HW05 Solution
2) CFG-CN for $L_1 = \{a^{n/4}b^{n/4}a^{n/4}b^{n/4}\}$

CFG with, for each rule, how many rules it becomes in CNF.
2) CFG-CNF for $L_1 = \{a^{n/4}b^{n/4}a^{n/4}b^{n/4}\}$

CFG with, for each rule, how many rules it becomes in CNF.

$S \rightarrow ABAB$.
2) CFG-CNF for \(L_1 = \{ a^{n/4} b^{n/4} a^{n/4} b^{n/4} \} \)

CFG with, for each rule, how many rules it becomes in CNF.

\(S \rightarrow ABAB \). CNF: 2 rules.
2) CFG-CNF for \(L_1 = \{a^{n/4}b^{n/4}a^{n/4}b^{n/4}\} \)

CFG with, for each rule, how many rules it becomes in CNF.

\[S \rightarrow ABAB. \text{ CNF: 2 rules.} \]
\[A \rightarrow a \cdots a. \text{ } n/4 \text{ a's.} \]
2) CFG-CNF for $L_1 = \{a^{n/4} b^{n/4} a^{n/4} b^{n/4}\}$

CFG with, for each rule, how many rules it becomes in CNF.

$S \rightarrow ABAB$. CNF: 2 rules.

$A \rightarrow a \cdots a$. $n/4$ a’s. CNF: $\log_2(n/4)$ rules.
2) CFG-CNF for \(L_1 = \{ a^{n/4} b^{n/4} a^{n/4} b^{n/4} \} \)

CFG with, for each rule, how many rules it becomes in CNF.

\[S \rightarrow ABAB. \text{ CNF: } 2 \text{ rules.} \]

\[A \rightarrow a \cdots a. \ n/4 \ a's. \text{ CNF: } \log_2 (n/4) \text{ rules.} \]

\[B \rightarrow b \cdots b. \ n/4 \ b's. \]
2) CFG-CNF for $L_1 = \{a^{n/4}b^{n/4}a^{n/4}b^{n/4}\}$

CFG with, for each rule, how many rules it becomes in CNF.

$S \rightarrow ABAB$. CNF: 2 rules.

$A \rightarrow a \cdots a$. $n/4$ a’s. CNF: $\log_2(n/4)$ rules.

$B \rightarrow b \cdots b$. $n/4$ b’s. CNF: $\log_2(n/4)$ rules.
2) **CFG-CNF for** $L_1 = \{a^{n/4}b^{n/4}a^{n/4}b^{n/4}\}$

CFG with, for each rule, how many rules it becomes in CNF.

- $S \to ABAB$. CNF: 2 rules.
- $A \to a \cdots a$. $n/4$ a’s. CNF: $\log_2(n/4)$ rules.
- $B \to b \cdots b$. $n/4$ b’s. CNF: $\log_2(n/4)$ rules.

Number of Rules:

$2 + 2 \log_2(n/4) = 2 + 2(\log_2(n) - 2) = 2 \log_2(n) - 2.$
Prob 3: CFG for \(L = \{a^n b^n c^n : n \in \mathbb{N}\} \)

We give \(L \) as a \(\cup \) of set, each of which is reg or CFL.
We give L as a \bigcup of set, each of which is reg or CFL. We first present sets where the a’s, b’s, c’s are out of order.
Prob 3: CFG for \(L = \{a^n b^n c^n : n \in \mathbb{N}\} \)

We give \(L \) as a \(\cup \) of set, each of which is reg or CFL. We first present sets where the \(a \)'s, \(b \)'s, \(c \)'s are out of order.

1. \(\{a, b, c\}^* ba\{a, b, c\}^* \). This is regular.
Prob 3: CFG for \(L = \{a^n b^n c^n : n \in \mathbb{N}\} \)

We give \(L \) as a \(\cup \) of set, each of which is reg or CFL. We first present sets where the \(a \)'s, \(b \)'s, \(c \)'s are out of order.

1. \(\{a, b, c\}^* ba\{a, b, c\}^* \). This is regular.
2. \(\{a, b, c\}^* cb\{a, b, c\}^* \). This is regular.
We give L as a \cup of set, each of which is reg or CFL. We first present sets where the a’s, b’s, c’s are out of order.

1. $\{a, b, c\}^* ba \{a, b, c\}^*$. This is regular.
2. $\{a, b, c\}^* cb \{a, b, c\}^*$. This is regular.
3. $\{a, b, c\}^* ca \{a, b, c\}^*$. This is regular.
Prob 3: CFG for $L = \{a^n b^n c^n : n \in \mathbb{N}\}$

We give L as a \cup of set, each of which is reg or CFL. We first present sets where the a’s, b’s, c’s are out of order.

1. $\{a, b, c\}^* ba\{a, b, c\}^*$. This is regular.
2. $\{a, b, c\}^* cb\{a, b, c\}^*$. This is regular.
3. $\{a, b, c\}^* ca\{a, b, c\}^*$. This is regular.

Next slide is the sets that are of the form $a^* b^* c^*$ but have the numbers-of-symbols wrong.
Prob 3: CFG for $L = \{a^n b^n c^n : n \in \mathbb{N}\}$ (cont)

1. $\{a^m b^n : m > n\} \cdot c^*$.

 c^* is reg, hence CFL. CFL’s are closed under concat. we need only give a CFG for
Prob 3: CFG for $L = \{a^n b^n c^n : n \in \mathbb{N}\}$ (cont)

1. $\{a^m b^n : m > n\} \cdot c^*$.
 c^* is reg, hence CFL. CFL’s are closed under concat. we need only give a CFG for
 $L_1 = \{a^m b^n : m > n\}$
Prob 3: CFG for \(L = \{a^n b^n c^n : n \in \mathbb{N}\}\) (cont)

1. \(\{a^m b^n : m > n\} \cdot c^* \).
 \(c^* \) is reg, hence CFL. CFL’s are closed under concat. we need only give a CFG for
 \(L_1 = \{a^m b^n : m > n\} \)
 \(S \rightarrow AT \)
 \(T \rightarrow aTb \mid e \)
 \(A \rightarrow Aa \mid a \)
 (The remaining sets are similar.)
1. \(\{a^m b^n : m > n\} \cdot c^* \).

 \(c^* \) is reg, hence CFL. CFL’s are closed under concat. we need only give a CFG for

 \(L_1 = \{a^m b^n : m > n\} \)

 \(S \rightarrow AT \)

 \(T \rightarrow aTb \mid e \)

 \(A \rightarrow Aa \mid a \)

 (The remaining sets are similar.)

2. \(\{a^m b^n c^* : m < n\} \)
Prob 3: CFG for \(L = \{a^n b^n c^n : n \in \mathbb{N}\}\) (cont)

1. \(\{a^m b^n : m > n\} \cdot c^*\).

 \(c^*\) is reg, hence CFL. CFL’s are closed under concat. we need only give a CFG for

 \[L_1 = \{a^m b^n : m > n\} \]

 \[S \rightarrow AT \]

 \[T \rightarrow aTb \quad | \quad e \]

 \[A \rightarrow Aa \quad | \quad a \]

 (The remaining sets are similar.)

2. \(\{a^m b^n c^* : m < n\}\)

3. \(\{a^* b^m c^n : m > n\}\)
Prob 3: CFG for $L = \{a^n b^n c^n : n \in \mathbb{N}\}$ (cont)

1. $\{a^m b^n : m > n\} \cdot c^*$.
 c^* is reg, hence CFL. CFL’s are closed under concat. we need only give a CFG for
 $L_1 = \{a^m b^n : m > n\}$
 $S \rightarrow AT$
 $T \rightarrow aTb \mid e$
 $A \rightarrow Aa \mid a$
 (The remaining sets are similar.)

2. $\{a^m b^n c^* : m < n\}$

3. $\{a^* b^m c^n : m > n\}$

4. $\{a^* b^m c^n : m < n\}$
Prob 3: CFG for \(L = \{a^n b^n c^n : n \in \mathbb{N}\} \)

1. \(\{a^m b^n : m > n\} \cdot c^* \).

 \(c^* \) is reg, hence CFL. CFL’s are closed under concat. we need only give a CFG for

 \(L_1 = \{a^m b^n : m > n\} \)

 \(S \rightarrow AT \)

 \(T \rightarrow aTb \mid e \)

 \(A \rightarrow Aa \mid a \)

 (The remaining sets are similar.)

2. \(\{a^m b^n c^* : m < n\} \)

3. \(\{a^* b^m c^n : m > n\} \)

4. \(\{a^* b^m c^n : m < n\} \)

5. \(\{a^m b^* c^n : m > n\} \)
Prob 3: CFG for \(L = \{a^n b^n c^n : n \in \mathbb{N}\} \) (cont)

1. \(\{a^m b^n : m > n\} \cdot c^* \).

 \(c^* \) is reg, hence CFL. CFL’s are closed under concat. we need only give a CFG for

 \(L_1 = \{a^m b^n : m > n\} \)

 \[S \rightarrow AT \]

 \[T \rightarrow aTb \mid e \]

 \[A \rightarrow Aa \mid a \]

 (The remaining sets are similar.)

2. \(\{a^m b^n c^* : m < n\} \)

3. \(\{a^* b^m c^n : m > n\} \)

4. \(\{a^* b^m c^n : m < n\} \)

5. \(\{a^m b^* c^n : m > n\} \)

6. \(\{a^m b^* c^n : m < n\} \)
Prob 4a: DFA for $L = \{ w : |w| = n \land \#a(w) = n/2 \}$
Prob 4a: DFA for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

DFA keeps track of \(|w| \) and \(\#_a(w) \).
Prob 4a: DFA for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

DFA keeps track of $|w|$ and $\#_a(w)$.
$Q = \{(i, j) : 1 \leq i \leq n \text{ AND } j \leq \frac{n}{2} \text{ AND } j \leq i\} \cup \{d\}$
Prob 4a: DFA for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

DFA keeps track of $|w|$ and $\#_a(w)$.

$Q = \{(i,j) : 1 \leq i \leq n \land j \leq \frac{n}{2} \land j \leq i\} \cup \{d\}$

State (i,j): i chars seen, j of them are a’s. d is dump.
Prob 4a: DFA for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

DFA keeps track of $|w|$ and $\#_a(w)$.
$Q = \{(i, j) : 1 \leq i \leq n \land j \leq \frac{n}{2} \land j \leq i\} \cup \{d\}$
State (i, j): i chars seen, j of them are a's. d is dump.
We describe δ on the ordered pairs and then δ on d.
Prob 4a: DFA for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

DFA keeps track of $|w|$ and $\#_a(w)$.
$Q = \{(i, j) : 1 \leq i \leq n \land j \leq \frac{n}{2} \land j \leq i \} \cup \{d\}$
State (i, j): i chars seen, j of them are a’s. d is dump.
We describe δ on the ordered pairs and then δ on d.
For $1 \leq i \leq n$, $1 \leq j \leq \frac{n}{2}$, and $\sigma \in \{a, b\}$:
Prob 4a: DFA for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

DFA keeps track of $|w|$ and $\#_a(w)$.
$Q = \{ (i, j) : 1 \leq i \leq n \land j \leq \frac{n}{2} \land j \leq i \} \cup \{ d \}$
State (i, j): i chars seen, j of them are a’s. d is dump.
We describe δ on the ordered pairs and then δ on d.
For $1 \leq i \leq n$, $1 \leq j \leq \frac{n}{2}$, and $\sigma \in \{ a, b \}$:

$$
\delta((i, j), \sigma) = \begin{cases}
(i + 1, j), & \text{if } i \leq n - 1 \text{ and } \sigma = b \\
(i + 1, j + 1), & \text{if } i \leq n - 1 \text{ and } \sigma = a \text{ and } j \leq \frac{n}{2} \\
d, & \text{if } i = n \lor (\sigma = a \land j = \frac{n}{2})
\end{cases}
$$

$F = \{ (n, n/2) \}.$ Can we do better? U Vote: Can do better, can’t do better, UNK TO BILL.
Prob 4a: DFA for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

DFA keeps track of \(|w|\) and \(\#_a(w)\).

\[Q = \{(i, j) : 1 \leq i \leq n \text{ AND } j \leq \frac{n}{2} \text{ AND } j \leq i\} \cup \{d\} \]

State \((i, j)\): \(i\) chars seen, \(j\) of them are \(a\)'s. \(d\) is dump.

We describe \(\delta\) on the ordered pairs and then \(\delta\) on \(d\).

For \(1 \leq i \leq n\), \(1 \leq j \leq \frac{n}{2}\), and \(\sigma \in \{a, b\}\):

\[
\delta((i, j), \sigma) = \begin{cases}
(i + 1, j) & \text{, if } i \leq n - 1 \text{ and } \sigma = b \\
(i + 1, j + 1) & \text{, if } i \leq n - 1 \text{ and } \sigma = a \text{ and } j \leq \frac{n}{2} \\
d & \text{, if } i = n \lor (\sigma = a \land j = \frac{n}{2})
\end{cases}
\]

For \(\sigma \in \{a, b\}\), \(\delta(d, \sigma)\) is defined by \(\delta(d, \sigma) = d\).
Prob 4a: DFA for \(L = \{ w : |w| = n \wedge \#_a(w) = n/2 \} \)

DFA keeps track of \(|w|\) and \(\#_a(w)\).

\[Q = \{(i, j) : 1 \leq i \leq n \text{ AND } j \leq \frac{n}{2} \text{ AND } j \leq i\} \cup \{d\} \]

State \((i, j)\): \(i\) chars seen, \(j\) of them are \(a\)'s. \(d\) is dump.

We describe \(\delta\) on the ordered pairs and then \(\delta\) on \(d\).

For \(1 \leq i \leq n, 1 \leq j \leq \frac{n}{2}\), and \(\sigma \in \{a, b\}\):

\[
\delta((i, j), \sigma) = \begin{cases}
(i + 1, j) & \text{, if } i \leq n - 1 \text{ and } \sigma = b \\
(i + 1, j + 1) & \text{, if } i \leq n - 1 \text{ and } \sigma = a \text{ and } j \leq \frac{n}{2} \\
d & \text{, if } i = n \lor (\sigma = a \land j = \frac{n}{2})
\end{cases}
\]

For \(\sigma \in \{a, b\}\), \(\delta(d, \sigma)\) is defined by \(\delta(d, \sigma) = d\).

\(F = \{(n, n/2)\}\).
Prob 4a: DFA for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

DFA keeps track of $|w|$ and $\#_a(w)$.
$Q = \{(i, j) : 1 \leq i \leq n \land j \leq \frac{n}{2} \land j \leq i\} \cup \{d\}$
State (i, j): i chars seen, j of them are a’s. d is dump.
We describe δ on the ordered pairs and then δ on d.
For $1 \leq i \leq n$, $1 \leq j \leq \frac{n}{2}$, and $\sigma \in \{a, b\}$:

$$
\delta((i, j), \sigma) = \begin{cases}
(i + 1, j) & \text{, if } i \leq n - 1 \land \sigma = b \\
(i + 1, j + 1) & \text{, if } i \leq n - 1 \land \sigma = a \land j \leq \frac{n}{2} \\
d & \text{, if } i = n \lor (\sigma = a \land j = \frac{n}{2})
\end{cases}
$$

For $\sigma \in \{a, b\}$, $\delta(d, \sigma)$ is defined by $\delta(d, \sigma) = d$.
$F = \{(n, n/2)\}$. The number of states is $O(n^2)$. Can we do better? U
Prob 4a: DFA for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

DFA keeps track of \(|w|\) and \(\#_a(w)\).

\[Q = \{(i, j) : 1 \leq i \leq n \land j \leq \frac{n}{2} \land j \leq i \} \cup \{d\} \]

State \((i, j)\): \(i\) chars seen, \(j\) of them are \(a\)’s. \(d\) is dump.

We describe \(\delta\) on the ordered pairs and then \(\delta\) on \(d\).

For \(1 \leq i \leq n, 1 \leq j \leq \frac{n}{2}\), and \(\sigma \in \{a, b\}\):

\[
\delta((i, j), \sigma) = \begin{cases}
(i + 1, j) & \text{, if } i \leq n - 1 \text{ and } \sigma = b \\
(i + 1, j + 1) & \text{, if } i \leq n - 1 \text{ and } \sigma = a \land j \leq \frac{n}{2} \\
d & \text{, if } i = n \lor (\sigma = a \land j = \frac{n}{2})
\end{cases}
\]

For \(\sigma \in \{a, b\}\), \(\delta(d, \sigma)\) is defined by \(\delta(d, \sigma) = d\).

\[F = \{(n, n/2)\} \]. The number of states is \(O(n^2)\). Can we do better? U

Vote: Can do better, can’t do better, UNK TO BILL.
Prob 4b: Rgx for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$
Prob 4b: Rgx for $L = \{w: |w| = n \land \#_a(w) = n/2\}$

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$.
Prob 4b: Rgx for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Note that there are $|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right)$. Let $N = \binom{n}{n/2}$.
Prob 4b: Rgx for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N.
Prob 4b: Rgx for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Note that there are $|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right)$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N. Regex for L:

$$\{ w_1 \} \cup \{ w_2 \} \cup \cdots \cup \{ w_N \}.$$
Prob 4b: Rgx for \(L = \{w : |w| = n \land \#_a(w) = n/2\} \)

Note that there are \(|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right) \). Let \(N = \binom{n}{n/2} \).

Let all the strings in \(L \) be \(w_1, w_2, \ldots, w_N \). Regex for \(L \):

\[
\{w_1\} \cup \{w_2\} \cup \cdots \cup \{w_N\}.
\]

Length is \(Nn = \binom{n}{n/2}n = O(\sqrt{n}2^n) \).
Prob 4b: Rgx for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

Note that there are $|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right)$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N. Regex for L:

$$\{w_1\} \cup \{w_2\} \cup \cdots \cup \{w_N\}.$$

Length is $Nn = \binom{n}{n/2}n = O(\sqrt{n}2^n)$.

Vote
Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N. Regex for L:

$$\{w_1\} \cup \{w_2\} \cup \cdots \cup \{w_N\}.$$

Length is $Nn = \binom{n}{n/2}n = O(\sqrt{n}2^n)$.

Vote

There is a poly-sized regex and this is known.
Prob 4b: Rgx for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N. Regex for L:

$$\{w_1\} \cup \{w_2\} \cup \cdots \cup \{w_N\}.$$

Length is $Nn = \binom{n}{n/2} n = O(\sqrt{n}2^n)$.

Vote

There is a poly-sized regex and this is known.
There is not a poly-sized regex and this is known.
Prob 4b: Rgx for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

Note that there are \(|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right)\). Let \(N = \binom{n}{n/2} \).

Let all the strings in \(L \) be \(w_1, w_2, \ldots, w_N \). Regex for \(L \):

\[
\{ w_1 \} \cup \{ w_2 \} \cup \cdots \cup \{ w_N \}.
\]

Length is \(Nn = \binom{n}{n/2} n = O(\sqrt{n}2^n) \).

Vote

There is a poly-sized regex and this is known.

There is not a poly-sized regex and this is known.

Poly-sized regex or not is **UNK TO BILL**
Prob 4b: Rgx for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

Note that there are \(|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}} \right) \). Let \(N = \binom{n}{n/2} \).

Let all the strings in \(L \) be \(w_1, w_2, \ldots, w_N \). Regex for \(L \):

\[
\{ w_1 \} \cup \{ w_2 \} \cup \cdots \cup \{ w_N \}.
\]

Length is \(Nn = \binom{n}{n/2} n = O(\sqrt{n}2^n) \).

Vote

There is a poly-sized regex and this is known.
There is not a poly-sized regex and this is known.
Poly-sized regex or not is **UNK TO BILL**
Answer on the next slides.
There is No Poly Sized Regex for L.
There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

Paper is here: https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf

2. If $k = n^2$ this is $2^{\Omega(n)}$. If worked out then probably better than what we got, but not poly.

3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$.

Paper is here: https://arxiv.org/abs/1712.00811

4. If $k = n^2$ this is $2^{\Omega(n)}$. So there is no polysized Regex for $L_{n,n/2}$.
There is No Poly Sized Regex for \(L \)

Alphabet is \(\{a, b\} \).

Definition \(L_{n,k} = \{w : |w| = n \wedge \#_a(w) = k\} \).
There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

2. If $k = n^2$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.

3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$.

4. If $k = n^2$ this is $2^{\Omega(n)}$.

So there is no polysized Regex for $L_{n,n/2}$.

Paper is here: https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf

Paper is here: https://arxiv.org/abs/1712.00811
There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{ w : |w| = n \land \#_a(w) = k \}$.

1. Ellul-Kravvetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

 Paper is here: https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf

2. If $k = n^2$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.

3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$.

4. If $k = n^2$ this is $2^{\Omega(n)}$.

So there is no polysized Regex for $L_{n,n/2}$.

There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$. Paper is here: https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf

2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{ w : |w| = n \land \#_a(w) = k \}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

 Paper is here: https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf

2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.

3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$.
There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{ w : |w| = n \land \# a(w) = k \}$.

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.
 Paper is here: https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf

2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.

3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$.
 Paper is here: https://arxiv.org/abs/1712.00811
There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}$.

1. Ellul-Kravvetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$. Paper is here: https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$. Paper is here: https://arxiv.org/abs/1712.00811
4. If $k = \frac{n}{2}$ this is $2^{\Omega(n)}$.
There is No Poly Sized Regex for L

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}$.

1. Ellul-Kravvetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.
 Paper is here: https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf

2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.

3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$.
 Paper is here: https://arxiv.org/abs/1712.00811

4. If $k = \frac{n}{2}$ this is $2^{\Omega(n)}$.

So there is no polysized Regex for $L_{n,n/2}$.
Prob 4c: CFG for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$
Prob 4c: CFG for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

Note that there are \(|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right) \).
Prob 4c: CFG for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

Note that there are \(|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right) \). Let \(N = \binom{n}{n/2} \).
Prob 4c: CFG for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N.

Prob 4c: CFG for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N.

$(\forall i) G_i$ is CFG for $\{w_i\}$ of size $O(n)$. S_i is start sym of G_i.

Vote: Poly-known, not-Poly-known, UNK TO BILL.
Prob 4c: CFG for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

Note that there are $|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right)$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N.

$(\forall i) G_i$ is CFG for $\{w_i\}$ of size $O(n)$. S_i is start sym of G_i.

The CFL:
Prob 4c: CFG for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N.

$(\forall i) \ G_i$ is CFG for $\{w_i\}$ of size $O(n)$. S_i is start sym of G_i.

The CFL:

1. Start State is S. For all i add $S \to S_i$.
Prob 4c: CFG for \(L = \{ w : |w| = n \land \#_{a}(w) = n/2 \} \)

Note that there are \(|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})\). Let \(N = \binom{n}{n/2} \).

Let all the strings in \(L \) be \(w_1, w_2, \ldots, w_N \).

(\(\forall i \)) \(G_i \) is CFG for \(\{ w_i \} \) of size \(O(n) \). \(S_i \) is start sym of \(G_i \).

The CFL:

1. Start State is \(S \). For all \(i \) add \(S \rightarrow S_i \).
2. Add all of the rules of all of the \(G_i \)'s.
Prob 4c: CFG for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

Note that there are $|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right)$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N.

$(\forall i)$ G_i is CFG for $\{w_i\}$ of size $O(n)$. S_i is start sym of G_i.

The CFL:

1. Start State is S. For all i add $S \rightarrow S_i$.
2. Add all of the rules of all of the G_i’s.

N G_i’s. Each has $O(n)$ rules. G has
Prob 4c: CFG for $L = \{ w : |w| = n \wedge \#_a(w) = n/2 \}$

Note that there are $|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right)$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N.

$(\forall i) \ G_i$ is CFG for $\{w_i\}$ of size $O(n)$. S_i is start sym of G_i.

The CFL:

1. Start State is S. For all i add $S \rightarrow S_i$.
2. Add all of the rules of all of the G_i’s.

$N \ G_i$’s. Each has $O(n)$ rules. G has

$$O(Nn) = O\left(\left(\binom{n}{n/2}\right)n\right) = O(\sqrt{n}2^n) \text{rules.}$$
Prob 4c: CFG for $L = \{ w : \# w = n / 2 \}$

Note that there are $|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right)$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N.

$(\forall i)$ G_i is CFG for $\{w_i\}$ of size $O(n)$. S_i is start sym of G_i.

The CFL:

1. Start State is S. For all i add $S \to S_i$.
2. Add all of the rules of all of the G_i’s.

N G_i’s. Each has $O(n)$ rules. G has

$$O(Nn) = O\left(\left(\frac{n}{n/2}\right)^n\right) = O(\sqrt{n}2^n)$$

rules.

Vote: Poly-known, not-Poly-known, **UNK TO BILL**.
Prob 4c: CFG for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

Note that there are $|L| = \binom{n}{n/2} = \Theta\left(\frac{2^n}{\sqrt{n}}\right)$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N.

$(\forall i)$ G_i is CFG for $\{w_i\}$ of size $O(n)$. S_i is start sym of G_i.

The CFL:
1. Start State is S. For all i add $S \rightarrow S_i$.
2. Add all of the rules of all of the G_i’s.

N G_i’s. Each has $O(n)$ rules. G has

$$O(Nn) = O\left(\left(\binom{n}{n/2}\right)n\right) = O(\sqrt{n}2^n)$$

rules.

Vote: Poly-known, not-Poly-known, \textbf{UNK TO BILL}.

Answer on next slide.
Poly Size CFG for $L = \{w : |w| = n \wedge \#_a(w) = n/2\}$

Key Small CFG for $L_{i,j} = \{w : |w| = i \wedge \#_a(w) = j\}$
Poly Size CFG for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$
The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.
Poly Size CFG for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Key Small CFG for $L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \}$
The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{ b^i \}$.
Poly Size CFG for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Key Small CFG for $L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \}$

The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{ b^i \}$. CFG-CNF with $O(\log i)$ rules.
Poly Size CFG for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

Key Small CFG for \(L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \} \)

The start symbol for the CFG for \(L_{i,j} \) will be \(S_{i,j} \).

1. \(L_{i,0} = \{ b^i \} \). CFG-CNF with \(O(\log i) \) rules.
2. \(L_{1,1} = \{ a \} \).

"I am sure you can all go home and prove that by induction."

The Grammar is of size \(O(n^2) \).

Upshot There is a CFG for \(L_n, n/2 \) of size \(O(n^2) \).
Poly Size CFG for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

Key Small CFG for \(L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \} \)

The start symbol for the CFG for \(L_{i,j} \) will be \(S_{i,j} \).

1. \(L_{i,0} = \{ b^i \} \). CFG-CNF with \(O(\log i) \) rules.
2. \(L_{1,1} = \{ a \} \). CFG-CNF with \(O(1) \) rules.

"I am sure you can all go home and prove that by induction."

The Grammar is of size \(O(n^2) \).

Upshot There is a CFG for \(L_{n,n/2} \) of size \(O(n^2) \).
Poly Size CFG for $L = \{ w : |w| = n \wedge \#_a(w) = n/2 \}$

Key Small CFG for $L_{i,j} = \{ w : |w| = i \wedge \#_a(w) = j \}$

The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{ b^i \}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1} = \{ a \}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0} = \{ b \}$.

"I am sure you can all go home and prove that by induction."

The Grammar is of size $O(n^2)$.

Upshot

There is a CFG for $L_{n,n}$ of size $O(n^2)$.
Poly Size CFG for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Key Small CFG for $L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \}$

The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{ b^i \}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1} = \{ a \}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0} = \{ b \}$. CFG-CNF with $O(1)$ rules.

"I am sure you can all go home and prove that by induction."

The Grammar is of size $O(n^2)$.

Upshot There is a CFG for $L_n, n/2$ of size $O(n^2)$.

Poly Size CFG for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

Key Small CFG for \(L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \} \)

The start symbol for the CFG for \(L_{i,j} \) will be \(S_{i,j} \).

1. \(L_{i,0} = \{ b^i \} \). CFG-CNF with \(O(\log i) \) rules.
2. \(L_{1,1} = \{ a \} \). CFG-CNF with \(O(1) \) rules.
3. \(L_{1,0} = \{ b \} \). CFG-CNF with \(O(1) \) rules.
4. For \(2 \leq i \leq n, 1 \leq j \leq i \) add the rules:
Poly Size CFG for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

Key Small CFG for \(L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \} \)

The start symbol for the CFG for \(L_{i,j} \) will be \(S_{i,j} \).

1. \(L_{i,0} = \{ b^i \} \). CFG-CNF with \(O(\log i) \) rules.
2. \(L_{1,1} = \{ a \} \). CFG-CNF with \(O(1) \) rules.
3. \(L_{1,0} = \{ b \} \). CFG-CNF with \(O(1) \) rules.
4. For \(2 \leq i \leq n, 1 \leq j \leq i \) add the rules:
 \[
 S_{i,j} \rightarrow aS_{i−1,j−1}
 \]
Poly Size CFG for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Key Small CFG for $L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \}$

The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1} = \{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0} = \{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n$, $1 \leq j \leq i$ add the rules:

 $S_{i,j} \rightarrow aS_{i-1,j-1}$
 $S_{i,j} \rightarrow bS_{i-1,j}$

"I am sure you can all go home and prove that by induction."

The Grammar is of size $O(n^2)$.

Upshot There is a CFG for $L_{n,n}$ of size $O(n^2)$.
Poly Size CFG for $L = \{w : |w| = n \land \#_a(w) = n/2\}$

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$

The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1} = \{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0} = \{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n$, $1 \leq j \leq i$ add the rules:
 - $S_{i,j} \rightarrow aS_{i-1,j-1}$
 - $S_{i,j} \rightarrow bS_{i-1,j}$

If $S_{i,j}$ is Start then get $L_{i,j}$.

"I am sure you can all go home and prove that by induction."

The Grammar is of size $O(n^2)$.

Upshot There is a CFG for $L_{n,n/2}$ of size $O(n^2)$.

- $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- $L_{1,1} = \{a\}$. CFG-CNF with $O(1)$ rules.
- $L_{1,0} = \{b\}$. CFG-CNF with $O(1)$ rules.
- For $2 \leq i \leq n$, $1 \leq j \leq i$ add the rules:
 - $S_{i,j} \rightarrow aS_{i-1,j-1}$
 - $S_{i,j} \rightarrow bS_{i-1,j}$

If $S_{i,j}$ is Start then get $L_{i,j}$.

"I am sure you can all go home and prove that by induction."

The Grammar is of size $O(n^2)$.

Upshot There is a CFG for $L_{n,n/2}$ of size $O(n^2)$.
Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$

The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1} = \{a\}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0} = \{b\}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n$, $1 \leq j \leq i$ add the rules:

 $S_{i,j} \rightarrow aS_{i-1,j-1}$

 $S_{i,j} \rightarrow bS_{i-1,j}$

If $S_{i,j}$ is Start then get $L_{i,j}$.

“I am sure you can all go home and prove that by induction.”
Poly Size CFG for \(L = \{ w : |w| = n \land \#_a(w) = n/2 \} \)

Key Small CFG for \(L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \} \)

The start symbol for the CFG for \(L_{i,j} \) will be \(S_{i,j} \).

1. \(L_{i,0} = \{ b^i \} \). CFG-CNF with \(O(\log i) \) rules.
2. \(L_{1,1} = \{ a \} \). CFG-CNF with \(O(1) \) rules.
3. \(L_{1,0} = \{ b \} \). CFG-CNF with \(O(1) \) rules.
4. For \(2 \leq i \leq n, 1 \leq j \leq i \) add the rules:
 \[
 S_{i,j} \rightarrow aS_{i-1,j-1} \\
 S_{i,j} \rightarrow bS_{i-1,j}
 \]

If \(S_{i,j} \) is Start then get \(L_{i,j} \).

“\(I \) am sure you can all go home and prove that by induction.”

The Grammar is of size \(O(n^2) \).
Poly Size CFG for $L = \{ w : |w| = n \land \#_a(w) = n/2 \}$

Key Small CFG for $L_{i,j} = \{ w : |w| = i \land \#_a(w) = j \}$

The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{ b^i \}$. CFG-CNF with $O(\log i)$ rules.
2. $L_{1,1} = \{ a \}$. CFG-CNF with $O(1)$ rules.
3. $L_{1,0} = \{ b \}$. CFG-CNF with $O(1)$ rules.
4. For $2 \leq i \leq n$, $1 \leq j \leq i$ add the rules:
 - $S_{i,j} \rightarrow aS_{i-1,j-1}$
 - $S_{i,j} \rightarrow bS_{i-1,j}$

If $S_{i,j}$ is Start then get $L_{i,j}$.

“I am sure you can all go home and prove that by induction.”

The Grammar is of size $O(n^2)$.

Upshot There is a CFG for $L_{n,n/2}$ of size $O(n^2)$.
Bill’s Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)
(I obviously made up these slides before class began, so what I say here might not be true.)
Most of you voted as follows:

1. \(L_n, n/2 \) did NOT have a poly sized CFG-CNF.
2. UNK TO BILL
 To show that \(X \) does not exist you need to show that there is no clever idea and there is no hard math that will show that \(X \) does exist.
 In this case someone clever did come along with a solution.
 When was \(L_n, k \) proven to have a small grammar, and by who?
 Bill Gasarch while preparing hw05 in February 2024.
 No New Ideas: It used Dynamic Programming.
Bill’s Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
Bill’s Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
2. UNK TO BILL
Bill’s Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)
Most of you voted as follows:

1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.
(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

1. $L_{n,n/2}$ did NOT have a poly sized CFG-CN.F.
2. **UNK TO BILL**

To show that X **does not exist** you need to show that there **is no clever idea** and there **is no hard math** that will show that X does exist.

In this case someone clever did come along with a solution.
Bill’s Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
2. **UNK TO BILL**

To show that X **does not exist** you need to show that **there is no clever idea** and **there is no hard math** that will show that X does exist.

In this case someone clever did come along with a solution. When was $L_{n,k}$ proven to have a small grammar, and by who?
Bill’s Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I say here might not be true.)
Most of you voted as follows:

1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
2. **UNK TO BILL**

To show that X **does not exist** you need to show that **there is no clever idea** and **there is no hard math** that will show that X does exist.

In this case someone clever did come along with a solution.
When was $L_{n,k}$ proven to have a small grammar, and by who? Bill Gasarch while preparing hw05 in February 2024.
(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.

In this case someone clever did come along with a solution. When was $L_{n,k}$ proven to have a small grammar, and by who? Bill Gasarch while preparing hw05 in February 2024.

No New Ideas: It used Dynamic Programming.