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Number of States for
DFAs and NFAs



DFA and NFA

Recall the theorem:
Thm If L is accepted by an NFA on n states then L is accepted by
a DFA on ≤ 2n states.

We look at languages and see if the NFA is much smaller than the
DFA.
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a is n From the End

Ln = Σ∗aΣn.
Thm Any DFA for Ln requires 2n+1 states.

Let M = (Q,Σ, δ, s,F ) be a DFA for Ln.

Let δ(s,w) be the state M ends up with if w is input.

We show that δ(s,−) restricted to {0, 1}n+1 is an injection, so
there must be 2n+1 states.

Assume w 6= w ′. We show that δ(s,w) 6= δ(s,w ′).

Since w 6= w ′, (∃x , y , y ′) w = xay sw ′ = xby ′.
Key Since |w | = n + 1, |y | = |y ′| ≥ n. So an−|y | makes sense.

Assume, BWOC, δ(s, xay) = δ(s, xby ′). Then

δ(s, xayan−|y |) = δ(s, xby ′an−|y
′|)

But xayan−|y | ∈ Ln and xby ′an−|y
′
/∈ Ln.

That is a contradiction.
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Size of NFA is � Size of
DFA



a is n From the End

Ln = Σ∗aΣn.

1. Every DFA for L requires ≥ 2n+1 states.

2. There is an NFA for L with n + 2 states.

3. There is a CFG for L with O(log n) states (this will be later
in the course).

There are examples where the NFA has n states and any DFA
requires 2n states but they are messy so we omit.
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L = {ai : i 6≡ 0 (mod n)}

0 1 2 . . . n − 1
a a a a
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L = {ai : i 6≡ 0 (mod 35)}

Note

1. If i 6≡ 0 (mod 5) then ai ∈ L (Since 35 ≡ 0 (mod 5).)

2. If i 6≡ 0 (mod 7) then ai ∈ L (Since 35 ≡ 0 (mod 7).)
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Two Helpful DFAs

0 1 2 3 4
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NFA for L = {ai : i 6≡ 0 (mod 35)}

0 1 2 3 4

0 1 2 3 4 5

6
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L = {ai : i 6≡ 0 (mod 35)}

To prove that the NFA in the last slide works we need the
following claim:
Claim If i 6≡ 0 (mod 35) then either

i 6≡ 0 (mod 5) OR i 6≡ 0 (mod 7).

We will restate it and prove it on the next slide.
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L = {ai : i 6≡ 0 (mod 35)}

Claim If i 6≡ 0 (mod 35) then either

i 6≡ 0 (mod 5) OR i 6≡ 0 (mod 7).
Pf We prove contrapositive.
Assume i ≡ 0 (mod 5) AND i ≡ 0 (mod 7).

There exists x such that i = 5x
There exists y such that i = 7y
5x = 7y . So 5 divides 7y .
Since 5,7 have no common factors 5 divides y .
There exists z , y = 5z , so i = 7y = 35z .



L = {ai : i 6≡ 0 (mod 35)}

Claim If i 6≡ 0 (mod 35) then either

i 6≡ 0 (mod 5) OR i 6≡ 0 (mod 7).
Pf We prove contrapositive.
Assume i ≡ 0 (mod 5) AND i ≡ 0 (mod 7).
There exists x such that i = 5x

There exists y such that i = 7y
5x = 7y . So 5 divides 7y .
Since 5,7 have no common factors 5 divides y .
There exists z , y = 5z , so i = 7y = 35z .



L = {ai : i 6≡ 0 (mod 35)}

Claim If i 6≡ 0 (mod 35) then either

i 6≡ 0 (mod 5) OR i 6≡ 0 (mod 7).
Pf We prove contrapositive.
Assume i ≡ 0 (mod 5) AND i ≡ 0 (mod 7).
There exists x such that i = 5x
There exists y such that i = 7y

5x = 7y . So 5 divides 7y .
Since 5,7 have no common factors 5 divides y .
There exists z , y = 5z , so i = 7y = 35z .



L = {ai : i 6≡ 0 (mod 35)}

Claim If i 6≡ 0 (mod 35) then either

i 6≡ 0 (mod 5) OR i 6≡ 0 (mod 7).
Pf We prove contrapositive.
Assume i ≡ 0 (mod 5) AND i ≡ 0 (mod 7).
There exists x such that i = 5x
There exists y such that i = 7y
5x = 7y . So 5 divides 7y .

Since 5,7 have no common factors 5 divides y .
There exists z , y = 5z , so i = 7y = 35z .



L = {ai : i 6≡ 0 (mod 35)}

Claim If i 6≡ 0 (mod 35) then either

i 6≡ 0 (mod 5) OR i 6≡ 0 (mod 7).
Pf We prove contrapositive.
Assume i ≡ 0 (mod 5) AND i ≡ 0 (mod 7).
There exists x such that i = 5x
There exists y such that i = 7y
5x = 7y . So 5 divides 7y .
Since 5,7 have no common factors 5 divides y .

There exists z , y = 5z , so i = 7y = 35z .



L = {ai : i 6≡ 0 (mod 35)}

Claim If i 6≡ 0 (mod 35) then either

i 6≡ 0 (mod 5) OR i 6≡ 0 (mod 7).
Pf We prove contrapositive.
Assume i ≡ 0 (mod 5) AND i ≡ 0 (mod 7).
There exists x such that i = 5x
There exists y such that i = 7y
5x = 7y . So 5 divides 7y .
Since 5,7 have no common factors 5 divides y .
There exists z , y = 5z , so i = 7y = 35z .



L = {ai : i 6≡ 0 (mod 35)}

DFA for L requires 35 states.

NFA for L can be done with 1 + 5 + 7 = 13 states.
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Does this Lang have a
Small NFA?



L = {ai : i 6= 1000}

Any DFA for L requires 1001 states.

Is there an NFA with fewer states?

Vote

1. Any NFA for L requires 1001 states.

2. There is an NFA For L with slightly less than 1001 and this is
roughly optimal (For example there is an NFA with 995
states.)

3. There is an NFA for L with substantially less. (For example
there is an NFA with 500 states.)

I will put you into breakout rooms for this.
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Answer This can be done with 70 states.
This will take a few slides.

And there will be an important moral to the story.
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Sums of 32’s and 33’s

Thm

1. For all n ≥ 992 there exists x , y ∈ N such that n = 32x + 33y .

2. There does not exist x , y ∈ N such that 991 = 32x + 33y .

Write down this theorem! Will prove on next few slides and you
need to know what I am proving.
We will prove this by induction.
Base Case 992 = 32× 31 + 33× 0.
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(∀n ≥ 992)(∃x, y ∈ N)[n = 32x + 33y ]

Inductive Hypothesis n ≥ 993 and (∃x ′, y ′)[n− 1 = 32x ′ + 33y ′].

Intuition Want to swap coins in and out to increase by 1. Can
swap out a 32-coin and put in a 33-coin if I HAVE a 32-coin.
Case 1 x ′ ≥ 1. Then n = 32(x ′ − 1) + 33(y ′ + 1).
Intuition What to do if x ′ = 0. Need to remove some 33’s and add
some 32’s. Use that 32× 32− 31× 33 = 1024− 1023 = 1. Can
swap out 31 33-coins and put in 32 32-coinsif I HAVE 31 33-coins.
Case 2 y ′ ≥ 31. Then n = 32(x ′ + 32) + 33(y ′ − 31).
Case 3 x ′ ≤ 0 and y ′ ≤ 30. Then
n = 32x ′ + 33y ′ ≤ 33× 30 = 990 < 993, so cannot occur.
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swap out a 32-coin and put in a 33-coin if I HAVE a 32-coin.
Case 1 x ′ ≥ 1. Then n = 32(x ′ − 1) + 33(y ′ + 1).
Intuition What to do if x ′ = 0. Need to remove some 33’s and add
some 32’s. Use that 32× 32− 31× 33 = 1024− 1023 = 1. Can
swap out 31 33-coins and put in 32 32-coinsif I HAVE 31 33-coins.
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There is no x, y ∈ N with 991 = 32x + 33y

Pf by contradiction.

Assume there exists x , y ∈ N such that

991 = 32x + 33y

Then

991 ≡ 32x + 33y (mod 32)

31 ≡ 0x + 1y (mod 32)

31 ≡ y (mod 32) So y ≥ 31

991 = 32x + 33y ≥ 32x + 33× 31 = 1023 Contradiction!
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Sums of 32’s and 33’s and ONE 9
Thm
1) For all n ≥ 1001 there exists x , y ∈ N such that
n = 32x + 33y + 9.
2) There does not exist x , y ∈ N such that 1000 = 32x + 33y + 9.

Pf
1) If n ≥ 1001 then n − 9 ≥ 992 so by prior Thm

(∃x , y ∈ N)[n − 9 = 32x + 33y ]

(∃x , y ∈ N)[n = 32x + 33y + 9]

2) Assume, by way of contradiction,

(∃x , y)[1000 = 32x + 33y + 9]

(∃x , y)[992 = 32x + 33y ]

This contradicts prior Thm.
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There Exists an NFA for {ai : i ≥ 1001}

Idea Start state, then 8 states, then a loop of size 33 with a
shortcut at 32. 
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Number of States for {ai : i ≥ 1001}

1. Start state

2. A chain of 9 states including the start state.

3. A loop of 33 states. The shortcut on 32 does not affect the
number of states.

Total number of states: 9 + 33 = 42.
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Still Need {ai : i ≤ 999}

Idea

1000 ≡ 0 (mod 2) SO want to accept {ai : i 6≡ 0 (mod 2)}.
2-state DFA.

1000 ≡ 1 (mod 3) SO want to accept {ai : i 6≡ 1 (mod 3)}.
3-state DFA.

1000 ≡ 0 (mod 5) SO want to accept {ai : i 6≡ 0 (mod 5)}.
5-state DFA.

1000 ≡ 6 (mod 7) SO want to accept {ai : i 6≡ 6 (mod 7)}.
7-state DFA.

1000 ≡ 10 (mod 11) SO want to accept {ai : i 6≡ 10 (mod 11)}.
11-state DFA.
Could go on to 13,17, etc. But we will see we can stop here.
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NFA for {ai : i ≤ 999} AND More, but NOT a1000
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NFA for {ai : i ≤ 999} AND More, but NOT a1000

Thm Let M be the NFA from the last slide.
M(a1000) is rejected. This is obvious.
For all 0 ≤ i ≤ 999, M(ai ) is accepted.
Pf We show that if M(ai ) is rejected then i ≥ 1000. Assume
M(ai ) rejected. Then

i ≡ 0 (mod 2)
i ≡ 1 (mod 3)
i ≡ 0 (mod 5)
i ≡ 6 (mod 7)
i ≡ 10 (mod 11)
Continued on next slide
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NFA for {ai : i ≤ 999} AND More, but NOT a1000

i ≡ 0 (mod 2)
i ≡ 1 (mod 3)
Hence i ≡ 4 (mod 6).

i ≡ 0 (mod 5)
i ≡ 6 (mod 7)

Hence i ≡ 20 (mod 35).

i ≡ 1 (mod 11)

So we have
i ≡ 4 (mod 6)
i ≡ 20 (mod 35)
i ≡ 10 (mod 11).
Continued on next slide
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NFA for {ai : i ≤ 999} AND More, but NOT a1000?

From:
i ≡ 4 (mod 6)
i ≡ 20 (mod 35)
i ≡ 10 (mod 11).
One can show
i ≡ 1000 (mod 6× 35× 11)

So
i ≡ 1000 (mod 2310)
Hence i ≥ 1000.
Recap If ai is rejected then i ≥ 1000.
Hence If i ≤ 999 then ai is accepted.
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How Many States for {ai : i ≤ 999} AND More, but
NOT a1000?

2 + 3 + 5 + 7 + 11 = 28 states.
Plus the start state, so 29.



NFA for {ai : i 6= 1000}

1. We have an NFA on 42 states that accepts {ai : i ≥ 1001}
This includes the start state.

2. We have an NFA on 29 states that accepts {ai : i ≤ 999} and
other stuff, but NOT a1000. This includes the start state.

Take NFA of union using e-transitions for an NFA and do not
count start state twice, so have

42 + 29− 1 = 70 states.
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Interesting Problem, Profound Moral

1. In the Spring of 2015, 2016, 2017, 2018, 2019, 2020, and now
2021 I have given this problem to the students in CMSC 452.

2. Every year almost everyone thinks The NFA requires ∼ n
states. Yaelle and Saadiq thought it!

3. Why is this? They did not know the trick.

4. Moral Lesson Lower bounds are hard! You have to rule out
that someone does not have a very clever trick that you just
had not thought of.
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This was NOT a lecture on Size of NFAs

You thought this was a lecture on sizes of NFAs.

It was not.

1. This was the first lecture on NP-completeness.

2. Just because you cannot think of an algorithm for SAT in P
does not mean that there is not one.

3. It is possible that someone will come up with a technique you
didn’t think of, or some use math you did not know.

4. Is this just a vague possibility?
It just happened to you in a different context!
You thought {ai : i 6= 1000} required a ∼ 1000 state NFA.
But a technique and some math got it to 70 states.

5. Upshot Lower bounds are hard to prove since they must rule
out techniques you have not through of.

6. Respect the difficulty of lower bounds!
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5. Upshot Lower bounds are hard to prove since they must rule
out techniques you have not through of.

6. Respect the difficulty of lower bounds!
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Can We Do Better than 70 States?

For {ai : i 6= 1000}, we had a 70 state NFA.

Can we do better?

Vote:

1. 70 is optimal

2. Can do between 60 and 69

3. Can do between 50 and 59

4. Unknown to science!

Answer: This can be improved to only 59 states.

See next slide.
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Two Tricks Used To Get it to 59 States

1. To get {ai : i ≤ 999}, we used DFAs that picked out specific
values mod {2, 3, 5, 7, 11}.

The same proof works for any set of coprime numbers that
multiply to ≥ 1000.

Optimally, we would use {4, 5, 7, 9}, saving 3 states.

2. To get {ai : i ≥ 1001}, we calculated 32×33−32−33 = 991,
and then added 9 additional states before the loop.

However, we could have instead made the 9th state of the
loop accept, and have the shortcut go to the 9th state instead.

This would save us 8 states, because we still need a distinct
start state.
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Math Needed for {ai : i 6= n} I

Frobenius Thm (aka The Chicken McNugget Thm)

Thm If x , y are relatively prime then

I For all z ≥ xy − x − y + 1 there exists c , d ∈ N such that
z = cx + dy .

I There is no c , d ∈ N such that xy − x − y = cx + dy .

We use this to get an NFA for {ai : i ≥ n + 1} by using x , y ∼
√
n.

Want to get xy − x − y ≤ n so can use the tail to get
xy − x − y + t = n.
This leads to loops and tail that are roughly ≤ 2

√
n states.
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Math Needed for {ai : i 6= n} II

Thm Let n ∈ N. Let q1, . . . , qk be rel prime such that∏k
i=1 qi ≥ n. Then the set of all i such that

i 6≡ n (mod q1).
...
i 6≡ n (mod qk).
Contains {1, . . . , n − 1} and does not contain n

Number theory tells us that can find such a q1, . . . , qk with

k∑
i=1

qi ≤ (log n)2 log log n.

So can use this to get NFA for {ai : i ≤ n− 1} (and other stuff but
not an) with ≤ (log n)2 log log n states.
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From the Last Two Slides

I have not filled in the details, but from the last two slides you can
get that

{ai : i 6= n}

has an NFA of size ≤ 2
√
n + (log n)2 log log n.

One can get it down to ≤
√
n + (log n)2 log log n.

(Paper by Gasarch-Metz-Xu-Shen-Zbarsky.)
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