
BILL AND NATHAN
START RECORDING

Context Free Languages

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:

1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.

2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.

3) CFL’s are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).

4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).
4) Which languages are not context free?

5) Languages that are CFL but not Regular.

Why Are Context Free Languages Important

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL’s is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL’s are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.

Examples of Context Free Grammars

S → aSb
S → e

The set of all strings Generated is

L = {anbn : n ∈ N}

Note L is context free lang that is not regular.

Examples of Context Free Grammars

S → aSb
S → e

The set of all strings Generated is

L = {anbn : n ∈ N}

Note L is context free lang that is not regular.

Examples of Context Free Grammars

S → aSb
S → e

The set of all strings Generated is

L = {anbn : n ∈ N}

Note L is context free lang that is not regular.

Context Free Grammar for {a2nbn : n ∈ N}

S → aaSb
S → e

The set of all strings Generated is

L = {a2nbn : n ∈ N}

Note L is context free lang that is not regular.

Context Free Grammar for {a2nbn : n ∈ N}

S → aaSb
S → e

The set of all strings Generated is

L = {a2nbn : n ∈ N}

Note L is context free lang that is not regular.

Context Free Grammar for {a2nbn : n ∈ N}

S → aaSb
S → e

The set of all strings Generated is

L = {a2nbn : n ∈ N}

Note L is context free lang that is not regular.

Context Free Grammar for {ambn : m > n}

DISCUSS

S → AT
T → aTb
T → e
A → Aa
A → a

Context Free Grammar for {ambn : m > n}

DISCUSS
S → AT
T → aTb
T → e
A → Aa
A → a

Context Free Grammars

Def A Context Free Grammar is a tuple G = (N,Σ,R, S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ N × (N ∪ Σ)∗ and are called Rules.

▶ S ∈ N, the start symbol.

L(G)

If A is non-terminal then the CFG gives us gives us rules like:

▶ A → AB

▶ A → a

For any string of terminals and non-terminals α, A ⇒ α means
that, starting from A, some combination of the rules produces α.
Examples:

▶ A ⇒ a

▶ A ⇒ aB

Then, if w is string of non-terminals only, we define L(G) by:

L(G) = {w ∈ Σ∗ | S ⇒ w}

L(G)

If A is non-terminal then the CFG gives us gives us rules like:

▶ A → AB

▶ A → a

For any string of terminals and non-terminals α, A ⇒ α means
that, starting from A, some combination of the rules produces α.

Examples:

▶ A ⇒ a

▶ A ⇒ aB

Then, if w is string of non-terminals only, we define L(G) by:

L(G) = {w ∈ Σ∗ | S ⇒ w}

L(G)

If A is non-terminal then the CFG gives us gives us rules like:

▶ A → AB

▶ A → a

For any string of terminals and non-terminals α, A ⇒ α means
that, starting from A, some combination of the rules produces α.
Examples:

▶ A ⇒ a

▶ A ⇒ aB

Then, if w is string of non-terminals only, we define L(G) by:

L(G) = {w ∈ Σ∗ | S ⇒ w}

L(G)

If A is non-terminal then the CFG gives us gives us rules like:

▶ A → AB

▶ A → a

For any string of terminals and non-terminals α, A ⇒ α means
that, starting from A, some combination of the rules produces α.
Examples:

▶ A ⇒ a

▶ A ⇒ aB

Then, if w is string of non-terminals only, we define L(G) by:

L(G) = {w ∈ Σ∗ | S ⇒ w}

Number of a’s = Number of b’s

Is

L = {w | #a(w) = #b(w)}

context free?

YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.
(Exception: a course on foundations. I proved x + y = y + x .)

YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.

Note This Theorem is not obvious. Deserves a proof!

Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.
(Exception: a course on foundations. I proved x + y = y + x .)

YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.
(Exception: a course on foundations. I proved x + y = y + x .)

YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast

Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.
(Exception: a course on foundations. I proved x + y = y + x .)

YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast
Never proved a DFA recognized language we claimed it did.

Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.
(Exception: a course on foundations. I proved x + y = y + x .)

YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.

Gasarch’s Principle Never prove an obvious Theorem.
(Exception: a course on foundations. I proved x + y = y + x .)

YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.

(Exception: a course on foundations. I proved x + y = y + x .)

YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast
Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.
(Exception: a course on foundations. I proved x + y = y + x .)

Deserves a Proof But. . .

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Note Proof is messy.

Solution The proof is on the slides, but I won’t go over it, and you
don’t need to know it for a HW or Exam.

Deserves a Proof But. . .

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.

Note This Theorem is not obvious. Deserves a proof!

Note Proof is messy.

Solution The proof is on the slides, but I won’t go over it, and you
don’t need to know it for a HW or Exam.

Deserves a Proof But. . .

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Note Proof is messy.

Solution The proof is on the slides, but I won’t go over it, and you
don’t need to know it for a HW or Exam.

Deserves a Proof But. . .

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Note Proof is messy.

Solution The proof is on the slides, but I won’t go over it, and you
don’t need to know it for a HW or Exam.

Deserves a Proof But. . .

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof!

Note Proof is messy.

Solution The proof is on the slides, but I won’t go over it, and you
don’t need to know it for a HW or Exam.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e

Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α

′Sα′′) = #b(α
′Sα′′).

#a(α
′aSbα′′) = #b(α

′Sα′′) + 1.
#b(α

′aSbα′′) = #b(α
′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e
Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α

′Sα′′) = #b(α
′Sα′′).

#a(α
′aSbα′′) = #b(α

′Sα′′) + 1.
#b(α

′aSbα′′) = #b(α
′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e
Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.

This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α

′Sα′′) = #b(α
′Sα′′).

#a(α
′aSbα′′) = #b(α

′Sα′′) + 1.
#b(α

′aSbα′′) = #b(α
′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e
Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α

′Sα′′) = #b(α
′Sα′′).

#a(α
′aSbα′′) = #b(α

′Sα′′) + 1.
#b(α

′aSbα′′) = #b(α
′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e
Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.

Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α

′Sα′′) = #b(α
′Sα′′).

#a(α
′aSbα′′) = #b(α

′Sα′′) + 1.
#b(α

′aSbα′′) = #b(α
′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e
Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α

′Sα′′) = #b(α
′Sα′′).

#a(α
′aSbα′′) = #b(α

′Sα′′) + 1.
#b(α

′aSbα′′) = #b(α
′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e
Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.

Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α
′Sα′′) = #b(α

′Sα′′).
#a(α

′aSbα′′) = #b(α
′Sα′′) + 1.

#b(α
′aSbα′′) = #b(α

′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e
Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α

′Sα′′) = #b(α
′Sα′′).

#a(α
′aSbα′′) = #b(α

′Sα′′) + 1.
#b(α

′aSbα′′) = #b(α
′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e
Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α

′Sα′′) = #b(α
′Sα′′).

#a(α
′aSbα′′) = #b(α

′Sα′′) + 1.
#b(α

′aSbα′′) = #b(α
′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

L(G) ⊆ {w | #a(w) = #b(w)}
Let G be the CFG
S → aSb | bSa | SS | e
Thm L(G) ⊆ {w | #a(w) = #b(w)}. We prove something
stronger.
Let L(G)′ = {α ∈ {S , a, b}∗ : S ⇒ α} (Note that we allow S in α.)

Thm L(G)′ ⊆ {w | #a(w) = #b(w)}.
This is by induction on numb of steps in the derivation from S .

Base Case In one step can only get α ∈ {aSb, bSa,SS , e}.
Ind Hyp If S ⇒ β in n − 1 steps then #a(β) = #b(β).

Ind Step Assume S ⇒ α in n steps. Look at the last step.
Case 1 S ⇒ α′Sα′′ → α′aSbα. By IH #a(α

′Sα′′) = #b(α
′Sα′′).

#a(α
′aSbα′′) = #b(α

′Sα′′) + 1.
#b(α

′aSbα′′) = #b(α
′Sα′′) + 1.

Hence
#a(α

′aSbα′′) = #b(α
′aSbα′′)

Case 2 Other cases for last step similar.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e

Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.

DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!

We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.

Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).

Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part!

Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Thm {w | #a(w) = #b(w)} ⊆ L(G).
This is not obvious!

We must show that every w with #a(w) = #b(w) can be
generated.
DISCUSS!
We use induction on |w |.
Base Case |w | = 0. So w = e. Can be generated by S → e.

Ind Hyp If |w ′| ≤ n − 1 and #a(w
′) = #b(w

′) then w ′ ∈ L(G).

Ind Step Let w be such that #a(w) = #b(w).
Case 1 w = aw ′b. Then w ′ ∈ L(G). By IH S ⇒ w ′.
S → aSb ⇒ aw ′b.

Case 2 w = bw ′a. Similar.

Case 3 w = aw ′a. This is first NON-OBVIOUS part! Next Slide.

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e

Case 3 w = aw ′a. Let w = aσ2 · · ·σn−1a. Look at prefixes of w :
a: #a(a) > #b(a)

For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1) + 1.
But NOT both.

#a(aσ2 · · ·σn−1) =
n
2 − 1

#b(aσ2 · · ·σn−1) =
n
2

Hence

#a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Case 3 w = aw ′a. Let w = aσ2 · · ·σn−1a. Look at prefixes of w :

a: #a(a) > #b(a)

For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1) + 1.
But NOT both.

#a(aσ2 · · ·σn−1) =
n
2 − 1

#b(aσ2 · · ·σn−1) =
n
2

Hence

#a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Case 3 w = aw ′a. Let w = aσ2 · · ·σn−1a. Look at prefixes of w :
a: #a(a) > #b(a)

For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1) + 1.
But NOT both.

#a(aσ2 · · ·σn−1) =
n
2 − 1

#b(aσ2 · · ·σn−1) =
n
2

Hence

#a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Case 3 w = aw ′a. Let w = aσ2 · · ·σn−1a. Look at prefixes of w :
a: #a(a) > #b(a)

For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1) + 1.
But NOT both.

#a(aσ2 · · ·σn−1) =
n
2 − 1

#b(aσ2 · · ·σn−1) =
n
2

Hence

#a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Case 3 w = aw ′a. Let w = aσ2 · · ·σn−1a. Look at prefixes of w :
a: #a(a) > #b(a)

For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1) + 1.
But NOT both.

#a(aσ2 · · ·σn−1) =
n
2 − 1

#b(aσ2 · · ·σn−1) =
n
2

Hence

#a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Case 3 w = aw ′a. Let w = aσ2 · · ·σn−1a. Look at prefixes of w :
a: #a(a) > #b(a)

For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1) + 1.
But NOT both.

#a(aσ2 · · ·σn−1) =
n
2 − 1

#b(aσ2 · · ·σn−1) =
n
2

Hence

#a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)

{w | #a(w) = #b(w)} ⊆ L(G)

Let G be the CFG
S → aSb | bSa | SS | e
Case 3 w = aw ′a. Let w = aσ2 · · ·σn−1a. Look at prefixes of w :
a: #a(a) > #b(a)

For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1) + 1.
But NOT both.

#a(aσ2 · · ·σn−1) =
n
2 − 1

#b(aσ2 · · ·σn−1) =
n
2

Hence

#a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)

Recap

1) a: #a(a) > #b(a)

2) For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.

3) #a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)
Hence there exists 2 ≤ i ≤ n − 1
#a(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1).

So w = w ′w ′′ where w ,w ′ ∈ L(G). Since |w ′| < |w | and
|w ′′| < |w |, by IH
S ⇒ w ′ and S ⇒ w ′′.

So
S → SS ⇒ w ′w ′′ = w .

Recap

1) a: #a(a) > #b(a)

2) For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.

3) #a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)
Hence there exists 2 ≤ i ≤ n − 1
#a(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1).

So w = w ′w ′′ where w ,w ′ ∈ L(G). Since |w ′| < |w | and
|w ′′| < |w |, by IH
S ⇒ w ′ and S ⇒ w ′′.

So
S → SS ⇒ w ′w ′′ = w .

Recap

1) a: #a(a) > #b(a)

2) For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.

3) #a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)
Hence there exists 2 ≤ i ≤ n − 1
#a(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1).

So w = w ′w ′′ where w ,w ′ ∈ L(G). Since |w ′| < |w | and
|w ′′| < |w |, by IH
S ⇒ w ′ and S ⇒ w ′′.

So
S → SS ⇒ w ′w ′′ = w .

Recap

1) a: #a(a) > #b(a)

2) For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.

3) #a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)
Hence there exists 2 ≤ i ≤ n − 1
#a(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1).

So w = w ′w ′′ where w ,w ′ ∈ L(G). Since |w ′| < |w | and
|w ′′| < |w |, by IH
S ⇒ w ′ and S ⇒ w ′′.

So
S → SS ⇒ w ′w ′′ = w .

Recap

1) a: #a(a) > #b(a)

2) For all 2 ≤ i ≤ n − 1, EITHER
#a(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.
OR
#b(aσ2 · · ·σi) = #a(aσ2 · · ·σi−1) + 1.

3) #a(aσ2 · · ·σn−1) < #b(aσ2 · · ·σn−1)
Hence there exists 2 ≤ i ≤ n − 1
#a(aσ2 · · ·σi) = #b(aσ2 · · ·σi−1).

So w = w ′w ′′ where w ,w ′ ∈ L(G). Since |w ′| < |w | and
|w ′′| < |w |, by IH
S ⇒ w ′ and S ⇒ w ′′.

So
S → SS ⇒ w ′w ′′ = w .

Example of a Lang that is NOT a CFL

1) {anbncn : n ∈ N} is NOT a CFL.

2) {an2 : n ∈ N} is NOT a CFL.

3) If L ⊆ a∗ and L is not regular than L is not a CFL.

We will not be proving Langs NOT CFL.

Example of a Lang that is NOT a CFL

1) {anbncn : n ∈ N} is NOT a CFL.

2) {an2 : n ∈ N} is NOT a CFL.

3) If L ⊆ a∗ and L is not regular than L is not a CFL.

We will not be proving Langs NOT CFL.

Example of a Lang that is NOT a CFL

1) {anbncn : n ∈ N} is NOT a CFL.

2) {an2 : n ∈ N} is NOT a CFL.

3) If L ⊆ a∗ and L is not regular than L is not a CFL.

We will not be proving Langs NOT CFL.

Example of a Lang that is NOT a CFL

1) {anbncn : n ∈ N} is NOT a CFL.

2) {an2 : n ∈ N} is NOT a CFL.

3) If L ⊆ a∗ and L is not regular than L is not a CFL.

We will not be proving Langs NOT CFL.

CLOSURE PROPERTIES
AND REG⊂ CFL

Closure Properties: PROVE or DISPROVE

If L1, L2 are Context Free Languages then

1. IS L1 ∪ L2 is a context free Lang?

2. IS L1 ∩ L2 is a context free Lang?

3. IS L1 · L2 is a context free Lang?

4. IS L1 is a context free Lang?

5. IS L∗1 is a context free Lang?

DISCUSS

L1,L2 CFL → L1 ∪ L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 ∪ L2.
L1 ∪ L2 is CFL via CFG (N,Σ,R,S) where

N = N1 ∪ N2 ∪ {S}
S is start state.

R = R1 ∪ R2 ∪ {S → S1 | S2}
Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 ∪ L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 ∪ L2.
L1 ∪ L2 is CFL via CFG (N,Σ,R,S) where

N = N1 ∪ N2 ∪ {S}
S is start state.

R = R1 ∪ R2 ∪ {S → S1 | S2}
Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 ∪ L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 ∪ L2.
L1 ∪ L2 is CFL via CFG (N,Σ,R,S) where

N = N1 ∪ N2 ∪ {S}

S is start state.

R = R1 ∪ R2 ∪ {S → S1 | S2}
Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 ∪ L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 ∪ L2.
L1 ∪ L2 is CFL via CFG (N,Σ,R,S) where

N = N1 ∪ N2 ∪ {S}
S is start state.

R = R1 ∪ R2 ∪ {S → S1 | S2}
Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 ∪ L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 ∪ L2.
L1 ∪ L2 is CFL via CFG (N,Σ,R,S) where

N = N1 ∪ N2 ∪ {S}
S is start state.

R = R1 ∪ R2 ∪ {S → S1 | S2}

Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 ∪ L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 ∪ L2.
L1 ∪ L2 is CFL via CFG (N,Σ,R,S) where

N = N1 ∪ N2 ∪ {S}
S is start state.

R = R1 ∪ R2 ∪ {S → S1 | S2}
Note We assume N1 ∩ N2 = ∅.

Finite vs Infinite Union

If L1 and L2 are regular then L1 ∪ L2 is regular.

This is true for 3 languages or 4 languages or 98 languages.

But if L1, L2, L3, · · · is an infinite set of regular languages, is
L1 ∪ L2 ∪ ... regular?

No, because:

▶ L1 = {ab} is regular.

▶ Lk = {akbk} is regular.

▶ L1 ∪ L2 ∪ · · · = {anbn : n ∈ N} is not regular.

What about for CFLs?

▶ L1 = {abc} is a CFL.

▶ Lk = {akbkck} is a CFL.

▶ We will see later that
⋃∞

i=1 Li = {anbncn : n ∈ N} is not CFL.

Finite vs Infinite Union

If L1 and L2 are regular then L1 ∪ L2 is regular.

This is true for 3 languages or 4 languages or 98 languages.

But if L1, L2, L3, · · · is an infinite set of regular languages, is
L1 ∪ L2 ∪ ... regular?

No, because:

▶ L1 = {ab} is regular.

▶ Lk = {akbk} is regular.

▶ L1 ∪ L2 ∪ · · · = {anbn : n ∈ N} is not regular.

What about for CFLs?

▶ L1 = {abc} is a CFL.

▶ Lk = {akbkck} is a CFL.

▶ We will see later that
⋃∞

i=1 Li = {anbncn : n ∈ N} is not CFL.

Finite vs Infinite Union

If L1 and L2 are regular then L1 ∪ L2 is regular.

This is true for 3 languages or 4 languages or 98 languages.

But if L1, L2, L3, · · · is an infinite set of regular languages, is
L1 ∪ L2 ∪ ... regular?

No, because:

▶ L1 = {ab} is regular.

▶ Lk = {akbk} is regular.

▶ L1 ∪ L2 ∪ · · · = {anbn : n ∈ N} is not regular.

What about for CFLs?

▶ L1 = {abc} is a CFL.

▶ Lk = {akbkck} is a CFL.

▶ We will see later that
⋃∞

i=1 Li = {anbncn : n ∈ N} is not CFL.

Finite vs Infinite Union

If L1 and L2 are regular then L1 ∪ L2 is regular.

This is true for 3 languages or 4 languages or 98 languages.

But if L1, L2, L3, · · · is an infinite set of regular languages, is
L1 ∪ L2 ∪ ... regular?

No, because:

▶ L1 = {ab} is regular.

▶ Lk = {akbk} is regular.

▶ L1 ∪ L2 ∪ · · · = {anbn : n ∈ N} is not regular.

What about for CFLs?

▶ L1 = {abc} is a CFL.

▶ Lk = {akbkck} is a CFL.

▶ We will see later that
⋃∞

i=1 Li = {anbncn : n ∈ N} is not CFL.

L1,L2 CFL → L1 ∩ L2 CFL

NOT TRUE: anbnc∗ ∩ a∗bncn = anbncn.

L1,L2 CFL → L1 · L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 · L2.
L1 · L2 is CFL via CFG (N,Σ,R, S) where

N = N1 ∪ N2

S is the start state.

R = R1 ∪ R2 ∪ {S → S1 · S2}.
Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 · L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 · L2.
L1 · L2 is CFL via CFG (N,Σ,R, S) where

N = N1 ∪ N2

S is the start state.

R = R1 ∪ R2 ∪ {S → S1 · S2}.
Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 · L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 · L2.
L1 · L2 is CFL via CFG (N,Σ,R, S) where

N = N1 ∪ N2

S is the start state.

R = R1 ∪ R2 ∪ {S → S1 · S2}.
Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 · L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 · L2.
L1 · L2 is CFL via CFG (N,Σ,R, S) where

N = N1 ∪ N2

S is the start state.

R = R1 ∪ R2 ∪ {S → S1 · S2}.
Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 · L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 · L2.
L1 · L2 is CFL via CFG (N,Σ,R, S) where

N = N1 ∪ N2

S is the start state.

R = R1 ∪ R2 ∪ {S → S1 · S2}.

Note We assume N1 ∩ N2 = ∅.

L1,L2 CFL → L1 · L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

The following CFG generates L1 · L2.
L1 · L2 is CFL via CFG (N,Σ,R, S) where

N = N1 ∪ N2

S is the start state.

R = R1 ∪ R2 ∪ {S → S1 · S2}.
Note We assume N1 ∩ N2 = ∅.

L CFL → L CFL

FALSE.
Let

L = {anbncn : n ∈ N}

This is a CFL. This will be a HW.

L CFL → L CFL

FALSE.
Let

L = {anbncn : n ∈ N}

This is a CFL. This will be a HW.

L CFL → L∗ CFL

L is CFL via CFG (N,Σ,R, S).

Here is a CFL for L∗: (N ′,Σ,R ′,S ′) where
S ′ is new start nonterminal.
N ′ = N ∪ {S}.
R ′ has R and also
S ′ → e
S ′ → S ′S

L CFL → L∗ CFL

L is CFL via CFG (N,Σ,R, S).

Here is a CFL for L∗: (N ′,Σ,R ′, S ′) where

S ′ is new start nonterminal.
N ′ = N ∪ {S}.
R ′ has R and also
S ′ → e
S ′ → S ′S

L CFL → L∗ CFL

L is CFL via CFG (N,Σ,R, S).

Here is a CFL for L∗: (N ′,Σ,R ′, S ′) where
S ′ is new start nonterminal.

N ′ = N ∪ {S}.
R ′ has R and also
S ′ → e
S ′ → S ′S

L CFL → L∗ CFL

L is CFL via CFG (N,Σ,R, S).

Here is a CFL for L∗: (N ′,Σ,R ′, S ′) where
S ′ is new start nonterminal.
N ′ = N ∪ {S}.

R ′ has R and also
S ′ → e
S ′ → S ′S

L CFL → L∗ CFL

L is CFL via CFG (N,Σ,R, S).

Here is a CFL for L∗: (N ′,Σ,R ′, S ′) where
S ′ is new start nonterminal.
N ′ = N ∪ {S}.
R ′ has R and also

S ′ → e
S ′ → S ′S

L CFL → L∗ CFL

L is CFL via CFG (N,Σ,R, S).

Here is a CFL for L∗: (N ′,Σ,R ′, S ′) where
S ′ is new start nonterminal.
N ′ = N ∪ {S}.
R ′ has R and also
S ′ → e

S ′ → S ′S

L CFL → L∗ CFL

L is CFL via CFG (N,Σ,R, S).

Here is a CFL for L∗: (N ′,Σ,R ′, S ′) where
S ′ is new start nonterminal.
N ′ = N ∪ {S}.
R ′ has R and also
S ′ → e
S ′ → S ′S

REG contained in CFL

Thm If L is regular then L is CFL.
DISCUSS

REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

Base Case |α| = 1 then α is σ or e. Both {sigma} and {e} are
CFL’s.

Ind Hyp For all regex β with |β| < n there exists CFG G such that
L(β) = L(G).

Ind Step |α| = n.
Case 1 α = β1 ∪ β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ∪, L(α) is CFL.
Case 2 α = β1 · β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ·, L(α) is CFL.
Case 3 α = β∗. By IH L(β) is CFL. By closure under ∗, L(α) is
CFL.

REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

Base Case |α| = 1 then α is σ or e. Both {sigma} and {e} are
CFL’s.

Ind Hyp For all regex β with |β| < n there exists CFG G such that
L(β) = L(G).

Ind Step |α| = n.
Case 1 α = β1 ∪ β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ∪, L(α) is CFL.
Case 2 α = β1 · β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ·, L(α) is CFL.
Case 3 α = β∗. By IH L(β) is CFL. By closure under ∗, L(α) is
CFL.

REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

Base Case |α| = 1 then α is σ or e. Both {sigma} and {e} are
CFL’s.

Ind Hyp For all regex β with |β| < n there exists CFG G such that
L(β) = L(G).

Ind Step |α| = n.
Case 1 α = β1 ∪ β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ∪, L(α) is CFL.
Case 2 α = β1 · β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ·, L(α) is CFL.
Case 3 α = β∗. By IH L(β) is CFL. By closure under ∗, L(α) is
CFL.

REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

Base Case |α| = 1 then α is σ or e. Both {sigma} and {e} are
CFL’s.

Ind Hyp For all regex β with |β| < n there exists CFG G such that
L(β) = L(G).

Ind Step |α| = n.
Case 1 α = β1 ∪ β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ∪, L(α) is CFL.
Case 2 α = β1 · β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ·, L(α) is CFL.
Case 3 α = β∗. By IH L(β) is CFL. By closure under ∗, L(α) is
CFL.

REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

Base Case |α| = 1 then α is σ or e. Both {sigma} and {e} are
CFL’s.

Ind Hyp For all regex β with |β| < n there exists CFG G such that
L(β) = L(G).

Ind Step |α| = n.

Case 1 α = β1 ∪ β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ∪, L(α) is CFL.
Case 2 α = β1 · β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ·, L(α) is CFL.
Case 3 α = β∗. By IH L(β) is CFL. By closure under ∗, L(α) is
CFL.

REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

Base Case |α| = 1 then α is σ or e. Both {sigma} and {e} are
CFL’s.

Ind Hyp For all regex β with |β| < n there exists CFG G such that
L(β) = L(G).

Ind Step |α| = n.
Case 1 α = β1 ∪ β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ∪, L(α) is CFL.

Case 2 α = β1 · β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ·, L(α) is CFL.
Case 3 α = β∗. By IH L(β) is CFL. By closure under ∗, L(α) is
CFL.

REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

Base Case |α| = 1 then α is σ or e. Both {sigma} and {e} are
CFL’s.

Ind Hyp For all regex β with |β| < n there exists CFG G such that
L(β) = L(G).

Ind Step |α| = n.
Case 1 α = β1 ∪ β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ∪, L(α) is CFL.
Case 2 α = β1 · β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ·, L(α) is CFL.

Case 3 α = β∗. By IH L(β) is CFL. By closure under ∗, L(α) is
CFL.

REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

Base Case |α| = 1 then α is σ or e. Both {sigma} and {e} are
CFL’s.

Ind Hyp For all regex β with |β| < n there exists CFG G such that
L(β) = L(G).

Ind Step |α| = n.
Case 1 α = β1 ∪ β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ∪, L(α) is CFL.
Case 2 α = β1 · β2. By IH L(β1) and L(β2) are CFL’s. By closure
under ·, L(α) is CFL.
Case 3 α = β∗. By IH L(β) is CFL. By closure under ∗, L(α) is
CFL.

Examples of CFL’s and
Size of CFG’s

Size of CFGs

How big is a CFL for the language {aaaaaaaa} (there are 8 a’s).

We could say the size is 1:

S → aaaaaaaa

This does not seem quite right.

Next slide has a standard form for CFL’s that make size make
sense.

Size of CFGs

How big is a CFL for the language {aaaaaaaa} (there are 8 a’s).

We could say the size is 1:

S → aaaaaaaa

This does not seem quite right.

Next slide has a standard form for CFL’s that make size make
sense.

Size of CFGs

How big is a CFL for the language {aaaaaaaa} (there are 8 a’s).

We could say the size is 1:

S → aaaaaaaa

This does not seem quite right.

Next slide has a standard form for CFL’s that make size make
sense.

Size of CFGs

How big is a CFL for the language {aaaaaaaa} (there are 8 a’s).

We could say the size is 1:

S → aaaaaaaa

This does not seem quite right.

Next slide has a standard form for CFL’s that make size make
sense.

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:

1) A → BC where A,B,C ∈ N (nonterminals).
2) A → σ (where A ∈ N and σ ∈ Σ).
3) S → e (where S is the start state).

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:
1) A → BC where A,B,C ∈ N (nonterminals).

2) A → σ (where A ∈ N and σ ∈ Σ).
3) S → e (where S is the start state).

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:
1) A → BC where A,B,C ∈ N (nonterminals).
2) A → σ (where A ∈ N and σ ∈ Σ).

3) S → e (where S is the start state).

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:
1) A → BC where A,B,C ∈ N (nonterminals).
2) A → σ (where A ∈ N and σ ∈ Σ).
3) S → e (where S is the start state).

Example of Chomsky Normal Form

Recall the CFG:

S → aaaaaaaa

DISCUSS TO FIND A CHOMSKY NORMAL FORM CFG FOR
{aaaaaaaa}.

Example of Chomsky Normal Form

Recall the CFG:

S → aaaaaaaa

DISCUSS TO FIND A CHOMSKY NORMAL FORM CFG FOR
{aaaaaaaa}.

Example of Chomsky Normal Form

Recall the CFG:
S → aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S → AA
A → BB
B → CC
C → a
We measure the size of a Chomsky Normal Form CFG by the
number of rules.
So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.

Example of Chomsky Normal Form

Recall the CFG:
S → aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S → AA

A → BB
B → CC
C → a
We measure the size of a Chomsky Normal Form CFG by the
number of rules.
So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.

Example of Chomsky Normal Form

Recall the CFG:
S → aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S → AA
A → BB

B → CC
C → a
We measure the size of a Chomsky Normal Form CFG by the
number of rules.
So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.

Example of Chomsky Normal Form

Recall the CFG:
S → aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S → AA
A → BB
B → CC

C → a
We measure the size of a Chomsky Normal Form CFG by the
number of rules.
So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.

Example of Chomsky Normal Form

Recall the CFG:
S → aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S → AA
A → BB
B → CC
C → a

We measure the size of a Chomsky Normal Form CFG by the
number of rules.
So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.

Example of Chomsky Normal Form

Recall the CFG:
S → aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S → AA
A → BB
B → CC
C → a
We measure the size of a Chomsky Normal Form CFG by the
number of rules.

So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.

Example of Chomsky Normal Form

Recall the CFG:
S → aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S → AA
A → BB
B → CC
C → a
We measure the size of a Chomsky Normal Form CFG by the
number of rules.
So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.

Chomsky Normal Form CFG for {an}

We say that {a8} has a CNF CFG of size 4.

What about {a16}? Vote
1) Size 8
2) Size 5
The answer is 5. Next slide.

Chomsky Normal Form CFG for {an}

We say that {a8} has a CNF CFG of size 4.

What about {a16}? Vote

1) Size 8
2) Size 5
The answer is 5. Next slide.

Chomsky Normal Form CFG for {an}

We say that {a8} has a CNF CFG of size 4.

What about {a16}? Vote
1) Size 8
2) Size 5

The answer is 5. Next slide.

Chomsky Normal Form CFG for {an}

We say that {a8} has a CNF CFG of size 4.

What about {a16}? Vote
1) Size 8
2) Size 5
The answer is 5. Next slide.

Chomsky Normal Form CFG for {a16}

S → AA

A → BB

B → CC

C → DD

D → a

What to do if n is not a power of 2. HW.

Chomsky Normal Form CFG for {a16}

S → AA

A → BB

B → CC

C → DD

D → a

What to do if n is not a power of 2. HW.

Chomsky Normal Form CFG for {a16}

S → AA

A → BB

B → CC

C → DD

D → a

What to do if n is not a power of 2. HW.

Chomsky Normal Form CFG for {a16}

S → AA

A → BB

B → CC

C → DD

D → a

What to do if n is not a power of 2. HW.

Chomsky Normal Form CFG for {a16}

S → AA

A → BB

B → CC

C → DD

D → a

What to do if n is not a power of 2. HW.

Chomsky Normal Form CFG for {a16}

S → AA

A → BB

B → CC

C → DD

D → a

What to do if n is not a power of 2. HW.

L = {a}n

Upshot
For Ln = {an}:
▶ Any DFA or NFA that recognizes Ln has n +Ω(1) states.

▶ There is a CFG that generates Ln with O(log n) rules.

Our Old Friend L = {a,b}∗a{a,b}n

1) We showed that L requires a 2n+1 size DFA.

2) We have an NFA of size n + 2. There is no NFA of size n since
then there would be a DFA of size 2n < 2n+1.

3) DISCUSS for getting a CFG of size ≪ n.

Our Old Friend L = {a,b}∗a{a,b}n

1) We showed that L requires a 2n+1 size DFA.

2) We have an NFA of size n + 2. There is no NFA of size n since
then there would be a DFA of size 2n < 2n+1.

3) DISCUSS for getting a CFG of size ≪ n.

Our Old Friend L = {a,b}∗a{a,b}n

1) We showed that L requires a 2n+1 size DFA.

2) We have an NFA of size n + 2. There is no NFA of size n since
then there would be a DFA of size 2n < 2n+1.

3) DISCUSS for getting a CFG of size ≪ n.

DFA, NFA, CFG

L = L1 · L2 where

L1 = {a, b}∗a. Has 5-rule Chomsky Normal Form CFG:
S → AS | BS | a
A → a
B → b

L2 = {a, b}n. A lg(n) + 3 rule Chomsky Normal Form CFG.
S → S1S1
S1 → S2S2
...
Slg(n)+1 → Slg(n)Slg(n)
Slg(n) → a | b
Note We are assuming n is a power of 2.

DFA, NFA, CFG

L = L1 · L2 where

L1 = {a, b}∗a. Has 5-rule Chomsky Normal Form CFG:
S → AS | BS | a
A → a
B → b

L2 = {a, b}n. A lg(n) + 3 rule Chomsky Normal Form CFG.
S → S1S1
S1 → S2S2
...
Slg(n)+1 → Slg(n)Slg(n)
Slg(n) → a | b
Note We are assuming n is a power of 2.

DFA, NFA, CFG

L = L1 · L2 where

L1 = {a, b}∗a. Has 5-rule Chomsky Normal Form CFG:
S → AS | BS | a
A → a
B → b

L2 = {a, b}n. A lg(n) + 3 rule Chomsky Normal Form CFG.
S → S1S1
S1 → S2S2
...
Slg(n)+1 → Slg(n)Slg(n)
Slg(n) → a | b
Note We are assuming n is a power of 2.

DFA, NFA, CFG

L = L1 · L2 where

L1 = {a, b}∗a. Has 5-rule Chomsky Normal Form CFG:
S → AS | BS | a
A → a
B → b

L2 = {a, b}n. A lg(n) + 3 rule Chomsky Normal Form CFG.
S → S1S1
S1 → S2S2
...
Slg(n)+1 → Slg(n)Slg(n)
Slg(n) → a | b
Note We are assuming n is a power of 2.

DFA, NFA, CFG Size Diff

L = {a, b}∗a{a, b}n

1) DFA of size Θ(2n).
2) NFA of size n +Θ(1).
3) CFG of size Θ(lg(n)).

DFA, NFA, CFG Size Diff

L = {a, b}∗a{a, b}n

1) DFA of size Θ(2n).

2) NFA of size n +Θ(1).
3) CFG of size Θ(lg(n)).

DFA, NFA, CFG Size Diff

L = {a, b}∗a{a, b}n

1) DFA of size Θ(2n).
2) NFA of size n +Θ(1).

3) CFG of size Θ(lg(n)).

DFA, NFA, CFG Size Diff

L = {a, b}∗a{a, b}n

1) DFA of size Θ(2n).
2) NFA of size n +Θ(1).
3) CFG of size Θ(lg(n)).

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {ambn : m > n}. We put it into Chomsky
Normal Form.
1) S → AT
2) T → aTb
3) T → e
4) A → Aa
5) A → a

New nonterminals [aT], [b], [a]. Replace T → aTb with:
T → [aT][b]
[aT] → [a]T
[b] → b.
[a] → a
Repeat the process with the other rules.

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {ambn : m > n}. We put it into Chomsky
Normal Form.
1) S → AT
2) T → aTb
3) T → e
4) A → Aa
5) A → a
New nonterminals [aT], [b], [a]. Replace T → aTb with:
T → [aT][b]
[aT] → [a]T
[b] → b.
[a] → a

Repeat the process with the other rules.

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {ambn : m > n}. We put it into Chomsky
Normal Form.
1) S → AT
2) T → aTb
3) T → e
4) A → Aa
5) A → a
New nonterminals [aT], [b], [a]. Replace T → aTb with:
T → [aT][b]
[aT] → [a]T
[b] → b.
[a] → a
Repeat the process with the other rules.

MISC

MISC

1) There is a pumping theorem for CFL’s but we won’t be doing it.

2) If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
3) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:

PDAs
PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.
Deterministic CFG’s are defined by DPDA’s where are DFAs with
a stack.
The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won’t be doing it. We won’t deal with
PDA’s in this course at all.

MISC

1) There is a pumping theorem for CFL’s but we won’t be doing it.
2) If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.

3) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:

PDAs
PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.
Deterministic CFG’s are defined by DPDA’s where are DFAs with
a stack.
The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won’t be doing it. We won’t deal with
PDA’s in this course at all.

MISC

1) There is a pumping theorem for CFL’s but we won’t be doing it.
2) If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
3) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:

PDAs

PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.
Deterministic CFG’s are defined by DPDA’s where are DFAs with
a stack.
The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won’t be doing it. We won’t deal with
PDA’s in this course at all.

MISC

1) There is a pumping theorem for CFL’s but we won’t be doing it.
2) If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
3) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:

PDAs
PDA does not stand for Public Display of Affection

PDA does stand for Push Down Automata.
They are NFAs with a stack.
Deterministic CFG’s are defined by DPDA’s where are DFAs with
a stack.
The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won’t be doing it. We won’t deal with
PDA’s in this course at all.

MISC

1) There is a pumping theorem for CFL’s but we won’t be doing it.
2) If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
3) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:

PDAs
PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.

Deterministic CFG’s are defined by DPDA’s where are DFAs with
a stack.
The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won’t be doing it. We won’t deal with
PDA’s in this course at all.

MISC

1) There is a pumping theorem for CFL’s but we won’t be doing it.
2) If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
3) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:

PDAs
PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.
Deterministic CFG’s are defined by DPDA’s where are DFAs with
a stack.

The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won’t be doing it. We won’t deal with
PDA’s in this course at all.

MISC

1) There is a pumping theorem for CFL’s but we won’t be doing it.
2) If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
3) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:

PDAs
PDA does not stand for Public Display of Affection
PDA does stand for Push Down Automata.
They are NFAs with a stack.
Deterministic CFG’s are defined by DPDA’s where are DFAs with
a stack.
The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won’t be doing it. We won’t deal with
PDA’s in this course at all.

