Homework 11 Morally Due May 7 at 3:30PM

1. (25 points) In this problem we will guide you through a proof that the following problem is undecidable:

Given a CFG G, is L(G) a CFL? We call this problem CFG-COMP.

We define a variant of $ACC_{e,x}$.

Def For $e \in \mathbb{N}$, ACC_e is the set of all sequences of config's represented by

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

such that

- $|C_1| = |C_2| = \cdots = |C_s|.$
- There is an x such that C_1, C_2, \ldots, C_s represents an accepting computation of $M_e(x)$.
- (a) (5 points) Show that $\overline{ACC_e}$ is a context free grammar. (You only have to modify ONE of the parts of the CFG description for $\overline{ACC_{e,x}}$. The one having to do with the initial configuration. You do NOT have to rewrite the entire rest of the proof.)
- (b) (0 points, so don't hand it in, just think about it.) Show that if M_e accepts an INFINITE number of x then ACC_e is NOT a CFL. (You may use the PL for CFG's.)
- (c) (10 points) Show that if M_e accepts a FINITE number of x then ACC_e IS a CFL.
- (d) (10 points) Let INF be the set of Turing machines that accept an INFINITE number of inputs. It is known that INF is undecidable (indeed!- its in $\Pi_2 \Sigma_1$). You may use this fact.

Show that if CFG-COMP is decidable then INF is decidable. We give you some of the algorithm and BLANKS. You need to fill in the BLANKS.

- Input *e*. Create a CFG *G* for $\overline{\text{ACC}_e}$.
- BLANK

If $e \in \text{INF}$ then BLANK hence the algorithm says YES. If $e \notin \text{INF}$ then BLANK hence the algorithm says NO.

- 2. (30 points- 10 points each)
 - (a) Let a_1, \ldots, a_k and m_1, \ldots, m_k be natural numbers such that $(\forall i)[0 \le a_i \le m_i].$

Show that the following set is Diophantine. What is the degree of the polynomial? What is the number of variables (including x).

$$\bigg\{x: \bigwedge_{i=1}^k x \equiv a_i \pmod{m_i}\bigg\}.$$

(b) Let a_1, \ldots, a_k and m_1, \ldots, m_k be natural numbers such that $(\forall i)[0 \le a_i \le m_i].$

Show that the following set is Diophantine. What is the degree of the polynomial? What is the number of variables (including x).

$$\bigg\{x: \bigvee_{i=1}^k x \equiv a_i \pmod{m_i}\bigg\}.$$

(c) Let p_1, \ldots, p_k be the first k primes. Show that the following set is Diophantine. What is the degree of the polynomial? What is the number of variables (including x).

$$\bigg\{x: \bigwedge_{i=1}^k x \not\equiv 0 \pmod{p_i}\bigg\}.$$

3. (20 points) Read or re-read the last part of the (Q, <) slides– the part about the horse number. The numbers H(n) will come up in this problem.

For $n \ge 2$. Let B(n) be the number of ways that n horses, x_1, \ldots, x_n , can finish a race (equalities allowed) such that $x_1 < x_2$.

- (a) (0 points but you should do it or convince yourself that you could). What is B(2), B(3), B(4). Do B(4) in such a way that it can be generalized to B(n).
- (b) (20 points) Give a recurrence for B(n). It may also involve H(n). For example, it could be (but its NOT) B(n) = B(n-1) + B(n-4) + H(n)H(n-3). Explain your answer.

4. (25 points) In this problem if G is a CFL then L(G) is the set of strings that G generates.

In this problem the alphabet is $\{a, b\}^*$.

- (a) (10 points) Show that there is a CFL G in Chomsky normal form with $L(G) = \{a^n\}$ such that G has $O(\log n)$ rules. (You may assume n is a power of 2.)
- (b) (15 points) Let w be a Kolmogorov random string of length n. Think of n as large.

Let G be a CFL in Chomsky Normal Form such that $L(G) = \{w\}$. Show that Then G has at least $\Omega(n^{0.9})$ rules. (Note: A better result is possible; however, we are asking for $\Omega(n^{0.9})$ to keep the algebra simpler.)

Hint If a CFL has R rules then it has at most 3R nonterminals. In this case each nonterminal can be represented with $O(\log R)$ bits. Hence the size of the CFL is $O(R \log R)$ bits.