	\vdots
L_{2}	\cdots			
	\vdots	\vdots	\vdots	\vdots
L_{3}	\cdots		F	D
	\vdots	\vdots	\vdots	\vdots

The L_{1}, L_{2}, L_{3} are not part of the grid. They are visual aids.

Coding a Clause-More Readable

$$
C_{1}=L_{1} \vee L_{2} \vee L_{3} .
$$

	D	T	T
L_{1}		D	F
L_{2}			
L_{3}		F	D

One can show that

- If put any of TTT, TTF, TFT, FTT, FFT, FTF, TFF in first column then can extend to full coloring.
- If put FFF in first column then cannot extend to a full coloring.

Example: (F,F,T)

$$
C_{1}=L_{1} \vee L_{2} \vee L_{3} .
$$

	D	T	T
L_{1}	F	D	F
L_{2}	F		$*$
L_{3}	T	F	D

The ${ }^{*}$ is forced to be T.

Example: (F,F,T)

$$
C_{1}=L_{1} \vee L_{2} \vee L_{3} .
$$

	D	T	T
L_{1}	F	D	F
L_{2}	F	$*$	T
L_{3}	T	F	D

The * is forced to be F.

Example: (F,F,T)

$C_{1}=L_{1} \vee L_{2} \vee L_{3}$.

	D	T	T
L_{1}	F	D	F
L_{2}	F	F	T
L_{3}	T	F	D

Other Assignments

1. We did (F, F, T).
2. $(F, T, F),(T, F, F)$ are similar.
3. $(F, T, T),(T, F, T),(T, T, F),(T, T, T)$ are easier.

Cannot Use (F,F,F)

$C_{1}=L_{1} \vee L_{2} \vee L_{3}$. Want that (F, F, F) cannot be extended to a coloring.

	D	T	T
L_{1}	F	D	F
L_{2}	F	$*$	$*$
L_{3}	F	F	D

The *'s are forced to be T.

Cannot Use (F,F,F)

	D	T	T
L_{1}	F	D	F
L_{2}	F	T	T
L_{3}	F	F	D

There is a mono rectangle of T 's. Not a valid coloring!

Put it all Together

Do the above for all variables and all clauses to obtain the result that GRID EXT is NP-complete!

Big Example

$$
\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)
$$

												C_{1}	C_{1}	C_{2}	C_{2}	C_{3}	C_{3}
	D	T	T	T	T	T	T										
\bar{x}_{4}		D	T	F	D	D	D	D	D	F							
x_{4}		D	T	F	D	D	D	F	D	D							
\bar{x}_{3}		D	D	D	D	D	D	T	F	D							
x_{3}		D	D	D	D	T	F	T	F	D	D	D	D			D	D
\bar{x}_{3}		D	D	D	D	T	F	D	D	D	D	D	F	D	D		
\bar{x}_{2}		D	D	T	F	D	F	D	D	D							
x_{2}		D	D	T	F	D	D	D	D	D	D			D	D	D	D
\bar{x}_{1}		T	F	D	F	D											
x_{1}		T	F	D	F	D	D	D	D	D							

Does this Explain why the Challenge was Hard?

Does this Explain why the Challenge was Hard?

1. Maybe Not GCE is Fixed Parameter Tractable. For fixed c $G C E_{c}$ is in time $O\left(N^{2} M^{2}+2^{O\left(c^{4}\right)}\right)$. But for $c=4$ this is huge!
2. Maybe Yes Gives a sense that brute force search is needednot shortcuts.

Does this Explain why the Challenge was Hard?

1. Maybe Not GCE is Fixed Parameter Tractable. For fixed c $G C E_{c}$ is in time $O\left(N^{2} M^{2}+2^{O\left(c^{4}\right)}\right)$. But for $c=4$ this is huge!
2. Maybe Yes Gives a sense that brute force search is needednot shortcuts.
3. Maybe Not Our result says nothing about the case where the grid is originally all blank.

Does this Explain why the Challenge was Hard?

1. Maybe Not GCE is Fixed Parameter Tractable. For fixed c $G C E_{c}$ is in time $O\left(N^{2} M^{2}+2^{O\left(c^{4}\right)}\right)$. But for $c=4$ this is huge!
2. Maybe Yes Gives a sense that brute force search is needednot shortcuts.
3. Maybe Not Our result says nothing about the case where the grid is originally all blank.
4. Maybe Yes GCE problem should be easier than starting with all blanks.

Key to $O\left(N^{2} M^{2}+2^{O\left(c^{4}\right)}\right)$ Result

Lemma Let χ be a partial c-coloring of $G_{n, m}$. Let U be the uncolored grid points. Let $|U|=u$. There is an algorithm that will determine if χ can be extended to a full c-coloring that runs in time $O\left(c n m 2^{2 u}\right)=2^{O(n m)}$.
Set Up the Algorithm For $S \subseteq U$ and $1 \leq i \leq c$ let
$f(S, i)= \begin{cases}\text { Yes } & \text { if } \chi \text { can be extended to } S \text { using colors }\{1, \ldots, i\} ; \\ \text { No } & \text { if not. }\end{cases}$
For $S \subseteq U$ and $1 \leq i \leq c$ use Dynamic Programming to compute $f(S, i) . f(U, c)$ is your answer.
End of Set Up of Algorithm

Computing $f(S, i)$

Assume that $\left(\forall S^{\prime},\left|S^{\prime}\right|<|S|\right)(\forall 1 \leq i \leq c)\left[f\left(S^{\prime}, i\right)\right.$ is known].

1. For all 1-colorable $T \subseteq S$ do the following
1.1 If $f(S-T, i)=N O$ then $f(S, i)=N O$ and STOP.
1.2 If $f(S-T, i-1)=Y E S$ then determine if coloring T with i works. If yes then $f(S, i)=Y E S$ and STOP. Note that this takes $O(n m)$.
2. We know that for all 1-colorable $T \subseteq S f(S-T, i)=Y E S$ and either
(1) $f(S-T, i-1)=N O$ or
(2) $f(S-T, i-1)=Y E S$ and coloring T with i bad.

In all cases $f(S, i)=N O$.

Open Questions

1. Improve Fixed Parameter Tractable algorithm.
2. NPC results for mono squares? Other shapes?
3. Show that

$$
\left\{(n, m, c): G_{n, m} \text { is c-colorable }\right\}
$$

is hard.

- If n, m in unary then sparse set, not NPC—New framework for hardness needed.
- If n, m binary then not in NP. Could try to prove NEXP-complete. But the difficulty of the problem is not with the grid being large, but with the number-of-possibilities being large.

Part II of Talk—Lower Bounds on Tree Resolution

YOU SAY YOU WANT A RESOLUTION!

Part II of Talk—Lower Bounds on Tree Resolution

YOU SAY YOU WANT A RESOLUTION!

If you write a good parody of the Beatles You say you want a revolution about resolution theorem proving, I will treat you to lunch at The Food Factory, if they open up again.

Resolution

Def Let $\varphi=C_{1} \wedge \cdots \wedge C_{L}$ be a CNF formula.
A Resolution Proof of $\varphi \notin$ SAT is a sequence of clauses such that on each line you have either

1. One of the C's in φ (called an Axiom).
2. $A \vee B$ if $A \vee x$ and $B \vee \neg x$ were on prior lines. Variable that is resolved on is x.
3. The last line has the empty clause.

Example

$$
\varphi=x_{1} \wedge x_{2} \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

1. x_{1} Axiom
2. $\neg x_{1} \vee \neg x_{2}$ AXIOM
3. $\neg x_{2}$ (From lines 1,2 , resolve on x_{1}.)
4. x_{2} Axiom
5. \emptyset (From lines 3,4, resolve on x_{2}.)

Resolution is Complete

Def Let $\varphi=C_{1} \wedge \cdots \wedge C_{L}$ be a CNF formula on n variables.

1. If exists a Res Proof of $\varphi \notin S A T$ then $\varphi \notin$ SAT.

Proof Any assignment that satisfies φ satisfies any node of the Res Proof including the last node \emptyset.
2. If $\varphi \notin$ SAT then exists a Res Proof of $\varphi \notin$ SAT of size $2^{O(n)}$.

Proof Form a Decision Tree that has at every node on level i the variable x_{i}. Right $=T$ and Left $=F$. A leaf is the first clause that is false with that assignment. Turn Decision Tree upside down! View nodes as which var to resolve on! This will be Res Proof! (It will even be Tree Res Proof.)

Another Example

The and of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Another Example

The and of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation (i, j) is colored either 1 or 2.

Another Example

The and of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation (i, j) is colored either 1 or 2.
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

Another Example

The and of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation (i, j) is colored either 1 or 2.
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

Interpretation There is no mono 1-rectangle.

Another Example

The and of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation (i, j) is colored either 1 or 2.
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

Interpretation There is no mono 1-rectangle.
3. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 2} \vee \neg x_{i^{\prime} j 2} \vee \neg x_{i j^{\prime} \prime} \vee \neg x_{i^{\prime} j^{\prime} 2}
$$

Another Example

The and of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation (i, j) is colored either 1 or 2.
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

Interpretation There is no mono 1-rectangle.
3. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 2} \vee \neg x_{i^{\prime} j 2} \vee \neg x_{i j^{\prime} \prime} \vee \neg x_{i^{\prime} j^{\prime} 2}
$$

Interpretation There is no mono 2-rectangle.

Another Example

The and of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation (i, j) is colored either 1 or 2.
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

Interpretation There is no mono 1-rectangle.
3. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 2} \vee \neg x_{i^{\prime} j 2} \vee \neg x_{i j^{\prime} \prime} \vee \neg x_{i^{\prime} j^{\prime} 2}
$$

Interpretation There is no mono 2-rectangle.
We interpret this statement as saying
There is a 2-coloring of $G_{5,5}$.
This statement is known to be false.

$\operatorname{GRID}(n, m, c)$

Def Let $n, m, c \in \mathbb{N}$. $\operatorname{GRID}(n, m, c)$ is the and of the following:

1. For $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$,

$$
x_{i j 1} \vee x_{i j 2} \vee \cdots \vee x_{i j c}
$$

Interpretation (i, j) is colored either 1 or \cdots or c.
2. For $i, i^{\prime} \in\{1, \ldots, n\}, j, j^{\prime} \in\{1, \ldots, m\}, k \in\{1, \ldots, c\}$,

$$
\neg x_{i j k} \vee \neg x_{i^{\prime} j k} \vee \neg x_{i j^{\prime} k} \vee \neg x_{i^{\prime} j^{\prime} k}
$$

Interpretation There is no mono rectangle.
We interpret this statement as saying
There is a c-coloring of $G_{n, m}$.
Note $\operatorname{GRID}(n, m, c)$ has $n m c$ VARS and $O\left(c n^{2} m^{2}\right)$ CLAUSES.

$\operatorname{GRID}(n, m, c)$ —How to View Assignments

Given an assignment:

1. For all $i \in[n]$ and $j \in[m]$ let k be the least number such that $x_{i j k}=T$. View this as saying that (i, j) is colored k.
2. If there is NO such number then (i, j) is not colored and this assignment makes $\operatorname{GRID}(n, m, c)$ false.
Hence we view assignments as attempted colorings of the grid where some points are not colored.

Two Ways to Invalidate $\operatorname{GRID}(n, m, c)$

1. There is a mono rectangle.
2. There is some point that is not colored: there is some i, j such that all $x_{i j k}$ are false.

Tree Resolution Proofs

Def A Tree Res Proof is a Res Proof where the underlying graph is a tree. Note that if you remove the bottom node that is labeled \emptyset then the Tree Res Proof is cut into two disjoint parts.
Known If $\varphi \notin$ SAT and φ has v variables then there is a Tree Res Proof of φ of size $2^{O(v)}$.

Our Goal

Assume that there is no c-coloring of $G_{n, m}$.

1. $\operatorname{GRID}(n, m, c)$ has a size $2^{O(c n m)}$ Tree Res Proof.
2. We show $2^{\Omega(c)}$ size is required. This is our point!
3. The lower bound is independent of n, m.

Interesting Examples

Interesting Examples

1. We showed that $G_{2 c^{2}-c,, 2 c}$ is not c-colorable. Hence

$$
\operatorname{GRID}\left(2 c^{2}-c, 2 c\right)
$$

has $O\left(c^{3}\right)$ vars, $O\left(c^{6}\right)$ clauses but $2^{\Omega(c)}$ Tree Res proof.

Interesting Examples

1. We showed that $G_{2 c^{2}-c,, 2 c}$ is not c-colorable. Hence

$$
\operatorname{GRID}\left(2 c^{2}-c, 2 c\right)
$$

has $O\left(c^{3}\right)$ vars, $O\left(c^{6}\right)$ clauses but $2^{\Omega(c)}$ Tree Res proof.
2. Easy to show $G_{c^{3}, c^{3}}$ is not c-colorable.

$$
\operatorname{GRID}\left(c^{3}, c^{3}, c\right)
$$

has $O\left(c^{7}\right)$ vars, $O\left(c^{13}\right)$ clauses and $2^{\Omega(c)}$ Tree Res proof. These are poly-in-c formulas that require $2^{\Omega(c)}$ Tree Res proofs.

The Prover-Delayer Game

(Due to Pudlak and Impagliazzo [PI].) Parameters of the game: $p \in \mathrm{R}^{+}$,

$$
\varphi=C_{1} \wedge \cdots \wedge C_{L} \notin \mathrm{SAT}
$$

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.
2. DEL either
2.1 Sets x to F or T, OR
2.2 Defers to PROVER who then sets x to T or F while DEL gets a point.
At end if DEL has $\geq p$ pts then he wins; else PROVER wins.

Convention

We assume that PROVER and DEL play perfectly.

1. PROVER wins means PROVER has a winning strategy.
2. DEL wins means DEL has a winning strategy.

Prover-Delayer Game and Tree Res Proofs

Lemma Let $p \in \mathrm{R}^{+}, \varphi \notin \mathrm{SAT}$. If φ has a Tree Res Proof of size $<2^{p}$ then PROVER wins.

Prover-Delayer Game and Tree Res Proofs

Lemma Let $p \in \mathrm{R}^{+}, \varphi \notin \mathrm{SAT}$. If φ has a Tree Res Proof of size $<2^{p}$ then PROVER wins. Pf PROVER Strategy:

1. Initially T is res tree of size $<2^{p}$ and DEL has 0 pts.
2. PROVER picks x, the last var resolved on.
3. If DEL sets x then DEL gets no pts.
4. If DEL defers then PROVER sets T or F-whichever yields a smaller tree. Note One of the trees will be of size $<2^{p-1}$. DEL gets 1 point.
5. Repeat: after i th stage will always have T of size $<2^{p-i}$, and DEL has $\leq i$ pts.

Contrapositive is Awesome!

Recall:
Lemma Let $p \in \mathrm{R}^{+}, \varphi \notin \mathrm{SAT}$. If φ has a Tree Res Proof of size $<2^{p}$ then PROVER wins.

Contrapositive is Awesome!

Recall:
Lemma Let $p \in \mathrm{R}^{+}, \varphi \notin \mathrm{SAT}$. If φ has a Tree Res Proof of size $<2^{p}$ then PROVER wins.

Contrapositive
Lemma Let $p \in \mathrm{R}^{+}, \varphi \notin \mathrm{SAT}$. If DEL wins then EVERY Tree Res Proof for φ has size $\geq 2^{p}$. Plan Get awesome strategy for DEL when $\varphi=\operatorname{GRID}(n, m, c)$.

GRID(n, m, c) Requires Exp Tree Res Proofs

Thm Let n, m, c be such that $G_{n, m}$ is not c-colorable. Let $c \geq 2$. Any tree resolution proof of $\operatorname{GRID}(n, m, c) \notin \operatorname{SAT}$ requires size $2^{0.5 c}$.

GRID (n, m, c) Requires Exp Tree Res Proofs

Thm Let n, m, c be such that $G_{n, m}$ is not c-colorable. Let $c \geq 2$. Any tree resolution proof of $\operatorname{GRID}(n, m, c) \notin \operatorname{SAT}$ requires size $2^{0.5 c}$.
Pf Parameters: $p=0.5 c, \varphi=\operatorname{GRID}(n, m, c)$.

Del Strategy

Assume $x_{i j k}$ was chosen by the PROVER.

Del Strategy

Assume $x_{i j k}$ was chosen by the PROVER.

1. If setting $x_{i j k}=T$ creates a mono rect (of color k) then DEL does not let this happen- he sets $x_{i j k}$ to F.

Del Strategy

Assume $x_{i j k}$ was chosen by the PROVER.

1. If setting $x_{i j k}=T$ creates a mono rect (of color k) then DEL does not let this happen- he sets $x_{i j k}$ to F.
2. If none of the $x_{i j *}$ are T and $\geq \frac{c}{2}$ of the $x_{i j *}$ are F via PROVER then DEL sets $x_{i j k}$ to T.

Del Strategy

Assume $x_{i j k}$ was chosen by the PROVER.

1. If setting $x_{i j k}=T$ creates a mono rect (of color k) then DEL does not let this happen- he sets $x_{i j k}$ to F.
2. If none of the $x_{i j *}$ are T and $\geq \frac{c}{2}$ of the $x_{i j *}$ are F via PROVER then DEL sets $x_{i j k}$ to T.
3. In all other cases the DEL defers to the PROVER.

Case 1: Prover Set c/2 Vars to F

Game ends when there is some i, j such that

$$
x_{i j 1}=x_{i j 2}=\cdots=x_{i j c}=F
$$

Who set those variables to F ?
Case 1 At least $\frac{c}{2}$ set F by Prover. Then DEL gets at least

$$
0.5 \mathrm{c} \text { pts. }
$$

Case 2: Del Set c/2 Vars to F

$x_{i j 1}=x_{i j 2}=\cdots=x_{i j c}=F$. Who set those vars to F ?
Case 2 At least $\frac{c}{2}$ set F by DEL. Assume they are
$x_{i j 1}, x_{i j 2}, \ldots, x_{i j c} / 2$.

Case 2: Del Set c/2 Vars to F

$x_{i j 1}=x_{i j 2}=\cdots=x_{i j c}=F$. Who set those vars to F ?
Case 2 At least $\frac{c}{2}$ set F by DEL. Assume they are
$x_{i j 1}, x_{i j 2}, \ldots, x_{i j c} / 2$.

- $x_{i j 1}$ set to F by DEL. Why? There exists i^{\prime}, j^{\prime} such that $x_{i^{\prime} j 1}, x_{i j^{\prime} 1}, x_{i^{\prime} j^{\prime} 1}$ all set to T. (Do not know by who.)

Case 2: Del Set c/2 Vars to F

$x_{i j 1}=x_{i j 2}=\cdots=x_{i j c}=F$. Who set those vars to F ?
Case 2 At least $\frac{c}{2}$ set F by DEL. Assume they are $x_{i j 1}, x_{i j 2}, \ldots, x_{i j c} / 2$.

- $x_{i j 1}$ set to F by DEL. Why? There exists i^{\prime}, j^{\prime} such that $x_{i^{\prime} j 1}, x_{i j^{\prime} 1}, x_{i^{\prime} j^{\prime} 1}$ all set to T. (Do not know by who.)
- $x_{i j 2}$ set to F by DEL. Why? There exists $i^{\prime \prime}, j^{\prime \prime}$ such that $x_{i^{\prime \prime} j 2}, x_{i^{\prime \prime} 2}, x_{i^{\prime \prime} j^{\prime \prime} 2}$ all set to T. (Do not know by who.)

Case 2: Del Set c/2 Vars to F

$x_{i j 1}=x_{i j 2}=\cdots=x_{i j c}=F$. Who set those vars to F ?
Case 2 At least $\frac{c}{2}$ set F by DEL. Assume they are
$x_{i j 1}, x_{i j 2}, \ldots, x_{i j c} / 2$.

- $x_{i j 1}$ set to F by DEL. Why? There exists i^{\prime}, j^{\prime} such that $x_{i^{\prime} j 1}, x_{i j^{\prime} 1}, x_{i^{\prime} j^{\prime} 1}$ all set to T. (Do not know by who.)
- $x_{i j 2}$ set to F by DEL. Why? There exists $i^{\prime \prime}, j^{\prime \prime}$ such that $x_{i^{\prime \prime} j 2}, x_{i j^{\prime \prime} 2}, x_{i^{\prime \prime} j^{\prime \prime} 2}$ all set to T. (Do not know by who.)
- etc.

For every k such that $x_{i j k}$ is set to F by DEL there exists three vars of form $x_{* * k}$ set to T.
Key All these 3 -sets are disjoint, so at least $3 c / 2$ vars set T (by who?).

Case 2a: Prover Set 3c/2 Vars to T

Key At least $3 c / 2$ vars set T (by who?).
Case 2a PROVER set $\geq \frac{3 c}{4}$ to T. DEL gets at least
$0.75 c=0.75 c$ pts.

Case 2b: Del Set 3c/2 Vars To T

Case 2b DEL set $\geq \frac{3 c}{4}$ to T. DEL set $x_{i j k}$ to T :

Case 2b: Del Set 3c/2 Vars To T

Case 2b DEL set $\geq \frac{3 c}{4}$ to T.
DEL set $x_{i j k}$ to T :

- At time there are $c / 2 k^{\prime}$ such that PROVER set $x_{i j k^{\prime}}$ to F.

Case 2b: Del Set 3c/2 Vars To T

Case 2b DEL set $\geq \frac{3 c}{4}$ to T.
DEL set $x_{i j k}$ to T :

- At time there are $c / 2 k^{\prime}$ such that PROVER set $x_{i j k^{\prime}}$ to F.
- DEL will never set an $x_{i j *}$ to T again! never!!

Every $x_{i j k}$ set T by DEL implies that $c / 2$ vars set F by PROVER, and these sets of $c / 2$ vars are disjoint. Upshot PROVER had set $\frac{3 c}{4} \times \frac{c}{2}$ to F. DEL gets at least

$$
0.375 c^{2}=0.375 c^{2} \text { pts }
$$

Final Analysis

Final Analysis

- Case 1 DEL gets at least 0.5 c pts.

Final Analysis

- Case 1 DEL gets at least 0.5 c pts.
- Case 2a DEL gets at least 0.75 c pts.

Final Analysis

- Case 1 DEL gets at least 0.5 c pts.
- Case 2a DEL gets at least 0.75 c pts.
- Case 2b DEL gets at least $0.375 c^{2}$ pts.

Upshot For $c \geq 2$ DEL gets at least $0.5 c$ pts.
Punchline By Lemma any Tree Res Proof has size $\geq 2^{0.5 c}$.

Optimize

1. In construction use cutoff of $c / 2$ for when DEL sets $x_{i j k}$ to T. Choose fraction carefully.
2. In analysis we twice do a half-half cutoff. Choose fractions carefully!
3. Use asymmetric PROVER-DEL game (next slide) and choose a, b carefully!
Thm Let n, m, c be such that $G_{n, m}$ is not c-colorable. Let $c \geq 9288$. Any tree resolution proof of $\operatorname{GRID}(n, m, c) \notin \operatorname{SAT}$ requires size $2^{0.836 c}$.

Asymmetric Prover-Delayer Game

(Due to Beyersdorr, Galesi, Lauria [BGL].) Parameters of the game: $a, b \in(1, \infty)$, with $\frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{R}^{+}$,

$$
\varphi=C_{1} \wedge \cdots \wedge C_{L} \notin \mathrm{SAT}
$$

Do the following until a clause is proven false:

Asymmetric Prover-Delayer Game

(Due to Beyersdorr, Galesi, Lauria [BGL].) Parameters of the game: $a, b \in(1, \infty)$, with $\frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{R}^{+}$,

$$
\varphi=C_{1} \wedge \cdots \wedge C_{L} \notin \mathrm{SAT}
$$

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.

Asymmetric Prover-Delayer Game

(Due to Beyersdorr, Galesi, Lauria [BGL].) Parameters of the game: $a, b \in(1, \infty)$, with $\frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{R}^{+}$,

$$
\varphi=C_{1} \wedge \cdots \wedge C_{L} \notin \mathrm{SAT}
$$

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.
2. DEL either

Asymmetric Prover-Delayer Game

(Due to Beyersdorr, Galesi, Lauria [BGL].) Parameters of the game: $a, b \in(1, \infty)$, with $\frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{R}^{+}$,

$$
\varphi=C_{1} \wedge \cdots \wedge C_{L} \notin \mathrm{SAT}
$$

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.
2. DEL either
2.1 Sets x to F or T, OR

Asymmetric Prover-Delayer Game

(Due to Beyersdorr, Galesi, Lauria [BGL].) Parameters of the game: $a, b \in(1, \infty)$, with $\frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{R}^{+}$,

$$
\varphi=C_{1} \wedge \cdots \wedge C_{L} \notin \mathrm{SAT}
$$

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.
2. DEL either
2.1 Sets x to F or T, OR
2.2 Defers to PROVER.

Asymmetric Prover-Delayer Game

(Due to Beyersdorr, Galesi, Lauria [BGL].) Parameters of the game: $a, b \in(1, \infty)$, with $\frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{R}^{+}$,

$$
\varphi=C_{1} \wedge \cdots \wedge C_{L} \notin \mathrm{SAT}
$$

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.
2. DEL either
2.1 Sets x to F or T, OR
2.2 Defers to PROVER.
2.2.1 If PROVER sets $x=F$ then DEL gets $\lg a$ pts.

Asymmetric Prover-Delayer Game

(Due to Beyersdorr, Galesi, Lauria [BGL].) Parameters of the game: $a, b \in(1, \infty)$, with $\frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{R}^{+}$,

$$
\varphi=C_{1} \wedge \cdots \wedge C_{L} \notin \mathrm{SAT}
$$

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.
2. DEL either
2.1 Sets x to F or T, OR
2.2 Defers to PROVER.
2.2.1 If PROVER sets $x=F$ then DEL gets $\lg a$ pts.
2.2.2 If PROVER sets $x=T$ then DEL gets $\lg b$ pts.

At end if DEL has $\geq p$ pts then he wins; else PROVER wins.

Other Shapes

What is special about rectangles? Nothing! Def (Informally) Let S be a set of at least 2 grid points. Let $\operatorname{GRID}(n, m, c ; S)$ be the prop statement that there is a c-coloring of $G_{n, m}$ with no mono configuration that is "like S ".
Thm (Informally) Let S be a set of at least 2 grid points. Let n, m, c be such that $\operatorname{GRID}(n, m, c ; S) \notin \operatorname{SAT}$. Any tree resolution proof of $\operatorname{GRID}(n, m, c ; S) \notin S A T$ requires size $2^{\Omega(c)}$.

Open Questions

1. Want matching upper bounds for Tree Res Proofs of $\operatorname{GRID}(n, m, c) \notin \operatorname{SAT}$.
2. Want lower bounds on Gen Res Proofs of $\operatorname{GRID}(n, m, c) \notin \operatorname{SAT}$.
3. Want lower bounds on in other proof systems $\operatorname{GRID}(n, m, c) \notin \operatorname{SAT}$.
4. Upper and lower bounds for $\operatorname{GRID}(n, m, c ; S)$ for various S in various proof systems.

Bibliography

BGL O. Beyersdorr, N. Galesi, and M. Lauria. A lower bound for the pigeonhole principle in the tree-like resolution asymmetric prover-delayer games. Information Processing Letters, 110, 2010. The paper and a talk on it are here: http://www.cs.umd.edu/~gasarch/resolution.html.
FGGP S. Fenner, W. Gasarch, C. Glover, and S. Purewal. Rectangle free colorings of grids, 2009.
http://www.cs.umd.edu/~gasarch/papers/papers.html.
PI P. Pudlak and R. Impagliazzo. A lower bound for DLL algorithms for SAT. In Eleventh Symposium on Discrete Algorithms: Proceedings of SODA '00, 2000.
SP B. Steinbach and C. Posthoff. Extremely complex 4-colored rectangle-free grids: Solution of an open multiple-valued problem. In Proceedings of the Forty-Second IEEE International Symposia on Multiple-Valued Logic, 2012. http://www.informatik.tu-freiberg.de/index.php? option=com_content\&task=view\&id=35\&Itemid=63.

