
Bounded Queries in
Recursion Theory



Asking about Three Programs

Notation HALT(e) is 1 if e ∈ HALT and 0 otherwise.

Consider the following problem:
Input You are given three programs e1, e2, e3.

Output HALT(e1)HALT(e2)HALT(e3).

(Output is one of 000, 001, 010, 011, 100, 101, 110, 111.)
Not computable since HALT is not computable.

But What if. . . See next slide.



Asking about Three Programs

Notation HALT(e) is 1 if e ∈ HALT and 0 otherwise.

Consider the following problem:

Input You are given three programs e1, e2, e3.

Output HALT(e1)HALT(e2)HALT(e3).

(Output is one of 000, 001, 010, 011, 100, 101, 110, 111.)
Not computable since HALT is not computable.

But What if. . . See next slide.



Asking about Three Programs

Notation HALT(e) is 1 if e ∈ HALT and 0 otherwise.

Consider the following problem:
Input You are given three programs e1, e2, e3.

Output HALT(e1)HALT(e2)HALT(e3).

(Output is one of 000, 001, 010, 011, 100, 101, 110, 111.)
Not computable since HALT is not computable.

But What if. . . See next slide.



Asking about Three Programs

Notation HALT(e) is 1 if e ∈ HALT and 0 otherwise.

Consider the following problem:
Input You are given three programs e1, e2, e3.

Output HALT(e1)HALT(e2)HALT(e3).

(Output is one of 000, 001, 010, 011, 100, 101, 110, 111.)
Not computable since HALT is not computable.

But What if. . . See next slide.



Asking about Three Programs

Notation HALT(e) is 1 if e ∈ HALT and 0 otherwise.

Consider the following problem:
Input You are given three programs e1, e2, e3.

Output HALT(e1)HALT(e2)HALT(e3).

(Output is one of 000, 001, 010, 011, 100, 101, 110, 111.)

Not computable since HALT is not computable.

But What if. . . See next slide.



Asking about Three Programs

Notation HALT(e) is 1 if e ∈ HALT and 0 otherwise.

Consider the following problem:
Input You are given three programs e1, e2, e3.

Output HALT(e1)HALT(e2)HALT(e3).

(Output is one of 000, 001, 010, 011, 100, 101, 110, 111.)
Not computable since HALT is not computable.

But What if. . . See next slide.



Asking about Three Programs

Notation HALT(e) is 1 if e ∈ HALT and 0 otherwise.

Consider the following problem:
Input You are given three programs e1, e2, e3.

Output HALT(e1)HALT(e2)HALT(e3).

(Output is one of 000, 001, 010, 011, 100, 101, 110, 111.)
Not computable since HALT is not computable.

But What if. . . See next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.

Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?
VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.
Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?
VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.
Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?
VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.
Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?
VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.
Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?

VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.
Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?
VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.
Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?
VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.
Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?
VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.
Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?
VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



What if You Could Make Queries to HALT?

Input You are given three programs e1, e2, e3.
Output HALT(e1)HALT(e2)HALT(e3).

We will allow queries to HALT.

If could make 3 queries to HALT then you could solve.

What if you are only allowed 2 queries to HALT?
VOTE

▶ Known cannot solve with 2 queries.

▶ Known can solve with 2 queries.

▶ Unknown to Science.

Answer on next slide.



Known Can Solve With 2 Queries

We will need the following notation.

Notation Let e1, e2, e3 be programs. A(i) is the program that runs
all of them at the same time until i of them halt.

A(i) ∈ HALT iff at least i of the programs are in HALT.

Key Do ≥ i of e1, e2, e3 ∈ HALT is a query to HALT.

We will use A(i) in the algorithm on the next slide.



Known Can Solve With 2 Queries

We will need the following notation.

Notation Let e1, e2, e3 be programs. A(i) is the program that runs
all of them at the same time until i of them halt.

A(i) ∈ HALT iff at least i of the programs are in HALT.

Key Do ≥ i of e1, e2, e3 ∈ HALT is a query to HALT.

We will use A(i) in the algorithm on the next slide.



Known Can Solve With 2 Queries

We will need the following notation.

Notation Let e1, e2, e3 be programs. A(i) is the program that runs
all of them at the same time until i of them halt.

A(i) ∈ HALT iff at least i of the programs are in HALT.

Key Do ≥ i of e1, e2, e3 ∈ HALT is a query to HALT.

We will use A(i) in the algorithm on the next slide.



Known Can Solve With 2 Queries

We will need the following notation.

Notation Let e1, e2, e3 be programs. A(i) is the program that runs
all of them at the same time until i of them halt.

A(i) ∈ HALT iff at least i of the programs are in HALT.

Key Do ≥ i of e1, e2, e3 ∈ HALT is a query to HALT.

We will use A(i) in the algorithm on the next slide.



Known Can Solve With 2 Queries

We will need the following notation.

Notation Let e1, e2, e3 be programs. A(i) is the program that runs
all of them at the same time until i of them halt.

A(i) ∈ HALT iff at least i of the programs are in HALT.

Key Do ≥ i of e1, e2, e3 ∈ HALT is a query to HALT.

We will use A(i) in the algorithm on the next slide.



Known Can Solve With 2 Queries

1. Input e1, e2, e3.

2. Ask Are ≥ 2 of e1, e2, e3 in HALT?

2.1 If YES then Ask Are ≥ 3 of e1, e2, e3 in HALT?
If YES then output 111.
If NO then exactly 2 of e1, e2, e3 are in HALT.
What to do? Discuss!
RUN e1, e2, e3 UNTIL 2 of them halt. When they do, you
know exactly which ones halt.

2.2 If NO then similar. Find out HOW MANY of e1, e2, e3 are in
HALT and then RUN them all to see which ones HALT.



Known Can Solve With 2 Queries

1. Input e1, e2, e3.

2. Ask Are ≥ 2 of e1, e2, e3 in HALT?

2.1 If YES then Ask Are ≥ 3 of e1, e2, e3 in HALT?
If YES then output 111.
If NO then exactly 2 of e1, e2, e3 are in HALT.
What to do? Discuss!
RUN e1, e2, e3 UNTIL 2 of them halt. When they do, you
know exactly which ones halt.

2.2 If NO then similar. Find out HOW MANY of e1, e2, e3 are in
HALT and then RUN them all to see which ones HALT.



Known Can Solve With 2 Queries

1. Input e1, e2, e3.

2. Ask Are ≥ 2 of e1, e2, e3 in HALT?

2.1 If YES then Ask Are ≥ 3 of e1, e2, e3 in HALT?
If YES then output 111.
If NO then exactly 2 of e1, e2, e3 are in HALT.
What to do? Discuss!
RUN e1, e2, e3 UNTIL 2 of them halt. When they do, you
know exactly which ones halt.

2.2 If NO then similar. Find out HOW MANY of e1, e2, e3 are in
HALT and then RUN them all to see which ones HALT.



Known Can Solve With 2 Queries

1. Input e1, e2, e3.

2. Ask Are ≥ 2 of e1, e2, e3 in HALT?

2.1 If YES then Ask Are ≥ 3 of e1, e2, e3 in HALT?

If YES then output 111.
If NO then exactly 2 of e1, e2, e3 are in HALT.
What to do? Discuss!
RUN e1, e2, e3 UNTIL 2 of them halt. When they do, you
know exactly which ones halt.

2.2 If NO then similar. Find out HOW MANY of e1, e2, e3 are in
HALT and then RUN them all to see which ones HALT.



Known Can Solve With 2 Queries

1. Input e1, e2, e3.

2. Ask Are ≥ 2 of e1, e2, e3 in HALT?

2.1 If YES then Ask Are ≥ 3 of e1, e2, e3 in HALT?
If YES then output 111.

If NO then exactly 2 of e1, e2, e3 are in HALT.
What to do? Discuss!
RUN e1, e2, e3 UNTIL 2 of them halt. When they do, you
know exactly which ones halt.

2.2 If NO then similar. Find out HOW MANY of e1, e2, e3 are in
HALT and then RUN them all to see which ones HALT.



Known Can Solve With 2 Queries

1. Input e1, e2, e3.

2. Ask Are ≥ 2 of e1, e2, e3 in HALT?

2.1 If YES then Ask Are ≥ 3 of e1, e2, e3 in HALT?
If YES then output 111.
If NO then exactly 2 of e1, e2, e3 are in HALT.

What to do? Discuss!
RUN e1, e2, e3 UNTIL 2 of them halt. When they do, you
know exactly which ones halt.

2.2 If NO then similar. Find out HOW MANY of e1, e2, e3 are in
HALT and then RUN them all to see which ones HALT.



Known Can Solve With 2 Queries

1. Input e1, e2, e3.

2. Ask Are ≥ 2 of e1, e2, e3 in HALT?

2.1 If YES then Ask Are ≥ 3 of e1, e2, e3 in HALT?
If YES then output 111.
If NO then exactly 2 of e1, e2, e3 are in HALT.
What to do? Discuss!

RUN e1, e2, e3 UNTIL 2 of them halt. When they do, you
know exactly which ones halt.

2.2 If NO then similar. Find out HOW MANY of e1, e2, e3 are in
HALT and then RUN them all to see which ones HALT.



Known Can Solve With 2 Queries

1. Input e1, e2, e3.

2. Ask Are ≥ 2 of e1, e2, e3 in HALT?

2.1 If YES then Ask Are ≥ 3 of e1, e2, e3 in HALT?
If YES then output 111.
If NO then exactly 2 of e1, e2, e3 are in HALT.
What to do? Discuss!
RUN e1, e2, e3 UNTIL 2 of them halt. When they do, you
know exactly which ones halt.

2.2 If NO then similar. Find out HOW MANY of e1, e2, e3 are in
HALT and then RUN them all to see which ones HALT.



Known Can Solve With 2 Queries

1. Input e1, e2, e3.

2. Ask Are ≥ 2 of e1, e2, e3 in HALT?

2.1 If YES then Ask Are ≥ 3 of e1, e2, e3 in HALT?
If YES then output 111.
If NO then exactly 2 of e1, e2, e3 are in HALT.
What to do? Discuss!
RUN e1, e2, e3 UNTIL 2 of them halt. When they do, you
know exactly which ones halt.

2.2 If NO then similar. Find out HOW MANY of e1, e2, e3 are in
HALT and then RUN them all to see which ones HALT.



Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries.
He was right but wrong.

Actually wrong but has a point.

Note the following:

If in the algorithm the wrong information was supplied to the
questions then the algorithm could ↑.
Known If you require the algorithm to halt even with wrong
answers, then you need 3 queries.

2. I did 3-queries-for-2. We will generalize on next slide.



Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries.
He was right but wrong. Actually wrong but has a point.

Note the following:

If in the algorithm the wrong information was supplied to the
questions then the algorithm could ↑.
Known If you require the algorithm to halt even with wrong
answers, then you need 3 queries.

2. I did 3-queries-for-2. We will generalize on next slide.



Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries.
He was right but wrong. Actually wrong but has a point.

Note the following:

If in the algorithm the wrong information was supplied to the
questions then the algorithm could ↑.
Known If you require the algorithm to halt even with wrong
answers, then you need 3 queries.

2. I did 3-queries-for-2. We will generalize on next slide.



Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries.
He was right but wrong. Actually wrong but has a point.

Note the following:

If in the algorithm the wrong information was supplied to the
questions then the algorithm could ↑.

Known If you require the algorithm to halt even with wrong
answers, then you need 3 queries.

2. I did 3-queries-for-2. We will generalize on next slide.



Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries.
He was right but wrong. Actually wrong but has a point.

Note the following:

If in the algorithm the wrong information was supplied to the
questions then the algorithm could ↑.
Known If you require the algorithm to halt even with wrong
answers, then you need 3 queries.

2. I did 3-queries-for-2. We will generalize on next slide.



Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries.
He was right but wrong. Actually wrong but has a point.

Note the following:

If in the algorithm the wrong information was supplied to the
questions then the algorithm could ↑.
Known If you require the algorithm to halt even with wrong
answers, then you need 3 queries.

2. I did 3-queries-for-2. We will generalize on next slide.



What if Given n Programs?

Given e1, . . . , en want to know

HALT(e1) · · ·HALT(en).

Work with your neighbor on the question:
Let n ≥ 3. How many queries to HALT do you need to find
HALT(e1) · · ·HALT(en)?



What if Given n Programs?

Given e1, . . . , en want to know

HALT(e1) · · ·HALT(en).

Work with your neighbor on the question:
Let n ≥ 3. How many queries to HALT do you need to find
HALT(e1) · · ·HALT(en)?



Here is the Answer

n No. of q’s
1 1
2 2
3 2
4 3
5 3
6 3
7 3
8 4
9 4
10 4
11 4
12 4
13 4
14 4
15 4
16 5

If 2i ≤ n ≤ 2i+1 − 1 then takes i + 1 queries.

Is there a better algorithm? Next slide looks at n = 2.



Here is the Answer

n No. of q’s
1 1
2 2
3 2
4 3
5 3
6 3
7 3
8 4
9 4
10 4
11 4
12 4
13 4
14 4
15 4
16 5

If 2i ≤ n ≤ 2i+1 − 1 then takes i + 1 queries.

Is there a better algorithm? Next slide looks at n = 2.



Here is the Answer

n No. of q’s
1 1
2 2
3 2
4 3
5 3
6 3
7 3
8 4
9 4
10 4
11 4
12 4
13 4
14 4
15 4
16 5

If 2i ≤ n ≤ 2i+1 − 1 then takes i + 1 queries.

Is there a better algorithm? Next slide looks at n = 2.



Asking about Two Programs

Consider the following problem:

Input You are given two programs e1, e2.

Output HALT(e1)HALT(e2).

(Output is one of 00, 01, 10, 11)
VOTE

▶ Known cannot solve with 1 query.

▶ Known can solve with 1 query.

▶ Unknown to Science

Answer on next slide.



Asking about Two Programs

Consider the following problem:
Input You are given two programs e1, e2.

Output HALT(e1)HALT(e2).

(Output is one of 00, 01, 10, 11)
VOTE

▶ Known cannot solve with 1 query.

▶ Known can solve with 1 query.

▶ Unknown to Science

Answer on next slide.



Asking about Two Programs

Consider the following problem:
Input You are given two programs e1, e2.

Output HALT(e1)HALT(e2).

(Output is one of 00, 01, 10, 11)
VOTE

▶ Known cannot solve with 1 query.

▶ Known can solve with 1 query.

▶ Unknown to Science

Answer on next slide.



Asking about Two Programs

Consider the following problem:
Input You are given two programs e1, e2.

Output HALT(e1)HALT(e2).

(Output is one of 00, 01, 10, 11)

VOTE

▶ Known cannot solve with 1 query.

▶ Known can solve with 1 query.

▶ Unknown to Science

Answer on next slide.



Asking about Two Programs

Consider the following problem:
Input You are given two programs e1, e2.

Output HALT(e1)HALT(e2).

(Output is one of 00, 01, 10, 11)
VOTE

▶ Known cannot solve with 1 query.

▶ Known can solve with 1 query.

▶ Unknown to Science

Answer on next slide.



Asking about Two Programs

Consider the following problem:
Input You are given two programs e1, e2.

Output HALT(e1)HALT(e2).

(Output is one of 00, 01, 10, 11)
VOTE

▶ Known cannot solve with 1 query.

▶ Known can solve with 1 query.

▶ Unknown to Science

Answer on next slide.



Asking about Two Programs

Consider the following problem:
Input You are given two programs e1, e2.

Output HALT(e1)HALT(e2).

(Output is one of 00, 01, 10, 11)
VOTE

▶ Known cannot solve with 1 query.

▶ Known can solve with 1 query.

▶ Unknown to Science

Answer on next slide.



Asking about Two Programs

Consider the following problem:
Input You are given two programs e1, e2.

Output HALT(e1)HALT(e2).

(Output is one of 00, 01, 10, 11)
VOTE

▶ Known cannot solve with 1 query.

▶ Known can solve with 1 query.

▶ Unknown to Science

Answer on next slide.



Asking about Two Programs

Consider the following problem:
Input You are given two programs e1, e2.

Output HALT(e1)HALT(e2).

(Output is one of 00, 01, 10, 11)
VOTE

▶ Known cannot solve with 1 query.

▶ Known can solve with 1 query.

▶ Unknown to Science

Answer on next slide.



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).
Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).
Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).
Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).
Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).

Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).
Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).
Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).
Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).
Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Need a new viewpoint.

Def A function f ∈ EN(2) if there exists 2 Turing Machines
M1,M2 such that

(∀x)[f (x) ∈ {M1(x),M2(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Thm If f can be computed with 1 query to X then f ∈ EN(2).
Proof

M1(x) runs the 1-query Alg for f . Answer query YES.

M2(x) runs the 1-query Alg for f . Answer query NO.

Since the query asked either has answer Y or answer N, at least
one of M1(x) and M2(x) will be correct.

Note that which one is correct may vary. It may be that on
M1(17) ↓= f (17) but M2(22) ↓= f (22).



Known Cannot Solve With 1 Query

Notation (a, b) =1 (c , d) means a = c . Sim for ̸=1.

Assume, BWOC that the function f (e1, e2) = HALT(e1)HALT(e2)
can be computed with one query to HALT.

By last slide there are two TM’s M1,M2 such that
(∀e1, e2)[HALT(e1)HALT(e2) ∈ {M1(e1, e2),M2(e1, e2)}.
We will use this to get HALT is decidable.

Two cases. On the next two slides.



Known Cannot Solve With 1 Query

Notation (a, b) =1 (c , d) means a = c . Sim for ̸=1.

Assume, BWOC that the function f (e1, e2) = HALT(e1)HALT(e2)
can be computed with one query to HALT.

By last slide there are two TM’s M1,M2 such that
(∀e1, e2)[HALT(e1)HALT(e2) ∈ {M1(e1, e2),M2(e1, e2)}.
We will use this to get HALT is decidable.

Two cases. On the next two slides.



Known Cannot Solve With 1 Query

Notation (a, b) =1 (c , d) means a = c . Sim for ̸=1.

Assume, BWOC that the function f (e1, e2) = HALT(e1)HALT(e2)
can be computed with one query to HALT.

By last slide there are two TM’s M1,M2 such that
(∀e1, e2)[HALT(e1)HALT(e2) ∈ {M1(e1, e2),M2(e1, e2)}.

We will use this to get HALT is decidable.

Two cases. On the next two slides.



Known Cannot Solve With 1 Query

Notation (a, b) =1 (c , d) means a = c . Sim for ̸=1.

Assume, BWOC that the function f (e1, e2) = HALT(e1)HALT(e2)
can be computed with one query to HALT.

By last slide there are two TM’s M1,M2 such that
(∀e1, e2)[HALT(e1)HALT(e2) ∈ {M1(e1, e2),M2(e1, e2)}.
We will use this to get HALT is decidable.

Two cases. On the next two slides.



Known Cannot Solve With 1 Query

Notation (a, b) =1 (c , d) means a = c . Sim for ̸=1.

Assume, BWOC that the function f (e1, e2) = HALT(e1)HALT(e2)
can be computed with one query to HALT.

By last slide there are two TM’s M1,M2 such that
(∀e1, e2)[HALT(e1)HALT(e2) ∈ {M1(e1, e2),M2(e1, e2)}.
We will use this to get HALT is decidable.

Two cases. On the next two slides.



Case 1

Motivation We have M1,M2 which take two inputs

But we want to solve HALT which takes one input.
what if we could always find a helpful second input:
Case 1 (∀e1)(∃e2)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧M1(e1, e2) =1 M2(e1, e2)].

1. Input e1
2. For (e2, s) ∈ N× N

2.1 Run M1(e1, e2) and M2(e1, e2) for s steps.
2.2 If they both ↓ and agree on first spot, output that spot. Else

go to next (e2, s).

This algorithm computes HALT because of the case we are in.



Case 1

Motivation We have M1,M2 which take two inputs
But we want to solve HALT which takes one input.

what if we could always find a helpful second input:
Case 1 (∀e1)(∃e2)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧M1(e1, e2) =1 M2(e1, e2)].

1. Input e1
2. For (e2, s) ∈ N× N

2.1 Run M1(e1, e2) and M2(e1, e2) for s steps.
2.2 If they both ↓ and agree on first spot, output that spot. Else

go to next (e2, s).

This algorithm computes HALT because of the case we are in.



Case 1

Motivation We have M1,M2 which take two inputs
But we want to solve HALT which takes one input.
what if we could always find a helpful second input:

Case 1 (∀e1)(∃e2)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧M1(e1, e2) =1 M2(e1, e2)].

1. Input e1
2. For (e2, s) ∈ N× N

2.1 Run M1(e1, e2) and M2(e1, e2) for s steps.
2.2 If they both ↓ and agree on first spot, output that spot. Else

go to next (e2, s).

This algorithm computes HALT because of the case we are in.



Case 1

Motivation We have M1,M2 which take two inputs
But we want to solve HALT which takes one input.
what if we could always find a helpful second input:
Case 1 (∀e1)(∃e2)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧M1(e1, e2) =1 M2(e1, e2)].

1. Input e1
2. For (e2, s) ∈ N× N

2.1 Run M1(e1, e2) and M2(e1, e2) for s steps.
2.2 If they both ↓ and agree on first spot, output that spot. Else

go to next (e2, s).

This algorithm computes HALT because of the case we are in.



Case 1

Motivation We have M1,M2 which take two inputs
But we want to solve HALT which takes one input.
what if we could always find a helpful second input:
Case 1 (∀e1)(∃e2)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧M1(e1, e2) =1 M2(e1, e2)].

1. Input e1

2. For (e2, s) ∈ N× N
2.1 Run M1(e1, e2) and M2(e1, e2) for s steps.
2.2 If they both ↓ and agree on first spot, output that spot. Else

go to next (e2, s).

This algorithm computes HALT because of the case we are in.



Case 1

Motivation We have M1,M2 which take two inputs
But we want to solve HALT which takes one input.
what if we could always find a helpful second input:
Case 1 (∀e1)(∃e2)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧M1(e1, e2) =1 M2(e1, e2)].

1. Input e1
2. For (e2, s) ∈ N× N

2.1 Run M1(e1, e2) and M2(e1, e2) for s steps.
2.2 If they both ↓ and agree on first spot, output that spot. Else

go to next (e2, s).

This algorithm computes HALT because of the case we are in.



Case 1

Motivation We have M1,M2 which take two inputs
But we want to solve HALT which takes one input.
what if we could always find a helpful second input:
Case 1 (∀e1)(∃e2)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧M1(e1, e2) =1 M2(e1, e2)].

1. Input e1
2. For (e2, s) ∈ N× N

2.1 Run M1(e1, e2) and M2(e1, e2) for s steps.

2.2 If they both ↓ and agree on first spot, output that spot. Else
go to next (e2, s).

This algorithm computes HALT because of the case we are in.



Case 1

Motivation We have M1,M2 which take two inputs
But we want to solve HALT which takes one input.
what if we could always find a helpful second input:
Case 1 (∀e1)(∃e2)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧M1(e1, e2) =1 M2(e1, e2)].

1. Input e1
2. For (e2, s) ∈ N× N

2.1 Run M1(e1, e2) and M2(e1, e2) for s steps.
2.2 If they both ↓ and agree on first spot, output that spot. Else

go to next (e2, s).

This algorithm computes HALT because of the case we are in.



Case 1

Motivation We have M1,M2 which take two inputs
But we want to solve HALT which takes one input.
what if we could always find a helpful second input:
Case 1 (∀e1)(∃e2)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧M1(e1, e2) =1 M2(e1, e2)].

1. Input e1
2. For (e2, s) ∈ N× N

2.1 Run M1(e1, e2) and M2(e1, e2) for s steps.
2.2 If they both ↓ and agree on first spot, output that spot. Else

go to next (e2, s).

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].

Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.

Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].

We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.

Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.

Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



Case 2

Recall: Case 1 (∀e2)(∃e1)
[M1(e1, e2) ↓ ∧M2(e1, e2) ↓ ∧ agree on first spot].
Case 2 will be negation of Case 1.
Case 2 (∃e1)(∀e2)
[M1(e1, e2) ↑ ∨M2(e1, e2) ↑ ∨M1(e1, e2) ↓̸=1 M2(e1, e2)].
We use e1 and b = HALT(e1) as parameters in the algorithm.

1. Input e2 (Yes I intentionally use e2.)

2. Run M1(e1, e2) and M2(e1, e2) at the same time until one of
them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and
have b as the second component.
Hence this is the correct answer.

3. Output the second component.

This algorithm computes HALT because of the case we are in.



The Proof is Nonconstructive!

Given an alleged algorithm for HALT(e1)HALT(e2) that makes
only one query, the proof does not tell you how to create an
algorithm for HALT.

However, it does tell you how to create an infinite number of
programs, one of which solve HALT.

So the proof is nonconstructive.

Could there be a constructive proof? No.
Proven by Gasarch in 1990.



The Proof is Nonconstructive!

Given an alleged algorithm for HALT(e1)HALT(e2) that makes
only one query, the proof does not tell you how to create an
algorithm for HALT.

However, it does tell you how to create an infinite number of
programs, one of which solve HALT.

So the proof is nonconstructive.

Could there be a constructive proof? No.
Proven by Gasarch in 1990.



The Proof is Nonconstructive!

Given an alleged algorithm for HALT(e1)HALT(e2) that makes
only one query, the proof does not tell you how to create an
algorithm for HALT.

However, it does tell you how to create an infinite number of
programs, one of which solve HALT.

So the proof is nonconstructive.

Could there be a constructive proof? No.
Proven by Gasarch in 1990.



The Proof is Nonconstructive!

Given an alleged algorithm for HALT(e1)HALT(e2) that makes
only one query, the proof does not tell you how to create an
algorithm for HALT.

However, it does tell you how to create an infinite number of
programs, one of which solve HALT.

So the proof is nonconstructive.

Could there be a constructive proof? No.

Proven by Gasarch in 1990.



The Proof is Nonconstructive!

Given an alleged algorithm for HALT(e1)HALT(e2) that makes
only one query, the proof does not tell you how to create an
algorithm for HALT.

However, it does tell you how to create an infinite number of
programs, one of which solve HALT.

So the proof is nonconstructive.

Could there be a constructive proof? No.
Proven by Gasarch in 1990.



Summary of What I’ve Told You

▶ 3-queries-to-HALT can be computed with 2-queries-to-HALT.

▶ 2-queries-to-HALT cannot be computed with 1-query-to-X
for any X .

▶ Konstantine’s Theorem CANNOT do 3-queries-to-HALT
with 2-queries-to-X if you insist that even incorrect answers
lead to converging.

Hence we know the exact query complexity of 3-queries-to-HALT.



Summary of What I’ve Told You

▶ 3-queries-to-HALT can be computed with 2-queries-to-HALT.

▶ 2-queries-to-HALT cannot be computed with 1-query-to-X
for any X .

▶ Konstantine’s Theorem CANNOT do 3-queries-to-HALT
with 2-queries-to-X if you insist that even incorrect answers
lead to converging.

Hence we know the exact query complexity of 3-queries-to-HALT.



Summary of What I’ve Told You

▶ 3-queries-to-HALT can be computed with 2-queries-to-HALT.

▶ 2-queries-to-HALT cannot be computed with 1-query-to-X
for any X .

▶ Konstantine’s Theorem CANNOT do 3-queries-to-HALT
with 2-queries-to-X if you insist that even incorrect answers
lead to converging.

Hence we know the exact query complexity of 3-queries-to-HALT.



Summary of What I’ve Told You

▶ 3-queries-to-HALT can be computed with 2-queries-to-HALT.

▶ 2-queries-to-HALT cannot be computed with 1-query-to-X
for any X .

▶ Konstantine’s Theorem CANNOT do 3-queries-to-HALT
with 2-queries-to-X if you insist that even incorrect answers
lead to converging.

Hence we know the exact query complexity of 3-queries-to-HALT.



Summary of What I’ve Told You

▶ 3-queries-to-HALT can be computed with 2-queries-to-HALT.

▶ 2-queries-to-HALT cannot be computed with 1-query-to-X
for any X .

▶ Konstantine’s Theorem CANNOT do 3-queries-to-HALT
with 2-queries-to-X if you insist that even incorrect answers
lead to converging.

Hence we know the exact query complexity of 3-queries-to-HALT.



What More is Known

▶ 2n − 1-queries-to-HALT can be computed with
n-queries-to-HALT.
Use Binary Search to find out how many halt and then run
them to see which ones halt.

▶ 2n-queries-to-HALT cannot be computed with n-queries-to-X .
Could do this in class if had more time.

▶ Konstantine’s Theorem If you want to compute m-queries
to HALT and you insist that even incorrect answers lead to
converging then requires m queries.



What More is Known

▶ 2n − 1-queries-to-HALT can be computed with
n-queries-to-HALT.

Use Binary Search to find out how many halt and then run
them to see which ones halt.

▶ 2n-queries-to-HALT cannot be computed with n-queries-to-X .
Could do this in class if had more time.

▶ Konstantine’s Theorem If you want to compute m-queries
to HALT and you insist that even incorrect answers lead to
converging then requires m queries.



What More is Known

▶ 2n − 1-queries-to-HALT can be computed with
n-queries-to-HALT.
Use Binary Search to find out how many halt and then run
them to see which ones halt.

▶ 2n-queries-to-HALT cannot be computed with n-queries-to-X .
Could do this in class if had more time.

▶ Konstantine’s Theorem If you want to compute m-queries
to HALT and you insist that even incorrect answers lead to
converging then requires m queries.



What More is Known

▶ 2n − 1-queries-to-HALT can be computed with
n-queries-to-HALT.
Use Binary Search to find out how many halt and then run
them to see which ones halt.

▶ 2n-queries-to-HALT cannot be computed with n-queries-to-X .

Could do this in class if had more time.

▶ Konstantine’s Theorem If you want to compute m-queries
to HALT and you insist that even incorrect answers lead to
converging then requires m queries.



What More is Known

▶ 2n − 1-queries-to-HALT can be computed with
n-queries-to-HALT.
Use Binary Search to find out how many halt and then run
them to see which ones halt.

▶ 2n-queries-to-HALT cannot be computed with n-queries-to-X .
Could do this in class if had more time.

▶ Konstantine’s Theorem If you want to compute m-queries
to HALT and you insist that even incorrect answers lead to
converging then requires m queries.



What More is Known

▶ 2n − 1-queries-to-HALT can be computed with
n-queries-to-HALT.
Use Binary Search to find out how many halt and then run
them to see which ones halt.

▶ 2n-queries-to-HALT cannot be computed with n-queries-to-X .
Could do this in class if had more time.

▶ Konstantine’s Theorem If you want to compute m-queries
to HALT and you insist that even incorrect answers lead to
converging then requires m queries.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).
Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .
Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.
Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).
OH! Lets CHANGE the problem
Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).
The proof is by induction on m. Omitted but could do.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).
Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .
Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.
Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).
OH! Lets CHANGE the problem
Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).
The proof is by induction on m. Omitted but could do.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).
Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .
Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.
Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).
OH! Lets CHANGE the problem
Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).
The proof is by induction on m. Omitted but could do.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).

Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .
Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.
Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).
OH! Lets CHANGE the problem
Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).
The proof is by induction on m. Omitted but could do.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).
Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .

Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.
Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).
OH! Lets CHANGE the problem
Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).
The proof is by induction on m. Omitted but could do.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).
Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .
Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.

Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).
OH! Lets CHANGE the problem
Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).
The proof is by induction on m. Omitted but could do.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).
Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .
Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.
Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).

OH! Lets CHANGE the problem
Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).
The proof is by induction on m. Omitted but could do.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).
Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .
Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.
Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).
OH! Lets CHANGE the problem

Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).
The proof is by induction on m. Omitted but could do.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).
Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .
Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.
Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).
OH! Lets CHANGE the problem
Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).

The proof is by induction on m. Omitted but could do.



First Step in Proof about 2n

Def A function f ∈ EN(m) if there exists m Turing Machines
M1, . . . ,Mm such that

(∀x)[f (x) ∈ {M1(x), . . . ,Mm(x)}].

(So at least one of the TM’s halts and outputs the right answer.)

Lemma If f can be computed with n q’s to X then f ∈ EN(2n).
Proof For τ ∈ {0, 1}n let Mτ (x) do the computation of f but
answer the ith query with σi .
Thm HALT(e1) · · ·HALT(e2n) cannot be computed with n
queries.
Beginning of Proof
Assume, BWOC that HALT(e1) · · ·HALT(e2n) can be computed
with n queries. By Lemma HALT(e1) · · ·HALT(e2n) ∈ EN(2n).
OH! Lets CHANGE the problem
Thm For all m, HALT(e1), · · · ,HALT(em) is notin EN(m).
The proof is by induction on m. Omitted but could do.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].

The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT.

Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example

INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.

INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.

Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example

How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:

If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



More Has Been Studied

Thm Let A be undec. (∀m)[A(e1) · · ·Aem) /∈ EN(m)].
The following have been studied:

1. Parallel q’s. Our 3-for-2 Alg was sequential.

2. Algs where all query-paths ↓ (Konstantine’s Issue).

3. Sets other than HALT. Example
INF = {e : (∀x)(∃y , s)[Me,s)↓} is Π2-complete.
INF(e1) · · · INF(en) requires n queries.

4. Number-of-q’s is a complexity measure.
Example How many queries does it take to find the
chromatic number of an infinite graph?

5. q’s-to-SAT in Poly Time has been studied. Some results
similar. But the following is different:
If SAT(ϕ1) · · · SAT(ϕk) can be computed in poly time with
k − 1 queries to X then Σp

2 = Πp
2 , so we think not.



Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?

Well. . . its not as though I’ve wrote a book on it.
https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer-ebook/dp/

B000W98WU4?ref_=ast_author_mpb

Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn’t have one and the Chairman was
assembling a display of books by faculty.
Amazon asked me if I wanted to write a review, so I wrote one
one which is still there.

2. Tell story about Adam Winkler buying a copy.

https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb


Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well. . . its not as though I’ve wrote a book on it.

https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer-ebook/dp/

B000W98WU4?ref_=ast_author_mpb

Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn’t have one and the Chairman was
assembling a display of books by faculty.
Amazon asked me if I wanted to write a review, so I wrote one
one which is still there.

2. Tell story about Adam Winkler buying a copy.

https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb


Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well. . . its not as though I’ve wrote a book on it.
https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer-ebook/dp/

B000W98WU4?ref_=ast_author_mpb

Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn’t have one and the Chairman was
assembling a display of books by faculty.
Amazon asked me if I wanted to write a review, so I wrote one
one which is still there.

2. Tell story about Adam Winkler buying a copy.

https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb


Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well. . . its not as though I’ve wrote a book on it.
https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer-ebook/dp/

B000W98WU4?ref_=ast_author_mpb

Oh! I did!

Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn’t have one and the Chairman was
assembling a display of books by faculty.
Amazon asked me if I wanted to write a review, so I wrote one
one which is still there.

2. Tell story about Adam Winkler buying a copy.

https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb


Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well. . . its not as though I’ve wrote a book on it.
https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer-ebook/dp/

B000W98WU4?ref_=ast_author_mpb

Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn’t have one and the Chairman was
assembling a display of books by faculty.
Amazon asked me if I wanted to write a review, so I wrote one
one which is still there.

2. Tell story about Adam Winkler buying a copy.

https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb


Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well. . . its not as though I’ve wrote a book on it.
https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer-ebook/dp/

B000W98WU4?ref_=ast_author_mpb

Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn’t have one and the Chairman was
assembling a display of books by faculty.

Amazon asked me if I wanted to write a review, so I wrote one
one which is still there.

2. Tell story about Adam Winkler buying a copy.

https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb


Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well. . . its not as though I’ve wrote a book on it.
https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer-ebook/dp/

B000W98WU4?ref_=ast_author_mpb

Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn’t have one and the Chairman was
assembling a display of books by faculty.
Amazon asked me if I wanted to write a review, so I wrote one
one which is still there.

2. Tell story about Adam Winkler buying a copy.

https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb


Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well. . . its not as though I’ve wrote a book on it.
https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer-ebook/dp/

B000W98WU4?ref_=ast_author_mpb

Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn’t have one and the Chairman was
assembling a display of books by faculty.
Amazon asked me if I wanted to write a review, so I wrote one
one which is still there.

2. Tell story about Adam Winkler buying a copy.

https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb
https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer-ebook/dp/B000W98WU4?ref_=ast_author_mpb

