
BILL AND NATHAN RECORD LECTURE!!!!

BILL AND NATHAN RECORD LECTURE!!!

Regular Expressions

Recognizers vs Generators

Recall:
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/

notes/dfa3.JPG

This, like all DFA’s is a recognizer. You input a string and it says
YES or NO.

We want to write expressions that generate strings.

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

Recognizers vs Generators

Recall:
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/

notes/dfa3.JPG

This, like all DFA’s is a recognizer. You input a string and it says
YES or NO.

We want to write expressions that generate strings.

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

Recognizers vs Generators

Recall:
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/

notes/dfa3.JPG

This, like all DFA’s is a recognizer. You input a string and it says
YES or NO.

We want to write expressions that generate strings.

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. e is a regex. Every σ ∈ Σ is a regex.

2. If α and β are regex then α ∪ β and αβ are regex.

3. If α is a regex then α∗ is a regex.

Need to give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. e is a regex. Every σ ∈ Σ is a regex.

2. If α and β are regex then α ∪ β and αβ are regex.

3. If α is a regex then α∗ is a regex.

Need to give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. e is a regex. Every σ ∈ Σ is a regex.

2. If α and β are regex then α ∪ β and αβ are regex.

3. If α is a regex then α∗ is a regex.

Need to give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. e is a regex. Every σ ∈ Σ is a regex.

2. If α and β are regex then α ∪ β and αβ are regex.

3. If α is a regex then α∗ is a regex.

Need to give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. e is a regex. Every σ ∈ Σ is a regex.

2. If α and β are regex then α ∪ β and αβ are regex.

3. If α is a regex then α∗ is a regex.

Need to give examples and assign meaning.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.

a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.

a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.

a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.

Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

How is Regex related to Regular?

Thm If α is a regular expression then L(α) can be recognized by
an NFA (and hence by a DFA).

Pf By induction on the formation of a regex.
Or by induction on the length of a regex.
Base Case e and {σ} have NFAs.

IH Assume every regex β, |β| < n, L(β) is recog by an NFA.
IS Let α be a regex, |α| = n.
Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH: NFA’s Ni

for αi . Use closure of NFAs under ∪ to get NFA for L(N1)∪ L(N2).
This is NFA for L(α).
Case 2 α = α1 · α2. Similar. Use closure under ·.
Case 3 α = α∗

1. Similar. Use closure under ∗.

How is Regex related to Regular?

Thm If α is a regular expression then L(α) can be recognized by
an NFA (and hence by a DFA).
Pf By induction on the formation of a regex.

Or by induction on the length of a regex.
Base Case e and {σ} have NFAs.

IH Assume every regex β, |β| < n, L(β) is recog by an NFA.
IS Let α be a regex, |α| = n.
Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH: NFA’s Ni

for αi . Use closure of NFAs under ∪ to get NFA for L(N1)∪ L(N2).
This is NFA for L(α).
Case 2 α = α1 · α2. Similar. Use closure under ·.
Case 3 α = α∗

1. Similar. Use closure under ∗.

How is Regex related to Regular?

Thm If α is a regular expression then L(α) can be recognized by
an NFA (and hence by a DFA).
Pf By induction on the formation of a regex.
Or by induction on the length of a regex.

Base Case e and {σ} have NFAs.

IH Assume every regex β, |β| < n, L(β) is recog by an NFA.
IS Let α be a regex, |α| = n.
Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH: NFA’s Ni

for αi . Use closure of NFAs under ∪ to get NFA for L(N1)∪ L(N2).
This is NFA for L(α).
Case 2 α = α1 · α2. Similar. Use closure under ·.
Case 3 α = α∗

1. Similar. Use closure under ∗.

How is Regex related to Regular?

Thm If α is a regular expression then L(α) can be recognized by
an NFA (and hence by a DFA).
Pf By induction on the formation of a regex.
Or by induction on the length of a regex.
Base Case e and {σ} have NFAs.

IH Assume every regex β, |β| < n, L(β) is recog by an NFA.
IS Let α be a regex, |α| = n.
Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH: NFA’s Ni

for αi . Use closure of NFAs under ∪ to get NFA for L(N1)∪ L(N2).
This is NFA for L(α).
Case 2 α = α1 · α2. Similar. Use closure under ·.
Case 3 α = α∗

1. Similar. Use closure under ∗.

How is Regex related to Regular?

Thm If α is a regular expression then L(α) can be recognized by
an NFA (and hence by a DFA).
Pf By induction on the formation of a regex.
Or by induction on the length of a regex.
Base Case e and {σ} have NFAs.

IH Assume every regex β, |β| < n, L(β) is recog by an NFA.

IS Let α be a regex, |α| = n.
Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH: NFA’s Ni

for αi . Use closure of NFAs under ∪ to get NFA for L(N1)∪ L(N2).
This is NFA for L(α).
Case 2 α = α1 · α2. Similar. Use closure under ·.
Case 3 α = α∗

1. Similar. Use closure under ∗.

How is Regex related to Regular?

Thm If α is a regular expression then L(α) can be recognized by
an NFA (and hence by a DFA).
Pf By induction on the formation of a regex.
Or by induction on the length of a regex.
Base Case e and {σ} have NFAs.

IH Assume every regex β, |β| < n, L(β) is recog by an NFA.
IS Let α be a regex, |α| = n.

Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH: NFA’s Ni

for αi . Use closure of NFAs under ∪ to get NFA for L(N1)∪ L(N2).
This is NFA for L(α).
Case 2 α = α1 · α2. Similar. Use closure under ·.
Case 3 α = α∗

1. Similar. Use closure under ∗.

How is Regex related to Regular?

Thm If α is a regular expression then L(α) can be recognized by
an NFA (and hence by a DFA).
Pf By induction on the formation of a regex.
Or by induction on the length of a regex.
Base Case e and {σ} have NFAs.

IH Assume every regex β, |β| < n, L(β) is recog by an NFA.
IS Let α be a regex, |α| = n.
Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH: NFA’s Ni

for αi . Use closure of NFAs under ∪ to get NFA for L(N1)∪ L(N2).
This is NFA for L(α).

Case 2 α = α1 · α2. Similar. Use closure under ·.
Case 3 α = α∗

1. Similar. Use closure under ∗.

How is Regex related to Regular?

Thm If α is a regular expression then L(α) can be recognized by
an NFA (and hence by a DFA).
Pf By induction on the formation of a regex.
Or by induction on the length of a regex.
Base Case e and {σ} have NFAs.

IH Assume every regex β, |β| < n, L(β) is recog by an NFA.
IS Let α be a regex, |α| = n.
Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH: NFA’s Ni

for αi . Use closure of NFAs under ∪ to get NFA for L(N1)∪ L(N2).
This is NFA for L(α).
Case 2 α = α1 · α2. Similar. Use closure under ·.

Case 3 α = α∗
1. Similar. Use closure under ∗.

How is Regex related to Regular?

Thm If α is a regular expression then L(α) can be recognized by
an NFA (and hence by a DFA).
Pf By induction on the formation of a regex.
Or by induction on the length of a regex.
Base Case e and {σ} have NFAs.

IH Assume every regex β, |β| < n, L(β) is recog by an NFA.
IS Let α be a regex, |α| = n.
Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH: NFA’s Ni

for αi . Use closure of NFAs under ∪ to get NFA for L(N1)∪ L(N2).
This is NFA for L(α).
Case 2 α = α1 · α2. Similar. Use closure under ·.
Case 3 α = α∗

1. Similar. Use closure under ∗.

How Does Size of NFA and Regex Compare

If α was of length n then the NFA you get for it has ≤ n states.

Note that this is n not O(n).

How Does Size of NFA and Regex Compare

If α was of length n then the NFA you get for it has ≤ n states.

Note that this is n not O(n).

Useful!

The following algorithm is actually used in grep and other pattern
recognizers

1. Input a regex α which is the pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state blowup
will be reasonable).

4. Run the DFA M on a text to find where the pattern occurs.

Useful!

The following algorithm is actually used in grep and other pattern
recognizers

1. Input a regex α which is the pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state blowup
will be reasonable).

4. Run the DFA M on a text to find where the pattern occurs.

Useful!

The following algorithm is actually used in grep and other pattern
recognizers

1. Input a regex α which is the pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state blowup
will be reasonable).

4. Run the DFA M on a text to find where the pattern occurs.

Useful!

The following algorithm is actually used in grep and other pattern
recognizers

1. Input a regex α which is the pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state blowup
will be reasonable).

4. Run the DFA M on a text to find where the pattern occurs.

Useful!

The following algorithm is actually used in grep and other pattern
recognizers

1. Input a regex α which is the pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state blowup
will be reasonable).

4. Run the DFA M on a text to find where the pattern occurs.

Recap

We have

Regex ⊆ NFA ⊆ DFA

We need
DFA ⊆ Regex

Recap

We have

Regex ⊆ NFA ⊆ DFA

We need
DFA ⊆ Regex

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M ends up in if start at q and feed in the string w

What about the empty string?

δ(q, e) = q.

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M ends up in if start at q and feed in the string w

What about the empty string?

δ(q, e) = q.

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M ends up in if start at q and feed in the string w

What about the empty string?

δ(q, e) = q.

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M ends up in if start at q and feed in the string w

What about the empty string?

δ(q, e) = q.

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M ends up in if start at q and feed in the string w

What about the empty string?

δ(q, e) = q.

DFA ⊆ REGEX

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Why? That seems like way more than we need.

Dynamic Programming We will use all of this information to get
our final answer.

DFA ⊆ REGEX

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Why? That seems like way more than we need.

Dynamic Programming We will use all of this information to get
our final answer.

DFA ⊆ REGEX

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Why? That seems like way more than we need.

Dynamic Programming We will use all of this information to get
our final answer.

DFA ⊆ REGEX

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Why? That seems like way more than we need.

Dynamic Programming We will use all of this information to get
our final answer.

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for R(i , j , k).

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for R(i , j , k).

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for R(i , j , k).

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for R(i , j , k).

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for R(i , j , k).

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then it
must just be a transition.
Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then it
must just be a transition.
Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then it
must just be a transition.

Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then it
must just be a transition.
Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then it
must just be a transition.
Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n, R(i , j , k)
is a Regex.

2. A dynamic program that computes all R(i , j , k).

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n, R(i , j , k)
is a Regex.

2. A dynamic program that computes all R(i , j , k).

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n, R(i , j , k)
is a Regex.

2. A dynamic program that computes all R(i , j , k).

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n, R(i , j , k)
is a Regex.

2. A dynamic program that computes all R(i , j , k).

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n, R(i , j , k)
is a Regex.

2. A dynamic program that computes all R(i , j , k).

Inductive Step R(i , j , k) as a Picture

i

k

j

R
(i , k , k −

1)

R(k , k , k − 1)

R
(k
, j
, k
−

1)

Complete Proof on One Slide

For all 1 ≤ i , j ≤ n:

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(3)

All R(i , j , 0) are Regex.

For all 1 ≤ i , j ≤ n and all 0 ≤ k ≤ n

R(i , j , k) = R(i , j , k−1)
⋃

R(i , k , k−1)R(k , k, k−1)∗R(k , j , k−1)

If ALL R(i , j , k − 1) are Regex, then ALL R(i , j , k) are Regex.

Complete Proof on One Slide

For all 1 ≤ i , j ≤ n:

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(3)

All R(i , j , 0) are Regex.

For all 1 ≤ i , j ≤ n and all 0 ≤ k ≤ n

R(i , j , k) = R(i , j , k−1)
⋃

R(i , k , k−1)R(k , k, k−1)∗R(k , j , k−1)

If ALL R(i , j , k − 1) are Regex, then ALL R(i , j , k) are Regex.

Complete Proof on One Slide

For all 1 ≤ i , j ≤ n:

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(3)

All R(i , j , 0) are Regex.

For all 1 ≤ i , j ≤ n and all 0 ≤ k ≤ n

R(i , j , k) = R(i , j , k−1)
⋃

R(i , k , k−1)R(k , k, k−1)∗R(k , j , k−1)

If ALL R(i , j , k − 1) are Regex, then ALL R(i , j , k) are Regex.

Complete Proof on One Slide

For all 1 ≤ i , j ≤ n:

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(3)

All R(i , j , 0) are Regex.

For all 1 ≤ i , j ≤ n and all 0 ≤ k ≤ n

R(i , j , k) = R(i , j , k−1)
⋃

R(i , k , k−1)R(k , k, k−1)∗R(k , j , k−1)

If ALL R(i , j , k − 1) are Regex, then ALL R(i , j , k) are Regex.

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to be
O(1) length.

How long is {a, b}n?
{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal def on
next page).
{a, b}∗a{a, b}n is a textbook regular expression of length O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to be
O(1) length.
How long is {a, b}n?

{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal def on
next page).
{a, b}∗a{a, b}n is a textbook regular expression of length O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to be
O(1) length.
How long is {a, b}n?
{a, b}n is not a regex.

{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal def on
next page).
{a, b}∗a{a, b}n is a textbook regular expression of length O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to be
O(1) length.
How long is {a, b}n?
{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!

Def A textbook regex is one that allow exponents (formal def on
next page).
{a, b}∗a{a, b}n is a textbook regular expression of length O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to be
O(1) length.
How long is {a, b}n?
{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal def on
next page).

{a, b}∗a{a, b}n is a textbook regular expression of length O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to be
O(1) length.
How long is {a, b}n?
{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal def on
next page).
{a, b}∗a{a, b}n is a textbook regular expression of length O(log n).

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is a
trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is a
trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is a
trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is a
trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is a
trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is a
trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.

A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is a
trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Regex vs Trex For Length

Ln = Σ∗aΣn

Ln has a length O(n) regex

Ln has a length O(log n) trex

Need a lower bound for length of regex for Ln.
Can we show that every regex for Ln requires length f (n) for some
f (n) where log n� f (n)?
Breakout Rooms!

Regex vs Trex For Length

Ln = Σ∗aΣn

Ln has a length O(n) regex

Ln has a length O(log n) trex

Need a lower bound for length of regex for Ln.
Can we show that every regex for Ln requires length f (n) for some
f (n) where log n� f (n)?
Breakout Rooms!

Regex vs Trex For Length

Ln = Σ∗aΣn

Ln has a length O(n) regex

Ln has a length O(log n) trex

Need a lower bound for length of regex for Ln.
Can we show that every regex for Ln requires length f (n) for some
f (n) where log n� f (n)?
Breakout Rooms!

Regex vs Trex For Length

Ln = Σ∗aΣn

Ln has a length O(n) regex

Ln has a length O(log n) trex

Need a lower bound for length of regex for Ln.
Can we show that every regex for Ln requires length f (n) for some
f (n) where log n� f (n)?

Breakout Rooms!

Regex vs Trex For Length

Ln = Σ∗aΣn

Ln has a length O(n) regex

Ln has a length O(log n) trex

Need a lower bound for length of regex for Ln.
Can we show that every regex for Ln requires length f (n) for some
f (n) where log n� f (n)?
Breakout Rooms!

Regex vs Trex For Length: Breakout Rooms!

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length: Breakout Rooms!

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length: Breakout Rooms!

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length: Breakout Rooms!

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length: Breakout Rooms!

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length: Breakout Rooms!

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.

Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length: Breakout Rooms!

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L above.

2. CON The mathematical theory is not as clean. Maybe only
people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L above.

2. CON The mathematical theory is not as clean. Maybe only
people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L above.

2. CON The mathematical theory is not as clean. Maybe only
people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L above.

2. CON The mathematical theory is not as clean. Maybe only
people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L above.

2. CON The mathematical theory is not as clean.

Maybe only
people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L above.

2. CON The mathematical theory is not as clean. Maybe only
people like me care.

BILL AND NATHAN STOP RECORDING
LECTURE!!!!

BILL AND NATHAN STOP RECORDING LECTURE!!!

