HW05 Solution

$$
4 \square>4 \text { 甸 } 1 \text { 引 }
$$

2) CFG-CNF for $L_{1}=\left\{a^{n / 4} b^{n / 4} a^{n / 4} b^{n / 4}\right\}$

CFG with, for each rule, how many rules it becomes in CNF.

2) CFG-CNF for $L_{1}=\left\{a^{n / 4} b^{n / 4} a^{n / 4} b^{n / 4}\right\}$

CFG with, for each rule, how many rules it becomes in CNF. $S \rightarrow A B A B$.

2) CFG-CNF for $L_{1}=\left\{a^{n / 4} b^{n / 4} a^{n / 4} b^{n / 4}\right\}$

CFG with, for each rule, how many rules it becomes in CNF. $S \rightarrow A B A B$. CNF: 2 rules.

2) CFG-CNF for $L_{1}=\left\{a^{n / 4} b^{n / 4} a^{n / 4} b^{n / 4}\right\}$

CFG with, for each rule, how many rules it becomes in CNF. $S \rightarrow A B A B$. CNF: 2 rules.
$A \rightarrow a \cdots a . n / 4$ a's.

2) CFG-CNF for $L_{1}=\left\{a^{n / 4} b^{n / 4} a^{n / 4} b^{n / 4}\right\}$

CFG with, for each rule, how many rules it becomes in CNF. $S \rightarrow A B A B$. CNF: 2 rules.
$A \rightarrow a \cdots a . n / 4$ a's. CNF: $\log _{2}(n / 4)$ rules.

2) CFG-CNF for $L_{1}=\left\{a^{n / 4} b^{n / 4} a^{n / 4} b^{n / 4}\right\}$

CFG with, for each rule, how many rules it becomes in CNF. $S \rightarrow A B A B$. CNF: 2 rules.
$A \rightarrow a \cdots a . n / 4$ a's. CNF: $\log _{2}(n / 4)$ rules.
$B \rightarrow b \cdots b . n / 4 b$'s.

2) CFG-CNF for $L_{1}=\left\{a^{n / 4} b^{n / 4} a^{n / 4} b^{n / 4}\right\}$

CFG with, for each rule, how many rules it becomes in CNF. $S \rightarrow A B A B$. CNF: 2 rules.
$A \rightarrow a \cdots a . n / 4$ a's. CNF: $\log _{2}(n / 4)$ rules.
$B \rightarrow b \cdots b$. $n / 4$ b's. CNF: $\log _{2}(n / 4)$ rules.

2) CFG-CNF for $L_{1}=\left\{a^{n / 4} b^{n / 4} a^{n / 4} b^{n / 4}\right\}$

CFG with, for each rule, how many rules it becomes in CNF. $S \rightarrow A B A B$. CNF: 2 rules.
$A \rightarrow a \cdots a . n / 4$ a's. CNF: $\log _{2}(n / 4)$ rules.
$B \rightarrow b \cdots b$. $n / 4$ b's. CNF: $\log _{2}(n / 4)$ rules.
Number of Rules:
$2+2 \log _{2}(n / 4)=2+2\left(\log _{2}(n)-2\right)=2 \log _{2}(n)-2$.

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$

We give L as a \cup of set, each of which is reg or CFL.

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$

We give L as a \cup of set, each of which is reg or CFL.
We first present sets where the a 's, b 's, c 's are out of order.

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$

We give L as a \cup of set, each of which is reg or CFL.
We first present sets where the a's, b's, c's are out of order.

1. $\{a, b, c\}^{*} b a\{a, b, c\}^{*}$. This is regular.

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$

We give L as a \cup of set, each of which is reg or CFL.
We first present sets where the a 's, b 's, c 's are out of order.

1. $\{a, b, c\}^{*} b a\{a, b, c\}^{*}$. This is regular.
2. $\{a, b, c\}^{*} c b\{a, b, c\}^{*}$. This is regular.

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$

We give L as a \cup of set, each of which is reg or CFL.
We first present sets where the a 's, b 's, c 's are out of order.

1. $\{a, b, c\}^{*} b a\{a, b, c\}^{*}$. This is regular.
2. $\{a, b, c\}^{*} c b\{a, b, c\}^{*}$. This is regular.
3. $\{a, b, c\}^{*} c a\{a, b, c\}^{*}$. This is regular.

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$

We give L as a \cup of set, each of which is reg or CFL.
We first present sets where the a 's, b 's, c 's are out of order.

1. $\{a, b, c\}^{*} b a\{a, b, c\}^{*}$. This is regular.
2. $\{a, b, c\}^{*} c b\{a, b, c\}^{*}$. This is regular.
3. $\{a, b, c\}^{*} c a\{a, b, c\}^{*}$. This is regular.

Next slide is the sets that are of the form $a^{*} b^{*} c^{*}$ but have the numbers-of-symbols wrong.

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$ (cont)

1. $\left\{a^{m} b^{n}: m>n\right\} \cdot c^{*}$.
c^{*} is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$ (cont)

1. $\left\{a^{m} b^{n}: m>n\right\} \cdot c^{*}$.
c^{*} is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for $L_{1}=\left\{a^{m} b^{n}: m>n\right\}$

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$ (cont)

1. $\left\{a^{m} b^{n}: m>n\right\} \cdot c^{*}$.
c^{*} is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for
$L_{1}=\left\{a^{m} b^{n}: m>n\right\}$
$S \rightarrow A T$
$T \rightarrow a T b \mid e$
$A \rightarrow A a \quad a$
(The remaining sets are similar.)

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$ (cont)

1. $\left\{a^{m} b^{n}: m>n\right\} \cdot c^{*}$.
c^{*} is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for
$L_{1}=\left\{a^{m} b^{n}: m>n\right\}$
$S \rightarrow A T$
$T \rightarrow a T b \quad e$
$A \rightarrow A a \mid a$
(The remaining sets are similar.)
2. $\left\{a^{m} b^{n} c^{*}: m<n\right\}$

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$ (cont)

1. $\left\{a^{m} b^{n}: m>n\right\} \cdot c^{*}$.
c^{*} is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for
$L_{1}=\left\{a^{m} b^{n}: m>n\right\}$
$S \rightarrow A T$
$T \rightarrow a T b \quad \mid \quad e$
$A \rightarrow A a \quad a$
(The remaining sets are similar.)
2. $\left\{a^{m} b^{n} c^{*}: m<n\right\}$
3. $\left\{a^{*} b^{m} c^{n}: m>n\right\}$

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$ (cont)

1. $\left\{a^{m} b^{n}: m>n\right\} \cdot c^{*}$.
c^{*} is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for
$L_{1}=\left\{a^{m} b^{n}: m>n\right\}$
$S \rightarrow A T$
$T \rightarrow a T b \quad \mid \quad e$
$A \rightarrow A a \quad a$
(The remaining sets are similar.)
2. $\left\{a^{m} b^{n} c^{*}: m<n\right\}$
3. $\left\{a^{*} b^{m} c^{n}: m>n\right\}$
4. $\left\{a^{*} b^{m} c^{n}: m<n\right\}$

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$ (cont)

1. $\left\{a^{m} b^{n}: m>n\right\} \cdot c^{*}$.
c^{*} is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for
$L_{1}=\left\{a^{m} b^{n}: m>n\right\}$
$S \rightarrow A T$
$T \rightarrow a T b \mid e$
$A \rightarrow A a \quad a$
(The remaining sets are similar.)
2. $\left\{a^{m} b^{n} c^{*}: m<n\right\}$
3. $\left\{a^{*} b^{m} c^{n}: m>n\right\}$
4. $\left\{a^{*} b^{m} c^{n}: m<n\right\}$
5. $\left\{a^{m} b^{*} c^{n}: m>n\right\}$

Prob 3: CFG for $L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}$ (cont)

1. $\left\{a^{m} b^{n}: m>n\right\} \cdot c^{*}$.
c^{*} is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for
$L_{1}=\left\{a^{m} b^{n}: m>n\right\}$
$S \rightarrow A T$
$T \rightarrow a T b \quad \mid \quad e$
$A \rightarrow A a \quad a$
(The remaining sets are similar.)
2. $\left\{a^{m} b^{n} c^{*}: m<n\right\}$
3. $\left\{a^{*} b^{m} c^{n}: m>n\right\}$
4. $\left\{a^{*} b^{m} c^{n}: m<n\right\}$
5. $\left\{a^{m} b^{*} c^{n}: m>n\right\}$
6. $\left\{a^{m} b^{*} c^{n}: m<n\right\}$

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\#_{a}(w)$.

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\#_{a}(w)$.
$Q=\left\{(i, j): 1 \leq i \leq n\right.$ AND $j \leq \frac{n}{2}$ AND $\left.j \leq i\right\} \cup\{d\}$

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\#_{a}(w)$.
$Q=\left\{(i, j): 1 \leq i \leq n\right.$ AND $j \leq \frac{n}{2}$ AND $\left.j \leq i\right\} \cup\{d\}$
State (i, j) : i chars seen, j of them are a's. d is dump.

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\#_{a}(w)$.
$Q=\left\{(i, j): 1 \leq i \leq n\right.$ AND $j \leq \frac{n}{2}$ AND $\left.j \leq i\right\} \cup\{d\}$
State (i, j) : i chars seen, j of them are a's. d is dump.
We describe δ on the ordered pairs and then δ on d.

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\#_{a}(w)$.
$Q=\left\{(i, j): 1 \leq i \leq n\right.$ AND $j \leq \frac{n}{2}$ AND $\left.j \leq i\right\} \cup\{d\}$
State (i, j) : i chars seen, j of them are a's. d is dump.
We describe δ on the ordered pairs and then δ on d.
For $1 \leq i \leq n, 1 \leq j \leq \frac{n}{2}$, and $\sigma \in\{a, b\}$:

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\#_{a}(w)$.
$Q=\left\{(i, j): 1 \leq i \leq n\right.$ AND $j \leq \frac{n}{2}$ AND $\left.j \leq i\right\} \cup\{d\}$
State (i, j) : i chars seen, j of them are a's. d is dump.
We describe δ on the ordered pairs and then δ on d.
For $1 \leq i \leq n, 1 \leq j \leq \frac{n}{2}$, and $\sigma \in\{a, b\}$:

$$
\delta((i, j), \sigma)= \begin{cases}(i+1, j) & , \text { if } i \leq n-1 \text { and } \sigma=b \\ (i+1, j+1) & , \text { if } i \leq n-1 \text { and } \sigma=a \text { and } j \leq \frac{n}{2} \\ d & , \text { if } i=n \vee\left(\sigma=a \wedge j=\frac{n}{2}\right)\end{cases}
$$

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\#_{a}(w)$.
$Q=\left\{(i, j): 1 \leq i \leq n\right.$ AND $j \leq \frac{n}{2}$ AND $\left.j \leq i\right\} \cup\{d\}$
State (i, j) : i chars seen, j of them are a's. d is dump.
We describe δ on the ordered pairs and then δ on d.
For $1 \leq i \leq n, 1 \leq j \leq \frac{n}{2}$, and $\sigma \in\{a, b\}$:

$$
\delta((i, j), \sigma)= \begin{cases}(i+1, j) & , \text { if } i \leq n-1 \text { and } \sigma=b \\ (i+1, j+1) & , \text { if } i \leq n-1 \text { and } \sigma=a \text { and } j \leq \frac{n}{2} \\ d & , \text { if } i=n \vee\left(\sigma=a \wedge j=\frac{n}{2}\right)\end{cases}
$$

For $\sigma \in\{a, b\}, \delta(d, \sigma)$ is defined by $\delta(d, \sigma)=d$.

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\#_{a}(w)$.
$Q=\left\{(i, j): 1 \leq i \leq n\right.$ AND $j \leq \frac{n}{2}$ AND $\left.j \leq i\right\} \cup\{d\}$
State (i, j) : i chars seen, j of them are a's. d is dump.
We describe δ on the ordered pairs and then δ on d.
For $1 \leq i \leq n, 1 \leq j \leq \frac{n}{2}$, and $\sigma \in\{a, b\}$:

$$
\delta((i, j), \sigma)= \begin{cases}(i+1, j) & , \text { if } i \leq n-1 \text { and } \sigma=b \\ (i+1, j+1) & , \text { if } i \leq n-1 \text { and } \sigma=a \text { and } j \leq \frac{n}{2} \\ d & , \text { if } i=n \vee\left(\sigma=a \wedge j=\frac{n}{2}\right)\end{cases}
$$

For $\sigma \in\{a, b\}, \delta(d, \sigma)$ is defined by $\delta(d, \sigma)=d$.
$F=\{(n, n / 2)\}$.

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\#_{a}(w)$.
$Q=\left\{(i, j): 1 \leq i \leq n\right.$ AND $j \leq \frac{n}{2}$ AND $\left.j \leq i\right\} \cup\{d\}$
State (i, j) : i chars seen, j of them are a's. d is dump.
We describe δ on the ordered pairs and then δ on d.
For $1 \leq i \leq n, 1 \leq j \leq \frac{n}{2}$, and $\sigma \in\{a, b\}$:

$$
\delta((i, j), \sigma)= \begin{cases}(i+1, j) & , \text { if } i \leq n-1 \text { and } \sigma=b \\ (i+1, j+1) & , \text { if } i \leq n-1 \text { and } \sigma=a \text { and } j \leq \frac{n}{2} \\ d & , \text { if } i=n \vee\left(\sigma=a \wedge j=\frac{n}{2}\right)\end{cases}
$$

For $\sigma \in\{a, b\}, \delta(d, \sigma)$ is defined by $\delta(d, \sigma)=d$.
$F=\{(n, n / 2)\}$. The number of states is $O\left(n^{2}\right)$. Can we do better? U

Prob 4a: DFA for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

DFA keeps track of $|w|$ and $\# a(w)$.
$Q=\left\{(i, j): 1 \leq i \leq n\right.$ AND $j \leq \frac{n}{2}$ AND $\left.j \leq i\right\} \cup\{d\}$
State (i, j) : i chars seen, j of them are a's. d is dump.
We describe δ on the ordered pairs and then δ on d.
For $1 \leq i \leq n, 1 \leq j \leq \frac{n}{2}$, and $\sigma \in\{a, b\}$:
$\delta((i, j), \sigma)= \begin{cases}(i+1, j) & , \text { if } i \leq n-1 \text { and } \sigma=b \\ (i+1, j+1) & , \text { if } i \leq n-1 \text { and } \sigma=a \text { and } j \leq \frac{n}{2} \\ d & , \text { if } i=n \vee\left(\sigma=a \wedge j=\frac{n}{2}\right)\end{cases}$
For $\sigma \in\{a, b\}, \delta(d, \sigma)$ is defined by $\delta(d, \sigma)=d$.
$F=\{(n, n / 2)\}$. The number of states is $O\left(n^{2}\right)$. Can we do better? U
Vote: Can do better, can't do better, UNK TO BILL.

Prob 4b: Rgx for $L=\left\{w:|w|=n \wedge \#_{a}(w)=n / 2\right\}$

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$.

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$. Regex for L :

$$
\left\{w_{1}\right\} \cup\left\{w_{2}\right\} \cup \cdots \cup\left\{w_{N}\right\} .
$$

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$. Regex for L :

$$
\left\{w_{1}\right\} \cup\left\{w_{2}\right\} \cup \cdots \cup\left\{w_{N}\right\} .
$$

Length is $N n=\binom{n}{n / 2} n=O\left(\sqrt{n} 2^{n}\right)$.

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$. Regex for L :

$$
\left\{w_{1}\right\} \cup\left\{w_{2}\right\} \cup \cdots \cup\left\{w_{N}\right\} .
$$

Length is $N n=\binom{n}{n / 2} n=O\left(\sqrt{n} 2^{n}\right)$.
Vote

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$. Regex for L :

$$
\left\{w_{1}\right\} \cup\left\{w_{2}\right\} \cup \cdots \cup\left\{w_{N}\right\} .
$$

Length is $N n=\binom{n}{n / 2} n=O\left(\sqrt{n} 2^{n}\right)$.
Vote
There is a poly-sized regex and this is known.

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$. Regex for L :

$$
\left\{w_{1}\right\} \cup\left\{w_{2}\right\} \cup \cdots \cup\left\{w_{N}\right\} .
$$

Length is $N n=\binom{n}{n / 2} n=O\left(\sqrt{n} 2^{n}\right)$.
Vote
There is a poly-sized regex and this is known.
There is not a poly-sized regex and this is known.

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$. Regex for L :

$$
\left\{w_{1}\right\} \cup\left\{w_{2}\right\} \cup \cdots \cup\left\{w_{N}\right\} .
$$

Length is $N n=\binom{n}{n / 2} n=O\left(\sqrt{n} 2^{n}\right)$.
Vote
There is a poly-sized regex and this is known.
There is not a poly-sized regex and this is known.
Poly-sized regex or not is UNK TO BILL

Prob 4b: Rgx for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$. Regex for L :

$$
\left\{w_{1}\right\} \cup\left\{w_{2}\right\} \cup \cdots \cup\left\{w_{N}\right\} .
$$

Length is $N n=\binom{n}{n / 2} n=O\left(\sqrt{n} 2^{n}\right)$.
Vote
There is a poly-sized regex and this is known.
There is not a poly-sized regex and this is known.
Poly-sized regex or not is UNK TO BILL
Answer on the next slides.

There is No Poly Sized Regex for L

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.
Definition $L_{n, k}=\left\{w:|w|=n \wedge \#_{a}(w)=k\right\}$.

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.
Definition $L_{n, k}=\left\{w:|w|=n \wedge \#_{a}(w)=k\right\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n, k}$ has a regex of size $O\left(n(\log n)^{k}\right)$.

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.
Definition $L_{n, k}=\left\{w:|w|=n \wedge \#_{a}(w)=k\right\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n, k}$ has a regex of size $O\left(n(\log n)^{k}\right)$.
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.
Definition $L_{n, k}=\left\{w:|w|=n \wedge \#_{a}(w)=k\right\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n, k}$ has a regex of size $O\left(n(\log n)^{k}\right)$.
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If $k=\frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.
Definition $L_{n, k}=\left\{w:|w|=n \wedge \#_{a}(w)=k\right\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n, k}$ has a regex of size $O\left(n(\log n)^{k}\right)$.
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If $k=\frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
3. Mousavi, in 2017, showed that any regex for $L_{n, k}$ has length at least $\Omega\left(n(\log n)^{k}\right)$.

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.
Definition $L_{n, k}=\left\{w:|w|=n \wedge \#_{a}(w)=k\right\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n, k}$ has a regex of size $O\left(n(\log n)^{k}\right)$.
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If $k=\frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
3. Mousavi, in 2017, showed that any regex for $L_{n, k}$ has length at least $\Omega\left(n(\log n)^{k}\right)$.
Paper is here: https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.
Definition $L_{n, k}=\left\{w:|w|=n \wedge \#_{a}(w)=k\right\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n, k}$ has a regex of size $O\left(n(\log n)^{k}\right)$.
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If $k=\frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
3. Mousavi, in 2017, showed that any regex for $L_{n, k}$ has length at least $\Omega\left(n(\log n)^{k}\right)$.
Paper is here: https://arxiv.org/abs/1712.00811
4. If $k=\frac{n}{2}$ this is $2^{\Omega(n)}$.

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.
Definition $L_{n, k}=\left\{w:|w|=n \wedge \#_{a}(w)=k\right\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n, k}$ has a regex of size $O\left(n(\log n)^{k}\right)$.
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If $k=\frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
3. Mousavi, in 2017, showed that any regex for $L_{n, k}$ has length at least $\Omega\left(n(\log n)^{k}\right)$.
Paper is here: https://arxiv.org/abs/1712.00811
4. If $k=\frac{n}{2}$ this is $2^{\Omega(n)}$.

So there is no polysized Regex for $L_{n, n / 2}$.

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$.

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.
$(\forall i) G_{i}$ is CFG for $\left\{w_{i}\right\}$ of size $O(n) . S_{i}$ is start sym of G_{i}.

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.
$(\forall i) G_{i}$ is CFG for $\left\{w_{i}\right\}$ of size $O(n) . S_{i}$ is start sym of G_{i}.
The CFL:

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.
$(\forall i) G_{i}$ is CFG for $\left\{w_{i}\right\}$ of size $O(n) . S_{i}$ is start sym of G_{i}.
The CFL:

1. Start State is S. For all i add $S \rightarrow S_{i}$.

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.
$(\forall i) G_{i}$ is CFG for $\left\{w_{i}\right\}$ of size $O(n) . S_{i}$ is start sym of G_{i}.
The CFL:

1. Start State is S. For all i add $S \rightarrow S_{i}$.
2. Add all of the rules of all of the G_{i} 's.

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.
$(\forall i) G_{i}$ is CFG for $\left\{w_{i}\right\}$ of size $O(n) . S_{i}$ is start sym of G_{i}.
The CFL:

1. Start State is S. For all i add $S \rightarrow S_{i}$.
2. Add all of the rules of all of the G_{i} 's.
$N G_{i}$'s. Each has $O(n)$ rules. G has

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.
$(\forall i) G_{i}$ is CFG for $\left\{w_{i}\right\}$ of size $O(n) . S_{i}$ is start sym of G_{i}.
The CFL:

1. Start State is S. For all i add $S \rightarrow S_{i}$.
2. Add all of the rules of all of the G_{i} 's.
$N G_{i}$'s. Each has $O(n)$ rules. G has

$$
O(N n)=O\left(\binom{n}{n / 2} n\right)=O\left(\sqrt{n} 2^{n}\right) \text { rules. }
$$

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.
$(\forall i) G_{i}$ is CFG for $\left\{w_{i}\right\}$ of size $O(n) . S_{i}$ is start sym of G_{i}.
The CFL:

1. Start State is S. For all i add $S \rightarrow S_{i}$.
2. Add all of the rules of all of the G_{i} 's.
$N G_{i}$'s. Each has $O(n)$ rules. G has

$$
O(N n)=O\left(\binom{n}{n / 2} n\right)=O\left(\sqrt{n} 2^{n}\right) \text { rules }
$$

Vote: Poly-known, not-Poly-known, UNK TO BILL.

Prob 4c: CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Note that there are $|L|=\binom{n}{n / 2}=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Let $N=\binom{n}{n / 2}$.
Let all the strings in L be $w_{1}, w_{2}, \ldots, w_{N}$.
$(\forall i) G_{i}$ is CFG for $\left\{w_{i}\right\}$ of size $O(n) . S_{i}$ is start sym of G_{i}.
The CFL:

1. Start State is S. For all i add $S \rightarrow S_{i}$.
2. Add all of the rules of all of the G_{i} 's.
$N G_{i}$'s. Each has $O(n)$ rules. G has

$$
O(N n)=O\left(\binom{n}{n / 2} n\right)=O\left(\sqrt{n} 2^{n}\right) \text { rules. }
$$

Vote: Poly-known, not-Poly-known, UNK TO BILL.
Answer on next slide.

Poly Size CFG for $L=\left\{w:|w|=n \wedge \#_{a}(w)=n / 2\right\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$

Poly Size CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$ The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

Poly Size CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Key Small CFG for $L_{i, j}=\{w:|w|=i \wedge \# a(w)=j\}$ The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$.

Poly Size CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Key Small CFG for $L_{i, j}=\{w:|w|=i \wedge \# a(w)=j\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.

Poly Size CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$.

Poly Size CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.

Poly Size CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0}=\{b\}$.

Poly Size CFG for $L=\left\{w:|w|=n \wedge \#_{a}(w)=n / 2\right\}$

Key Small CFG for $L_{i, j}=\{w:|w|=i \wedge \# a(w)=j\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0}=\{b\}$. CFG-CNF with $O(1)$ rules.

Poly Size CFG for $L=\left\{w:|w|=n \wedge \#_{a}(w)=n / 2\right\}$

Key Small CFG for $L_{i, j}=\{w:|w|=i \wedge \# a(w)=j\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0}=\{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n, 1 \leq j \leq i$ add the rules:

Poly Size CFG for $L=\left\{w:|w|=n \wedge \#_{a}(w)=n / 2\right\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0}=\{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n, 1 \leq j \leq i$ add the rules: $S_{i, j} \rightarrow a S_{i-1, j-1}$

Poly Size CFG for $L=\left\{w:|w|=n \wedge \#_{a}(w)=n / 2\right\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0}=\{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n, 1 \leq j \leq i$ add the rules:

$$
S_{i, j} \rightarrow a S_{i-1, j-1}
$$

$$
S_{i, j} \rightarrow b S_{i-1, j}
$$

Poly Size CFG for $L=\left\{w:|w|=n \wedge \#_{a}(w)=n / 2\right\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0}=\{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n, 1 \leq j \leq i$ add the rules:

$$
S_{i, j} \rightarrow a S_{i-1, j-1}
$$

$$
S_{i, j} \rightarrow b S_{i-1, j}
$$

If $S_{i, j}$ is Start then get $L_{i, j}$.

Poly Size CFG for $L=\left\{w:|w|=n \wedge \#_{a}(w)=n / 2\right\}$

Key Small CFG for $L_{i, j}=\{w:|w|=i \wedge \# a(w)=j\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0}=\{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n, 1 \leq j \leq i$ add the rules:

$$
S_{i, j} \rightarrow a S_{i-1, j-1}
$$

$$
S_{i, j} \rightarrow b S_{i-1, j}
$$

If $S_{i, j}$ is Start then get $L_{i, j}$.
"I am sure you can all go home and prove that by induction."

Poly Size CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0}=\{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n, 1 \leq j \leq i$ add the rules:

$$
S_{i, j} \rightarrow a S_{i-1, j-1}
$$

$$
S_{i, j} \rightarrow b S_{i-1, j}
$$

If $S_{i, j}$ is Start then get $L_{i, j}$.
"I am sure you can all go home and prove that by induction."
The Grammar is of size $O\left(n^{2}\right)$.

Poly Size CFG for $L=\{w:|w|=n \wedge \# a(w)=n / 2\}$

Key Small CFG for $L_{i, j}=\left\{w:|w|=i \wedge \#_{a}(w)=j\right\}$
The start symbol for the CFG for $L_{i, j}$ will be $S_{i, j}$.

1. $L_{i, 0}=\left\{b^{i}\right\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1}=\{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0}=\{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n, 1 \leq j \leq i$ add the rules:

$$
S_{i, j} \rightarrow a S_{i-1, j-1}
$$

$$
S_{i, j} \rightarrow b S_{i-1, j}
$$

If $S_{i, j}$ is Start then get $L_{i, j}$.
"I am sure you can all go home and prove that by induction."
The Grammar is of size $O\left(n^{2}\right)$.
Upshot There is a CFG for $L_{n, n / 2}$ of size $O\left(n^{2}\right)$.

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)
Most of you voted as follows:

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)
Most of you voted as follows:

1. $L_{n, n / 2}$ did NOT have a poly sized CFG-CNF.

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)
Most of you voted as follows:

1. $L_{n, n / 2}$ did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)
Most of you voted as follows:

1. $L_{n, n / 2}$ did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.) Most of you voted as follows:

1. $L_{n, n / 2}$ did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.
In this case someone clever did come along with a solution.

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.) Most of you voted as follows:

1. $L_{n, n / 2}$ did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.
In this case someone clever did come along with a solution.
When was $L_{n, k}$ proven to have a small grammar, and by who?

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.) Most of you voted as follows:

1. $L_{n, n / 2}$ did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.
In this case someone clever did come along with a solution.
When was $L_{n, k}$ proven to have a small grammar, and by who? Bill Gasarch while preparing hw05 in February 2024.

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.) Most of you voted as follows:

1. $L_{n, n / 2}$ did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.
In this case someone clever did come along with a solution.
When was $L_{n, k}$ proven to have a small grammar, and by who?
Bill Gasarch while preparing hw05 in February 2024.
No New Ideas: It used Dyanmic Programming.

