BILL AND NATHAN RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

BILL AND NATHAN RECORD LECTURE!!!

Regular Expressions

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Recognizers vs Generators

Recall:

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG

Recognizers vs Generators

Recall:

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG

This, like all DFA's is a **recognizer**. You input a string and it says YES or NO.

Recognizers vs Generators

Recall:

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG

This, like all DFA's is a **recognizer**. You input a string and it says YES or NO.

We want to write expressions that generate strings.

All the cool kids call them regex. **Def**

All the cool kids call them regex. **Def**

1. *e* is a regex. Every $\sigma \in \Sigma$ is a regex.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

All the cool kids call them regex. **Def**

- 1. *e* is a regex. Every $\sigma \in \Sigma$ is a regex.
- 2. If α and β are regex then $\alpha \cup \beta$ and $\alpha\beta$ are regex.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

All the cool kids call them regex. **Def**

- 1. *e* is a regex. Every $\sigma \in \Sigma$ is a regex.
- 2. If α and β are regex then $\alpha \cup \beta$ and $\alpha\beta$ are regex.

3. If α is a regex then α^* is a regex.

All the cool kids call them regex. **Def**

- 1. *e* is a regex. Every $\sigma \in \Sigma$ is a regex.
- 2. If α and β are regex then $\alpha \cup \beta$ and $\alpha\beta$ are regex.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

3. If α is a regex then α^* is a regex.

Need to give examples and assign meaning.

A regex represents a set

A regex represents a set

a is a regex. It represents $\{a\}$.

- A regex represents a set
- a is a regex. It represents $\{a\}$.
- a^* is a regex. It represents $\{e, a, aa, aaa, \ldots\}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

- A regex represents a set
- a is a regex. It represents $\{a\}$.
- a^* is a regex. It represents $\{e, a, aa, aaa, \ldots\}$.
- a^*b is a regex. It represents $\{b, ab, aab, aaab, \ldots\}$.

A regex represents a set *a* is a regex. It represents $\{a\}$. *a*^{*} is a regex. It represents $\{e, a, aa, aaa, \ldots\}$. *a*^{*}*b* is a regex. It represents $\{b, ab, aab, aaab, \ldots\}$. *a*^{*}*b* \cup *b*^{*} is a regex. You can guess what it represents.

A regex represents a set

a is a regex. It represents $\{a\}$.

 a^* is a regex. It represents $\{e, a, aa, aaa, \ldots\}$.

 a^*b is a regex. It represents $\{b, ab, aab, aaab, \ldots\}$.

 $a^*b \cup b^*$ is a regex. You can guess what it represents. **Def** If α is a regex then $L(\alpha)$ is the set of strings it generates.

ション ふゆ アメビア メロア しょうくしゃ

Thm If α is a regular expression then $L(\alpha)$ can be recognized by an NFA (and hence by a DFA).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Thm If α is a regular expression then $L(\alpha)$ can be recognized by an NFA (and hence by a DFA). **Pf** By induction on the **formation** of a regex.

Thm If α is a regular expression then $L(\alpha)$ can be recognized by an NFA (and hence by a DFA). **Pf** By induction on the **formation** of a regex. Or by induction on the **length** of a regex.

ション ふゆ アメビア メロア しょうくしゃ

Thm If α is a regular expression then $L(\alpha)$ can be recognized by an NFA (and hence by a DFA). **Pf** By induction on the **formation** of a regex. Or by induction on the **length** of a regex. **Base Case** *e* and $\{\sigma\}$ have NFAs.

ション ふゆ アメビア メロア しょうくしゃ

Thm If α is a regular expression then $L(\alpha)$ can be recognized by an NFA (and hence by a DFA). **Pf** By induction on the **formation** of a regex. Or by induction on the **length** of a regex. **Base Case** *e* and $\{\sigma\}$ have NFAs.

ション ふゆ アメビア メロア しょうくしゃ

IH Assume every regex β , $|\beta| < n$, $L(\beta)$ is recog by an NFA.

Thm If α is a regular expression then $L(\alpha)$ can be recognized by an NFA (and hence by a DFA). **Pf** By induction on the **formation** of a regex. Or by induction on the **length** of a regex. **Base Case** *e* and $\{\sigma\}$ have NFAs.

IH Assume every regex β , $|\beta| < n$, $L(\beta)$ is recog by an NFA. **IS** Let α be a regex, $|\alpha| = n$.

ション ふゆ アメビア メロア しょうくしゃ

Thm If α is a regular expression then $L(\alpha)$ can be recognized by an NFA (and hence by a DFA). **Pf** By induction on the **formation** of a regex.

Or by induction on the **length** of a regex.

Base Case e and $\{\sigma\}$ have NFAs.

IH Assume every regex β , $|\beta| < n$, $L(\beta)$ is recog by an NFA.

IS Let α be a regex, $|\alpha| = n$.

Case 1 $\alpha = \alpha_1 \cup \alpha_2$. Since $|\alpha_1| < n$, $|\alpha_2| < n$, apply IH: NFA's N_i for α_i . Use closure of NFAs under \cup to get NFA for $L(N_1) \cup L(N_2)$. This is NFA for $L(\alpha)$.

Thm If α is a regular expression then $L(\alpha)$ can be recognized by an NFA (and hence by a DFA).

Pf By induction on the **formation** of a regex.

Or by induction on the **length** of a regex.

Base Case e and $\{\sigma\}$ have NFAs.

IH Assume every regex β , $|\beta| < n$, $L(\beta)$ is recog by an NFA. **IS** Let α be a regex, $|\alpha| = n$.

Case 1 $\alpha = \alpha_1 \cup \alpha_2$. Since $|\alpha_1| < n$, $|\alpha_2| < n$, apply IH: NFA's N_i for α_i . Use closure of NFAs under \cup to get NFA for $L(N_1) \cup L(N_2)$. This is NFA for $L(\alpha)$.

Case 2 $\alpha = \alpha_1 \cdot \alpha_2$. Similar. Use closure under \cdot .

Thm If α is a regular expression then $L(\alpha)$ can be recognized by an NFA (and hence by a DFA).

Pf By induction on the **formation** of a regex.

Or by induction on the length of a regex.

Base Case e and $\{\sigma\}$ have NFAs.

IH Assume every regex β , $|\beta| < n$, $L(\beta)$ is recog by an NFA. **IS** Let α be a regex, $|\alpha| = n$.

Case 1 $\alpha = \alpha_1 \cup \alpha_2$. Since $|\alpha_1| < n$, $|\alpha_2| < n$, apply IH: NFA's N_i for α_i . Use closure of NFAs under \cup to get NFA for $L(N_1) \cup L(N_2)$. This is NFA for $L(\alpha)$.

Case 2 $\alpha = \alpha_1 \cdot \alpha_2$. Similar. Use closure under \cdot . **Case 3** $\alpha = \alpha_1^*$. Similar. Use closure under *.

・ロト ・西ト ・ヨト ・ヨー うへぐ

How Does Size of NFA and Regex Compare

If α was of length *n* then the NFA you get for it has $\leq n$ states.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

How Does Size of NFA and Regex Compare

If α was of length n then the NFA you get for it has $\leq \textit{n}$ states.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Note that this is n not O(n).

The following algorithm is actually used in grep and other pattern recognizers

The following algorithm is actually used in grep and other pattern recognizers

1. Input a regex α which is the pattern you want to search for.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The following algorithm is actually used in grep and other pattern recognizers

1. Input a regex α which is the pattern you want to search for.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

2. Create an NFA N for α as in the last slide.

The following algorithm is actually used in grep and other pattern recognizers

- 1. Input a regex α which is the pattern you want to search for.
- 2. Create an NFA N for α as in the last slide.
- 3. Convert the NFA N to a DFA M (usually the state blowup will be reasonable).

The following algorithm is actually used in grep and other pattern recognizers

- 1. Input a regex α which is the pattern you want to search for.
- 2. Create an NFA N for α as in the last slide.
- 3. Convert the NFA *N* to a DFA *M* (usually the state blowup will be reasonable).
- 4. Run the DFA M on a text to find where the pattern occurs.

We have

$\mathsf{Regex} \subseteq \mathsf{NFA} \subseteq \mathsf{DFA}$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

We have

 $\mathsf{Regex} \subseteq \mathsf{NFA} \subseteq \mathsf{DFA}$

We need

 $\mathsf{DFA}\subseteq\mathsf{Regex}$

Notation: $\delta(q, w)$

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ we note that

 $\delta: Q \times \Sigma \rightarrow Q.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Notation: $\delta(q, w)$

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ we note that

 $\delta: Q \times \Sigma \to Q.$

We can extend δ to strings

 $\delta: Q \times \Sigma^* \to Q.$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や
Notation: $\delta(q, w)$

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ we note that

 $\delta: Q \times \Sigma \to Q.$

We can extend δ to strings

$$\delta: Q \times \Sigma^* \to Q.$$

 $\delta(q, w) =$ State that M ends up in if start at q and feed in the string w

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Notation: $\delta(q, w)$

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ we note that

 $\delta: Q \times \Sigma \to Q.$

We can extend δ to strings

$$\delta: Q \times \Sigma^* \to Q.$$

 $\delta(q, w) =$ State that M ends up in if start at q and feed in the string w

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

What about the empty string?

Notation: $\delta(q, w)$

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ we note that

 $\delta: Q \times \Sigma \to Q.$

We can extend δ to strings

$$\delta: Q \times \Sigma^* \to Q.$$

 $\delta(q, w) =$ State that M ends up in if start at q and feed in the string w

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

What about the empty string?

$$\delta(q,e)=q.$$

$\mathbf{DFA} \subseteq \mathbf{REGEX}$

Given a DFA M we want a Regex for L(M).

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state *i* to state *j*.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state *i* to state *j*.

Why? That seems like way more than we need.

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state *i* to state *j*.

Why? That seems like way more than we need.

Dynamic Programming We will use all of this information to get our final answer.

Will assume *M* has state set $\{1, \ldots, n\}$. I wrote on the last slide:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Will assume M has state set $\{1, \ldots, n\}$. I wrote on the last slide:

Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state *i* to state *j*.

```
Will assume M has state set \{1, \ldots, n\}.
I wrote on the last slide:
```

Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j.

ション ふゆ アメビア メロア しょうくしゃ

Actually we will find out a lot more information. Will assume M has state set $\{1, \ldots, n\}$.

Will assume M has state set $\{1, \ldots, n\}$. I wrote on the last slide:

Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state *i* to state *j*.

Actually we will find out a lot more information. Will assume M has state set $\{1, \ldots, n\}$.

 $R(i,j,k) = \{w : \delta(i,w) = j \text{ but only use states in } \{1,\ldots,k\} \}.$

Will assume M has state set $\{1, \ldots, n\}$. I wrote on the last slide:

Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state *i* to state *j*.

Actually we will find out a lot more information. Will assume M has state set $\{1, \ldots, n\}$.

 $R(i,j,k) = \{w : \delta(i,w) = j \text{ but only use states in } \{1,\ldots,k\} \}.$

For all $1 \le i, j \le n$ $0 \le k \le n$, we will find a regex for R(i, j, k).

 $R(i,j,k) = \{w : \delta(i,w) = j \text{ but only use states in } \{1,\ldots,k\} \}.$

 $R(i,j,k) = \{w : \delta(i,w) = j \text{ but only use states in } \{1,\ldots,k\} \}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We will first find Regex for R(i, j, 0) for all $1 \le i, j \le n$.

 $R(i,j,k) = \{w : \delta(i,w) = j \text{ but only use states in } \{1,\ldots,k\} \}.$

We will first find Regex for R(i, j, 0) for all $1 \le i, j \le n$. What is R(i, j, 0)? If a string goes from *i* to *j* with **no intermediary states** then it must just be a transition.

 $R(i,j,k) = \{w : \delta(i,w) = j \text{ but only use states in } \{1,\ldots,k\} \}.$

We will first find Regex for R(i, j, 0) for all $1 \le i, j \le n$. What is R(i, j, 0)? If a string goes from *i* to *j* with **no intermediary states** then it must just be a transition. Or i = j and the string that is *e*.

 $R(i,j,k) = \{w : \delta(i,w) = j \text{ but only use states in } \{1,\ldots,k\} \}.$

We will first find Regex for R(i, j, 0) for all $1 \le i, j \le n$. What is R(i, j, 0)? If a string goes from *i* to *j* with **no intermediary states** then it must just be a transition. Or i = j and the string that is *e*.

$$R(i,j,0) = \begin{cases} \{\sigma : \delta(i,\sigma) = j\} & \text{if } i \neq j \} \\ \{\sigma : \delta(i,\sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(1)

$$R(i,j,0) = \begin{cases} \{\sigma : \delta(i,\sigma) = j\} & \text{if } i \neq j \} \\ \{\sigma : \delta(i,\sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(2)

*ロト *昼 * * ミ * ミ * ミ * のへぐ

$$R(i,j,0) = \begin{cases} \{\sigma : \delta(i,\sigma) = j\} & \text{if } i \neq j \} \\ \{\sigma : \delta(i,\sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(2)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

In both cases R(i, j, 0) can be expressed as a Regex.

$$R(i,j,0) = \begin{cases} \{\sigma : \delta(i,\sigma) = j\} & \text{if } i \neq j \} \\ \{\sigma : \delta(i,\sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(2)

ション ふゆ アメビア メロア しょうくしゃ

In both cases R(i, j, 0) can be expressed as a Regex.

We will now assume that for all $1 \le i, j \le n$, R(i, j, k - 1) is a Regex and prove that for all $1 \le i, j \le n$, R(i, j, k) is a Regex.

$$R(i,j,0) = \begin{cases} \{\sigma : \delta(i,\sigma) = j\} & \text{if } i \neq j \} \\ \{\sigma : \delta(i,\sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(2)

ション ふゆ アメビア メロア しょうくしゃ

In both cases R(i, j, 0) can be expressed as a Regex.

We will now assume that for all $1 \le i, j \le n$, R(i, j, k - 1) is a Regex and prove that for all $1 \le i, j \le n$, R(i, j, k) is a Regex.

This is both of the following:

$$R(i,j,0) = \begin{cases} \{\sigma : \delta(i,\sigma) = j\} & \text{if } i \neq j \} \\ \{\sigma : \delta(i,\sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(2)

In both cases R(i, j, 0) can be expressed as a Regex.

We will now assume that for all $1 \le i, j \le n$, R(i, j, k - 1) is a Regex and prove that for all $1 \le i, j \le n$, R(i, j, k) is a Regex.

This is both of the following:

- 1. A proof by induction on k that, for all $1 \le i, j \le n$, R(i, j, k) is a Regex.
- 2. A dynamic program that computes all R(i, j, k).

Inductive Step R(i, j, k) as a Picture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

For all
$$1 \le i, j \le n$$
:

$$R(i, j, 0) = \begin{cases} \{\sigma : \delta(i, \sigma) = j\} & \text{if } i \ne j \} \\ \{\sigma : \delta(i, \sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(3)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

For all
$$1 \le i, j \le n$$
:

$$R(i, j, 0) = \begin{cases} \{\sigma : \delta(i, \sigma) = j\} & \text{if } i \ne j \} \\ \{\sigma : \delta(i, \sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(3)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

All R(i, j, 0) are Regex.

For all
$$1 \le i, j \le n$$
:

$$R(i, j, 0) = \begin{cases} \{\sigma : \delta(i, \sigma) = j\} & \text{if } i \ne j \} \\ \{\sigma : \delta(i, \sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(3)

All R(i, j, 0) are Regex. For all $1 \le i, j \le n$ and all $0 \le k \le n$

 $R(i,j,k) = R(i,j,k-1) \bigcup R(i,k,k-1)R(k,k,k-1)^*R(k,j,k-1)$

For all
$$1 \le i, j \le n$$
:

$$R(i, j, 0) = \begin{cases} \{\sigma : \delta(i, \sigma) = j\} & \text{if } i \ne j \} \\ \{\sigma : \delta(i, \sigma) = j\} \cup \{e\} & \text{if } i = j \end{cases}$$
(3)

All R(i,j,0) are Regex. For all $1 \leq i,j \leq n$ and all $0 \leq k \leq n$

 $R(i,j,k) = R(i,j,k-1) \bigcup R(i,k,k-1)R(k,k,k-1)^*R(k,j,k-1)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If ALL R(i, j, k - 1) are Regex, then ALL R(i, j, k) are Regex.

Recall that lang $\{a, b\}^* a \{a, b\}^n$.

- 1. DFA requires 2^{n+1} states.
- 2. NFA can be done with n + 2 states.
- How long is the regex for it? Regard the {a, b}*a part to be O(1) length.

Recall that lang $\{a, b\}^* a \{a, b\}^n$.

- 1. DFA requires 2^{n+1} states.
- 2. NFA can be done with n + 2 states.
- How long is the regex for it? Regard the {a, b}*a part to be O(1) length. How long is {a, b}ⁿ?

Recall that lang $\{a, b\}^* a \{a, b\}^n$.

- 1. DFA requires 2^{n+1} states.
- 2. NFA can be done with n + 2 states.
- 3. How long is the regex for it? Regard the {a, b}*a part to be O(1) length.
 How long is {a, b}ⁿ?
 {a, b}ⁿ is not a regex.

ション ふゆ アメビア メロア しょうくしゃ

Recall that lang $\{a, b\}^* a \{a, b\}^n$.

- 1. DFA requires 2^{n+1} states.
- 2. NFA can be done with n + 2 states.
- 3. How long is the regex for it? Regard the {a, b}*a part to be O(1) length.
 How long is {a, b}ⁿ?
 {a, b}ⁿ is not a regex.
 {a, b}{a, b} ··· {a, b} is a regex, so length O(n).

However one sees things like $\{a, b\}^n$ in textbooks all the time!

Recall that lang $\{a, b\}^* a \{a, b\}^n$.

- 1. DFA requires 2^{n+1} states.
- 2. NFA can be done with n + 2 states.
- 3. How long is the regex for it? Regard the {a, b}*a part to be O(1) length.
 How long is {a, b}ⁿ?
 {a, b}ⁿ is not a regex.
 {a, b}{a, b} ··· {a, b} is a regex, so length O(n).

However one sees things like $\{a, b\}^n$ in textbooks all the time! **Def** A **textbook regex** is one that allow exponents (formal def on next page).

Recall that lang $\{a, b\}^* a \{a, b\}^n$.

- 1. DFA requires 2^{n+1} states.
- 2. NFA can be done with n + 2 states.
- 3. How long is the regex for it? Regard the {a, b}*a part to be O(1) length.
 How long is {a, b}ⁿ?
 {a, b}ⁿ is not a regex.
 {a, b}{a, b} ··· {a, b} is a regex, so length O(n).

However one sees things like $\{a, b\}^n$ in textbooks all the time! **Def** A **textbook regex** is one that allow exponents (formal def on next page). $\{a, b\}^*a\{a, b\}^n$ is a textbook regular expression of length $O(\log n)$.

Textbook Regular Expressions over Σ

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

All the cool kids call them **trex**. **Def**

Textbook Regular Expressions over Σ

All the cool kids call them trex. Def

1. *e* is a trex. Every $\sigma \in \Sigma$ is a trex.

Textbook Regular Expressions over Σ

All the cool kids call them trex. Def

- 1. *e* is a trex. Every $\sigma \in \Sigma$ is a trex.
- 2. If α and β are trex then $\alpha \cup \beta$ and $\alpha\beta$ are trex.
All the cool kids call them **trex**. **Def**

- 1. *e* is a trex. Every $\sigma \in \Sigma$ is a trex.
- 2. If α and β are trex then $\alpha \cup \beta$ and $\alpha\beta$ are trex.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

3. If α is a trex then α^* is a trex.

All the cool kids call them **trex**. **Def**

- 1. *e* is a trex. Every $\sigma \in \Sigma$ is a trex.
- 2. If α and β are trex then $\alpha \cup \beta$ and $\alpha\beta$ are trex.
- 3. If α is a trex then α^* is a trex.
- 4. (This is the new step.) If α is a trex and $n \in \mathbb{N}$ then α^n is a trex. We write n in binary so length is $|\alpha| + \lg n + O(1)$.

ション ふぼう メリン メリン しょうくしゃ

All the cool kids call them **trex**. **Def**

- 1. *e* is a trex. Every $\sigma \in \Sigma$ is a trex.
- 2. If α and β are trex then $\alpha \cup \beta$ and $\alpha\beta$ are trex.
- 3. If α is a trex then α^* is a trex.
- 4. (This is the new step.) If α is a trex and $n \in \mathbb{N}$ then α^n is a trex. We write n in binary so length is $|\alpha| + \lg n + O(1)$.

ション ふぼう メリン メリン しょうくしゃ

Clearly

there is a regex for L iff there is a trex for L.

All the cool kids call them **trex**. **Def**

- 1. *e* is a trex. Every $\sigma \in \Sigma$ is a trex.
- 2. If α and β are trex then $\alpha \cup \beta$ and $\alpha\beta$ are trex.
- 3. If α is a trex then α^* is a trex.
- 4. (This is the new step.) If α is a trex and $n \in \mathbb{N}$ then α^n is a trex. We write n in binary so length is $|\alpha| + \lg n + O(1)$.

Clearly

there is a regex for L iff there is a trex for L.

A trex may give a much shorter expression than a regex.

 $L_n = \Sigma^* a \Sigma^n$

 $L_n = \Sigma^* a \Sigma^n$

 L_n has a length O(n) regex

 $L_n = \Sigma^* a \Sigma^n$ L_n has a length O(n) regex L_n has a length $O(\log n)$ trex

 $L_n = \Sigma^* a \Sigma^n$

 L_n has a length O(n) regex

 L_n has a length $O(\log n)$ trex

Need a lower bound for length of regex for L_n .

Can we show that every regex for L_n requires length f(n) for some f(n) where log $n \ll f(n)$?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $L_n = \Sigma^* a \Sigma^n$

 L_n has a length O(n) regex

 L_n has a length $O(\log n)$ trex

Need a lower bound for length of regex for L_n .

Can we show that every regex for L_n requires length f(n) for some f(n) where log $n \ll f(n)$? Breakout Rooms!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Assume there is a regex for L_n of size f(n) (we pick f(n) later).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume there is a regex for L_n of size f(n) (we pick f(n) later). Then there is an NFA for L_n of size f(n).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Assume there is a regex for L_n of size f(n) (we pick f(n) later). Then there is an NFA for L_n of size f(n). Then there is a DFA for L_n of size $2^{f(n)}$.

Assume there is a regex for L_n of size f(n) (we pick f(n) later). Then there is an NFA for L_n of size f(n). Then there is a DFA for L_n of size $2^{f(n)}$. Any DFA for L_n has $\geq 2^{n+1}$.

Assume there is a regex for L_n of size f(n) (we pick f(n) later). Then there is an NFA for L_n of size f(n). Then there is a DFA for L_n of size $2^{f(n)}$. Any DFA for L_n has $\geq 2^{n+1}$. Need $2^{f(n)} < 2^{n+1}$ to get a contradiction.

Assume there is a regex for L_n of size f(n) (we pick f(n) later). Then there is an NFA for L_n of size f(n). Then there is a DFA for L_n of size $2^{f(n)}$. Any DFA for L_n has $\ge 2^{n+1}$. Need $2^{f(n)} < 2^{n+1}$ to get a contradiction. f(n) = n will suffice.

Assume there is a regex for L_n of size f(n) (we pick f(n) later). Then there is an NFA for L_n of size f(n). Then there is a DFA for L_n of size $2^{f(n)}$. Any DFA for L_n has $\ge 2^{n+1}$. Need $2^{f(n)} < 2^{n+1}$ to get a contradiction. f(n) = n will suffice. **Upshot** There is a lang L_n with a trex of size $O(\log n)$ but the regex requires > n. Great! We have a large size difference.

うしん 同一人用 人用 人用 人口 マ

Regex and trex:

Regex and trex:

1. **PRO** Clean mathematical theory, closed under many operations

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Regex and trex:

- 1. **PRO** Clean mathematical theory, closed under many operations
- 2. CON There are many patterns we cannot express such as

$$L = \{a^n b^n : n \in \mathbb{N}\}$$

Perl Regex and Java Regex (which I won't define)

Regex and trex:

- 1. **PRO** Clean mathematical theory, closed under many operations
- 2. CON There are many patterns we cannot express such as

$$L = \{a^n b^n : n \in \mathbb{N}\}$$

Perl Regex and Java Regex (which I won't define)

1. **PRO** Can express many non-regular patterns such as *L* above.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Regex and trex:

- 1. **PRO** Clean mathematical theory, closed under many operations
- 2. CON There are many patterns we cannot express such as

$$L = \{a^n b^n : n \in \mathbb{N}\}$$

Perl Regex and Java Regex (which I won't define)

1. **PRO** Can express many non-regular patterns such as *L* above.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

2. CON The mathematical theory is not as clean.

Regex and trex:

- 1. **PRO** Clean mathematical theory, closed under many operations
- 2. CON There are many patterns we cannot express such as

$$L = \{a^n b^n : n \in \mathbb{N}\}$$

Perl Regex and Java Regex (which I won't define)

1. **PRO** Can express many non-regular patterns such as *L* above.

 CON The mathematical theory is not as clean. Maybe only people like me care.

BILL AND NATHAN STOP RECORDING LECTURE!!!!

BILL AND NATHAN STOP RECORDING LECTURE!!!

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで