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2) CFG-CNF for L1 = {an/4bn/4an/4bn/4}

CFG with, for each rule, how many rules it becomes in CNF.

S → ABAB . CNF: 2 rules.

A → a · · · a. n/4 a’s. CNF: log2(n/4) rules.

B → b · · · b. n/4 b’s. CNF: log2(n/4) rules.

Number of Rules:
2 + 2 log2(n/4) = 2 + 2(log2(n)− 2) = 2 log2(n)− 2.
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Prob 3: CFG for L = {anbncn : n ∈ N}

We give L as a ∪ of set, each of which is reg or CFL.

We first present sets where the a’s, b’s, c ’s are out of order.

1. {a, b, c}∗ba{a, b, c}∗. This is regular.
2. {a, b, c}∗cb{a, b, c}∗. This is regular.
3. {a, b, c}∗ca{a, b, c}∗. This is regular.

Next slide is the sets that are of the form a∗b∗c∗ but have the
numbers-of-symbols wrong.
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Prob 3: CFG for L = {anbncn : n ∈ N}(cont)

1. {ambn : m > n} · c∗.
c∗ is reg, hence CFL. CFL’s are closed under concat. we
need only give a CFG for

L1 = {ambn : m > n}
S → AT
T → aTb | e
A → Aa | a
(The remaining sets are similar.)

2. {ambnc∗ : m < n}
3. {a∗bmcn : m > n}
4. {a∗bmcn : m < n}
5. {amb∗cn : m > n}
6. {amb∗cn : m < n}
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Prob 4a: DFA for L = {w : |w | = n∧#a(w) = n/2}

DFA keeps track of |w | and #a(w).
Q = {(i , j) : 1 ≤ i ≤ n AND j ≤ n

2
AND j ≤ i} ∪ {d}

State (i , j): i chars seen, j of them are a’s. d is dump.
We describe δ on the ordered pairs and then δ on d .
For 1 ≤ i ≤ n, 1 ≤ j ≤ n

2
, and σ ∈ {a, b}:

δ((i , j), σ) =


(i + 1, j) , if i ≤ n − 1 and σ = b

(i + 1, j + 1) , if i ≤ n − 1 and σ = a and j ≤ n
2

d , if i = n ∨ (σ = a ∧ j = n
2
)

For σ ∈ {a, b}, δ(d , σ) is defined by δ(d , σ) = d .
F = {(n, n/2)}. The number of states is O(n2). Can we do
better? U
Vote: Can do better, can’t do better, UNK TO BILL.
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Prob 4b: Rgx for L = {w : |w | = n ∧#a(w) = n/2}

Note that there are |L| =
(

n
n/2

)
= Θ( 2n√

n
). Let N =

(
n

n/2

)
.

Let all the strings in L be w1,w2, . . . ,wN . Regex for L:

{w1} ∪ {w2} ∪ · · · ∪ {wN}.

Length is Nn =
(

n
n/2

)
n = O(

√
n2n).

Vote
There is a poly-sized regex and this is known.
There is not a poly-sized regex and this is known.
Poly-sized regex or not is UNK TO BILL
Answer on the next slides.
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There is No Poly Sized Regex for L

Alphabet is {a, b}.
Definition Ln,k = {w : |w | = n ∧#a(w) = k}.
1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that Ln,k

has a regex of size O(n(log n)k).
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf

2. If k = n
2
this is 2O(n). If worked out then probably better

than what we got, but not poly.

3. Mousavi, in 2017, showed that any regex for Ln,k has
length at least Ω(n(log n)k).
Paper is here: https://arxiv.org/abs/1712.00811

4. If k = n
2
this is 2Ω(n).

So there is no polysized Regex for Ln,n/2.

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811
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Prob 4c: CFG for L = {w : |w | = n ∧#a(w) = n/2}

Note that there are |L| =
(

n
n/2

)
= Θ( 2n√

n
). Let N =

(
n

n/2

)
.

Let all the strings in L be w1,w2, . . . ,wN .

(∀i) Gi is CFG for {wi} of size O(n). Si is start sym of Gi .

The CFL:

1. Start State is S . For all i add S → Si .

2. Add all of the rules of all of the Gi ’s.

N Gi ’s. Each has O(n) rules. G has

O(Nn) = O

((
n

n/2

)
n

)
= O(

√
n2n)rules.

Vote: Poly-known, not-Poly-known, UNK TO BILL.
Answer on next slide.
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Poly Size CFG for L = {w : |w | = n∧#a(w) = n/2}

Key Small CFG for Li ,j = {w : |w | = i ∧#a(w) = j}

The start symbol for the CFG for Li ,j will be Si ,j .

1. Li ,0 = {bi}. CFG-CNF with O(log i) rules.

2. L1,1 = {a}. CFG-CNF with O(1) rules.

3. L1,0 = {b}. CFG-CNF with O(1) rules.

4. For 2 ≤ i ≤ n, 1 ≤ j ≤ i add the rules:
Si ,j → aSi−1,j−1

Si ,j → bSi−1,j

If Si ,j is Start then get Li ,j .
“I am sure you can all go home and prove that by induction.”
The Grammar is of size O(n2).
Upshot There is a CFG for Ln,n/2 of size O(n2).
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Bill’s Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what I
say here might not be true.)

Most of you voted as follows:

1. Ln,n/2 did NOT have a poly sized CFG-CNF.

2. UNK TO BILL

To show that X does not exist you need to show that there
is no clever idea and there is no hard math that will show
that X does exist.

In this case someone clever did come along with a solution.

When was Ln,k proven to have a small grammar, and by who?

Bill Gasarch while preparing hw05 in February 2024.

No New Ideas: It used Dyanmic Programming.
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