
Good but still Exp Algorithms for 3SAT

Exposition by William Gasarch



Credit Where Credit is Due

This talk is based on parts of the following AWESOME books:

The Satisfiability Problem SAT, Algorithms and Analyzes
by

Uwe Schoning and Jacobo Torán

Exact Exponential Algorithms
by

Fedor Formin and Dieter Kratsch



Other Sources

Sources on SAT Solvers

1. The Satisfiability Problem SAT, Algorithms and Analyzes by
Uwe Schoning and Jacobo Torán. Available from UMCP
Library as ebook.

2. Exact Exponential Algorithms by Fedor Formin and Dieter
Kratsch. See here:
ExactExpAlg.pdf

3. Algorithms for the Satisfiability Problem, PhD thesis by Rolf:
SATRolf.pdf

4. Algorithms for the Satisfiability Problem, Book by Franco and
Weaver:
SATFW.pdf

ExactExpAlg.pdf
SATRolf.pdf
SATFW.pdf


This Lecture is Unusual!

Typical topics:

1. Define P, NP, NP-complete.

2. NP-complete means Probably Hard (see next slide).

3. Prove SAT is NP-complete

4. Show some other problems NP-complete

5. Boo :-( These NP-complete problems are hard!

6. OH- there are some things you can do about that:
Approximations, clever techniques to make brute force a bit
better (this talk).

Usually the last item is an afterthought in a course like this.
So why am I talking about this at the beginning of the
NP-complete section?

NP-completeness is often presented as the end of the story, I want
to counter that.
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PET Problems

One of the early names proposed for NP-complete problems
(before NP-complete became standard) was PET-problems. Why?
Now it stands for

Probably Exponential time

If P 6= NP is proven then it stands for
Provably Exponential time

If P = NP is proven then it stands for
Previously Exponential time
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OUR GOAL

We will show algorithms for 3SAT that

1. Run in time O(αn) for various 1 < α < 2. Some will be
randomized algorithms.
Note By O(αn) we really mean O(p(n)αn) where p is a poly.
We ignore such factors.

2. Quite likely run even better in practice, or modifications of
them do.



T and F in Formulas

Note In terms of being satisfied:

(x1 ∨ x2 ∨ F ) ∧ (¬x1 ∨ x3) ≡ (x1 ∨ x2) ∧ (¬x1 ∨ x3)

Rule: F can be removed. But see next example for caveat.

(F ∨ F ∨ F ) ∧ (¬x1 ∨ x3) ≡ F

Rule: If all literals in a clause are F then F, so NOT satisfiable.

(x1 ∨ x2 ∨ T ) ∧ (¬x1 ∨ x3) ≡ (¬x1 ∨ x3)

Rule: If T is in a clause the entire clause can be removed.



Standard Format for Formulas and Many Examples

DIMACS has run several SAT SOLVING competitions.
They use a standard format for formulas and have LOTS of
formulas for benchmarks.
If you are coding up SAT SOLVERS, use their format and try your
algorithms on their examples.
See
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html


2SAT

2SAT is in P:

Look this up yourself

1. https://cp-algorithms.com/graph/2SAT.html

2. Look up Kosaraju’s Algorithm on Wikipedia.

https://cp-algorithms.com/graph/2SAT.html


Convention For All of our Algorithms

Example

(x1) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x3)

Def

1. A Unit Clause is a clause with only one literal in it.
Examples (x1) and (¬x3).

2. A Pure Literal is a literal that only shows up as non negated
or only shows up as negated.
Examples x2 and ¬x4

3. A POS-Pure Literal is a pure literal that is a variable.
Example x2

4. A NEG-Pure Literal is a pure literal that is a negation of a var.
Example ¬x4



Setting Variables

If you set some x to T then also do the following.

1. Set all occurrence of x to T .

2. Set all occurrence of ¬x to F .

If you set some x to F then also do the following.

1. Set all occurrence of x to F .

2. Set all occurrence of ¬x to T .
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Program CHECK

CHECK

1. Input is a formula which may have T and F in it. So for
example

(x ∨ y ∨ F ) ∧ (¬x ∨ w ∨ T )

could be an input.

2. If a clause has ALL F’s then return F, the entire formula is not
satisfied. Note that this only indicates that this particular way
to satisfy the formula failed, there may be another way.

3. If a clause has a literal set to T then GET RID of that clause,
it is already satisfied. If there are now no more clauses left
then return T, The formula IS satisfiable!

Next slides is examples.
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Examples of CHECK

Example: (T ∨ y ∨ z) ∧ (¬x ∨ w)

Output (¬x ∨ w)

Tricky Example: (F ∨ F ∨ ¬F ) ∧ (T ∨ y ∨ w)
Return T . The first clause has ¬F ≡ T . The second clause has a
T .
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Warning About CHECK

CHECK will return either

I T

I F

I A formula (shorter than the original).

This can be tricky that there are two diff kinds of outputs.



STAND Alg

Input(φ, z) where z is a partial assignment. Output is either T or F
or a equiv simplified formula.

1. If every clause has ≤ 2 literals then run 2SAT algorithm.

2. If φ has a unit clause C = {L} then extend z by setting
EVERY occurrence of L to T.

3. If φ has POS-Pure literal L then extend z by setting EVERY
occurrence of L to T.

4. If φ has NEG-Pure literal ¬L then extend z by setting EVERY
occurrence of L to F.

5. Run CHECK. If CHECK returned T or F then return that
value.

6. (CHECK did not return T or F) If the formula we have now is
DIFF from the input, then run STAND on the simplified
formula. (So keep reducing by STAND until you can’t.)

We will use algorithm STAND in all of our algorithms.



Warning About STAND

STAND will return either

I T

I F

I A formula (usually shorter than the original).

Note that there are two diff kinds of outputs so your program
needs to take that into account.



DPLL Alg Template

The next slide does not have an algorithm.

It has an Algorithm Template.

There is a curious line in it:
Pick a variable x (VERY CLEVERLY!)

Roughly speaking
All SAT Solving algorithms find different ways to be clever
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DPLL Alg Template

DPLL (Davis-Putnam-Logemann-Loveland) Alg Template

ALG(φ: 3-CNF fml; z : Partial Assignment)

STAND(φ, z) ( Base c a s e o f t he r e c u r s i v e a l g o r i t h m . )
P ick a v a r i a b l e x (VERY CLEVERLY ! )
ALG(φ; z ∪ {x = T}) I f o u t p u t s T then output T .
ALG(φ; z ∪ {x = F}) I f o u t p u t s T then output T,

o t h e r w i s e output F

Note Variants will involve setting more than one variable.



Key Idea ONE Behind Recursive 7-ALG

Example Given formula φ that has as one of its clauses

(x1)

Then we KNOW that in a satisfying assignment cannot have

x1 = F

So even brute force can be a bit clever by NOT trying any
assignment that has x1 = F
(This case will never come up since STAND will take care of it.)



Key Idea TWO Behind Recursive 7-ALG

Example Given formula φ that has as one of its clauses

(x1 ∨ x2)

Then we KNOW that in a satisfying assignment cannot have

x1 = F , x2 = F

So even brute force can be a bit clever by NOT trying any
assignment that has x1 = F , x2 = F



Key Idea THREE Behind Recursive 7-ALG

Example Given formula φ that has as one of its clauses

(x1 ∨ x2 ∨ ¬x3)

Then we KNOW that in a satisfying assignment cannot have

x1 = F , x2 = F , x3 = T

So even brute force can be a bit clever by NOT trying any
assignment that has x1 = F , x2 = F , x3 = T



Key Idea Behind Recursive 7-ALG: One Shortcut

Example Given formula φ and a partial assignment z . We want to
extend z to a satisfying assignment (or show we can’t). If φ has a
2-clause:

(x1 ∨ ¬x2)

So we will extend z by setting (x1, x2) to all possibilities EXCEPT

x1 = F , x2 = T

If there is a 2-clause then better to use it.



Recursive-7 ALG

ALG(φ: 3-CNF fml; z : Partial Assignment)

STAND
Two Cases :

( 1 ) E x i s t s a 2− c l a u s e : Case 1 , n e x t s l i d e .
( 2 ) A l l 3− c l a u s e s : Case 2 , n e x t n e x t s l i d e

Next Two s l i d e s .



Recursive-7 ALG: Case 1

There i s a c l a u s e C = (L1 ∨ L2)
Let z1, z2, z3 be th e 3 ways

to s e t (L1, L2) so t h a t C i s t r u e
ALG(φ; z1 ) I f r e t u r n s T, then T .
ALG(φ; z2 ) I f r e t u r n s T, then T .
ALG(φ; z3 ) I f r e t u r n s T, then T,

e l s e F .

Note In this case get T (n) = 3T (n − 2).



Bounding the Recurrence

T (1) = 1 if only one var then easy to check if SAT or not

T (n) = 3T (n − 2)

GUESS that T (n) = αn for some α

αn = 3αn−2

α2 = 3

α =
√

3 ∼ 1.73
SO

T (n) = O((
√

3)n) ∼ O((1.73)n).

But only if always find a 2-clause. Unlikely.



Recursive-7 ALG: Case 2

There i s a c l a u s e C = (L1 ∨ L2 ∨ L3)
Let z1, . . . , z7 be th e 7 ways

to s e t (L1, L2, L3) so t h a t C i s t r u e
ALG(φ; z1 ) I f r e t u r n s T, then T .
ALG(φ; z2 ) I f r e t u r n s T, then T .
ALG(φ; z3 ) I f r e t u r n s T, then T .
ALG(φ; z4 ) I f r e t u r n s T, then T .
ALG(φ; z5 ) I f r e t u r n s T, then T .
ALG(φ; z6 ) I f r e t u r n s T, then T .
ALG(φ; z7 ) I f r e t u r n s T, then T,

e l s e F .

Note In this case get T (n) = 7T (n − 3). If always did this
T (n) = (71/3)n ∼ (1.91)n. Leave it to you to derive that. It might
be on the final.



GOOD NEWS/BAD NEWS

1. Good News: BROKE the 2n barrier. Hope for the future!

2. Bad News: Still not that good a bound.

3. Good News: Similar ideas get time to O((1.84)n).

4. Bad News: Still not that good a bound.



Hamming Distances

Def If x , y are assignments then d(x , y) is the number of bits they
differ on.

KEY TO NEXT ALGORITHM: If φ is a fml on n variables and
φ is satisfiable then either

1. φ has a satisfying assignment z with d(z , 0n) ≤ n/2, or

2. φ has a satisfying assignment z with d(z , 1n) ≤ n/2.



HAM ALG

HAMALG(φ: 3-CNF fml, z : full assignment, h: number) h
bounds d(z , s) where s is SATisfying assignment

STAND
i f ∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then

HAMALG(φ; z ⊕ {L1 = T}; h − 1)
HAMALG(φ; z ⊕ {L2 = T}; h − 1)
HAMALG(φ; z ⊕ {L3 = T}; h − 1)



REAL ALG

HAMALG(φ ; 0n ; n/2)
I f r e t u r n e d NO then HAMALG(φ ; 1n ; n/2)

VOTE: IS THIS BETTER THAN O((1.61)n)?

IT IS NOT! It is O((1.73)n).
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KEY TO HAM

KEY TO HAM ALGORITHM: Every element of {0, 1}n is
within n/2 of either 0n or 1n

Def A covering code of {0, 1}n of SIZE s with RADIUS h is a set
S ⊆ {0, 1}n of size s such that

(∀x ∈ {0, 1}n)(∃y ∈ S)[d(x , y) ≤ h].

Example {0n, 1n} is a covering code of SIZE 2 of RADIUS n/2.



ASSUME ALG

Assume we have a covering code of {0, 1}n of size s and radius h.
Let Covering code be S = {v1, . . . , vs}.

i = 1
FOUND=F
w h i l e (FOUND=F ) and ( i ≤ s )

HAMALG(φ; vi ; h )
I f r e t u r n e d T then FOUND=T

e l s e
i = i + 1

end w h i l e



ANALYSIS OF ALG

Each iteration satisfies recurrence
T (0) = 1
T (h) = 3T (h − 1)
T (h) = 3h.
And we do this s times.
ANALYSIS: O(s3h).
Need covering codes with small value of O(s3h).



IN SEARCH OF A GOOD COVERING CODE

RECAP Need covering codes of size s, radius h, with small value
of O(s3h).

THAT’S NOT ENOUGH We need to actually CONSTRUCT the
covering code in good time.
YOU’VE BEEN PUNKED We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.
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IN SEARCH OF A GOOD COVERING CODE-
RANDOM!

CAN find with high prob a covering code with

I Size s = n22.4063n

I Distance h = 0.25n.

Can use to get SAT in O((1.5)n).
Note Best known: O((1.306)n).



Summary

1. There is an O((1.913)n) alg for 3SAT.

2. There is an O((1.84)n) alg for 3SAT.

3. There is an O((1.618)n) alg for 3SAT.

4. There is an O((1.306)n) alg for 3SAT (randomized).

1. These algorithms are for 3SAT so not really used.

2. Similar ones ARE used in the real world.

3. There are some AWESOME SAT-Solvers in the real world.

4. Confronted with an NP-complete problem one strategy is to
reduce it to a SAT problem and use a SAT-solver.



Relevant to Ontologix?

(I gave this talk to a SAT-solving company, Ontologix.)
Relevant: These algorithms work better in practice than their
worst case run-times.

Not Relevant: The real world is kSAT, not 3SAT.

Relevant: Good to get new ideas and see how other people think
about things (kind of the whole purpose of my visit!)



SATisfiable?

The AND of the following:

1. x11 ∨ x12

2. x21 ∨ x22

3. x31 ∨ x32

4. ¬x11 ∨ ¬x21
5. ¬x11 ∨ ¬x31
6. ¬x21 ∨ ¬x31
7. ¬x12 ∨ ¬x22
8. ¬x12 ∨ ¬x32
9. ¬x22 ∨ ¬x32

This is Pigeonhole Principle: xij is putting ith pigeon in j hole!
Can’t put 3 pigeons into 2 holes!
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