BILL AND NATHAN
START RECORDING



Context Free Languages



Why Are Context Free Languages Important

| am supposed to say:



Why Are Context Free Languages Important

| am supposed to say:

Most prog langs are Context Free Languages



Why Are Context Free Languages Important

| am supposed to say:
Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!



Why Are Context Free Languages Important

| am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.



Why Are Context Free Languages Important

| am supposed to say:

Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.
Our interest in CFL's is:



Why Are Context Free Languages Important

| am supposed to say:

Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.

Our interest in CFL's is:
1) Languages that require a LARGE NFA but a SMALL CFG.



Why Are Context Free Languages Important

| am supposed to say:

Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.

Our interest in CFL's is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.



Why Are Context Free Languages Important

| am supposed to say:

Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.

Our interest in CFL's is:
1) Languages that require a LARGE NFA but a SMALL CFG.

2) Closure properties of CFLs.
3) CFL's are all in P (poly time).



Why Are Context Free Languages Important

| am supposed to say:

Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.

Our interest in CFL's is:

1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.

3) CFL's are all in P (poly time).

4) Which languages are not context free?



Why Are Context Free Languages Important

| am supposed to say:
Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!
However, most programming languages are almost context free.
Our interest in CFL's is:
1) Languages that require a LARGE NFA but a SMALL CFG.
2) Closure properties of CFLs.
3) CFL's are all in P (poly time).
4) Which languages are not context free?
5) Languages that are CFL but not Regular.



Examples of Context Free Grammars

S — aSh
S—e

The set of all strings Generated is



Examples of Context Free Grammars

S — aSh
S—e

The set of all strings Generated is

L={a"b":ne N}



Examples of Context Free Grammars

S — aSh
S—e

The set of all strings Generated is
L={a"b":ne N}

Note L is context free lang that is not regular.



Context Free Grammar for {a®"b" : n € N}

S — aaSh
S—e

The set of all strings Generated is



Context Free Grammar for {a®"b" : n € N}

S — aaSh
S—e

The set of all strings Generated is

L={a*b":necN}



Context Free Grammar for {a®"b" : n € N}

S — aaSh
S—e

The set of all strings Generated is
L={a*b":necN}

Note L is context free lang that is not regular.



Context Free Grammar for {a”b" : m > n}

DISCUSS



Context Free Grammar for {a”b" : m > n}

DISCUSS
S — AT
T — aTb
T —e
A — Aa
A—a



Context Free Grammars

Def A Context Free Grammar is a tuple G = (N, X, R, S)
> N is a finite set of nonterminals.
» Y is a finite alphabet. Note Y N N = (.
» RC N x (NUZX)* and are called Rules.
> S € N, the start symbol.



L(G)

If Ais non-terminal then the CFG gives us gives us rules like:
> A— AB
> A—a



L(G)

If Ais non-terminal then the CFG gives us gives us rules like:
> A— AB
> A—a

For any string of terminals and non-terminals o, A = « means
that, starting from A, some combination of the rules produces «.



L(G)

If Ais non-terminal then the CFG gives us gives us rules like:
> A— AB
> A—a

For any string of terminals and non-terminals o, A = « means
that, starting from A, some combination of the rules produces «.
Examples:

> A= a

> A= aB



L(G)

If Ais non-terminal then the CFG gives us gives us rules like:
> A— AB
> A—a

For any string of terminals and non-terminals o, A = « means
that, starting from A, some combination of the rules produces «.
Examples:

> A= a
> A= aB
Then, if w is string of non-terminals only, we define L(G) by:

L(G)={weX*|S=w}



Number of a’'s = Number of b’s

L={w|#a(w) = #»(w)}

context free?



YES

Let G be the CFG
S5 — aSb

S — bSa
55§

S—e



YES

Let G be the CFG
S5 — aSb

S — bSa
55§

S—e

Thm L(G) = {w | #a(w) = #s(w)}.



YES

Let G be the CFG
S5 — aSb

S — bSa
55§

S—e

Thm L(G) = {w | #a(w) = #s(w)}.

Note This Theorem is not obvious. Deserves a proof!



YES

Let G be the CFG

S — asb

S — bSa

5$§—- 55

S—e

Thm L(G) = {w | #a(w) = #p(w)}.

Note This Theorem is not obvious. Deserves a proof!

Contrast



YES

Let G be the CFG
S5 — aSb

S — bSa
55§

S—e

Thm L(G) = {w | #a(w) = #p(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast
Never proved a DFA recognized language we claimed it did.



YES

Let G be the CFG
S5 — aSb

S — bSa
55§

S—e

Thm L(G) = {w | #a(w) = #p(w)}.
Note This Theorem is not obvious. Deserves a proof!
Contrast

Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.



YES

Let G be the CFG
S5 — aSb

S — bSa
55§

S—e

Thm L(G) = {w | #a(w) = #p(w)}.

Note This Theorem is not obvious. Deserves a proof!
Contrast

Never proved a DFA recognized language we claimed it did.

Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.



YES

Let G be the CFG
S5 — aSb

S — bSa
55§

S—e

Thm L(G) = {w | #a(w) = #p(w)}.
Note This Theorem is not obvious. Deserves a proof!

Contrast

Never proved a DFA recognized language we claimed it did.
Never proved a regex generated the language we claimed it did.
Gasarch’s Principle Never prove an obvious Theorem.
(Exception: a course on foundations. | proved x +y =y + x.)



Deserves a Proof But. ..

Let G be the CFG
S — aSb

S — bSa

55— 58S

S—e



Deserves a Proof But. ..

Let G be the CFG
S — aSb

S — bSa

55— 58S

S—e

Thm L(G) = {w | #.(w) = #p(w)}.



Deserves a Proof But. ..

Let G be the CFG
S — aSb

S — bSa

55— 58S

S—e

Thm L(G) = {w | #.(w) = #p(w)}.

Note This Theorem is not obvious. Deserves a proof!



Deserves a Proof But. ..

Let G be the CFG

S — aSb

S — bSa

S—SS

S—e

Thm L(G) = {w | #a(w) = #p(w)}.

Note This Theorem is not obvious. Deserves a proof!

Note Proof is messy.



Deserves a Proof But. ..

Let G be the CFG

S — aSh

S — bSa

S$—SS

S—e

Thm L(G) = {w | #a(w) = #p(w)}.

Note This Theorem is not obvious. Deserves a proof!
Note Proof is messy.

Solution The proof is on the slides, but | won't go over it, and you
don't need to know it for a HW or Exam.



L(G) C{w | #a(w) = #p(w)}
Let G be the CFG
S —aSb|bSa|SS|e



L(G) C{w | #a(w) = #p(w)}
Let G be the CFG
S—aSb| bSa|SS|e
Thm L(G) C {w | #a(w) = #»(w)}. We prove something

stronger.
Let L(G) ={a € {S,a,b}* : S = a} (Note that we allow S in «.)



L(G) C{w | #a(w) = #p(w)}
Let G be the CFG
S—aSb| bSa|SS|e

Thm L(G) C {w | #a(w) = #»(w)}. We prove something
stronger.
Let L(G) ={a € {S,a,b}* : S = a} (Note that we allow S in «.)

Thm L(G) C {w | #a(w) = #b(w)}.



L(G) C{w | #a(w) = #p(w)}
Let G be the CFG
S—aSb| bSa|SS|e

Thm L(G) C {w | #a(w) = #»(w)}. We prove something
stronger.
Let L(G) ={a € {S,a,b}* : S = a} (Note that we allow S in «.)

Thm L(G) C {w | #a(w) = #b(w)}.

This is by induction on numb of steps in the derivation from S.



L(G) C{w | #a(w) = #p(w)}
Let G be the CFG
S—aSb| bSa|SS|e

Thm L(G) C {w | #a(w) = #»(w)}. We prove something
stronger.
Let L(G) ={a € {S,a,b}* : S = a} (Note that we allow S in «.)

Thm L(G) € {w | #a(w) = #»(w)}.
This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get o € {aSh, bSa, SS, e}.



L(G) C{w | #a(w) = #p(w)}
Let G be the CFG
S—aSb| bSa|SS|e

Thm L(G) C {w | #a(w) = #»(w)}. We prove something
stronger.
Let L(G) ={a € {S,a,b}* : S = a} (Note that we allow S in «.)

Thm L(G) € {w | #a(w) = #»(w)}.
This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get o € {aSh, bSa, SS, e}.
Ind Hyp If S = 3 in n— 1 steps then #,(3) = #5(5).



L(G) C{w | #a(w) = #p(w)}
Let G be the CFG
S—aSb| bSa|SS|e

Thm L(G) C {w | #a(w) = #»(w)}. We prove something
stronger.
Let L(G) ={a € {S,a,b}* : S = a} (Note that we allow S in «.)

Thm L(G) € {w | #a(w) = #»(w)}.
This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get o € {aSh, bSa, SS, e}.

Ind Hyp If S = 3 in n— 1 steps then #,(3) = #5(5).
Ind Step Assume S = « in n steps. Look at the last step.



L(G) C{w | #a(w) = #p(w)}
Let G be the CFG
S —aSb|bSa|SS |e
Thm L(G) C {w | #a(w) = #»(w)}. We prove something
stronger.
Let L(G) ={a € {S,a,b}* : S = a} (Note that we allow S in «.)

Thm L(G) C {w | #a(w) = #b(w)}.

This is by induction on numb of steps in the derivation from S.
Base Case In one step can only get o € {aSh, bSa, SS, e}.

Ind Hyp If S = 3 in n— 1 steps then #,(3) = #5(5).

Ind Step Assume S = « in n steps. Look at the last step.

Case 1 S = o/Sa” — o/aSba. By IH #,(a/Sa’) = #p(a/Sa”).
#.(a/aSba’) = #p(a/'Sa’) + 1.

#p(a/aSba") = #p(a/Sa’) + 1.



L(G) C{w | #a(w) = #p(w)}
Let G be the CFG
S —aSb|bSa|SS |e
Thm L(G) C {w | #a(w) = #»(w)}. We prove something
stronger.
Let L(G) ={a € {S,a,b}* : S = a} (Note that we allow S in «.)

Thm L(G) € {w | #a(w) = #»(w)}.
This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get o € {aSh, bSa, SS, e}.

Ind Hyp If S = 3 in n— 1 steps then #,(3) = #5(5).

Ind Step Assume S = « in n steps. Look at the last step.

Case 1 S = o/Sa” — o/aSba. By IH #,(a/Sa’) = #p(a/Sa”).
#.(a/aSba’) = #p(a/'Sa’) + 1.

#p(a/aSba") = #p(a/Sa’) + 1.

Hence

#a(a/aSba’) = #p(a’aSba’)



L(G) S {w | #a(w) = #b(w)}
Let G be the CFG
S—aSb| bSa|SS|e
Thm L(G) C {w | #a(w) = #»(w)}. We prove something
stronger.
Let L(G) ={a € {S,a,b}* : S = a} (Note that we allow S in «.)
Thm L(G) € {w | #a(w) = #»(w)}.
This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get o € {aSh, bSa, SS, e}.

Ind Hyp If S = 3 in n— 1 steps then #,(3) = #5(5).

Ind Step Assume S = « in n steps. Look at the last step.

Case 1 S = o/Sa” — o/aSba. By IH #,(a/Sa’) = #p(a/Sa”).
#.(a/aSba’) = #p(a/'Sa’) + 1.

#p(a/aSba") = #p(a/Sa’) + 1.

Hence

#a(a/aSba’) = #p(a’aSba’)

Case 2 Other cases for last step similar.



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG
S —aSb|bSa|SS|e



{w | #a(w) = #p(w)} C L(G)
Let G be the CFG
S —aSb| bSa|SS|e
Thm {w | #.(w) = #p(w)} C L(G).

This is not obvious!



{w | #a(w) = #p(w)} C L(G)
Let G be the CFG
S —aSb| bSa|SS|e
Thm {w | #.(w) = #p(w)} C L(G).
This is not obvious!

We must show that every w with #,(w) = #,(w) can be
generated.



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG

S —aSb|bSa|SS|e

Thm {w | #.(w) = #p(w)} C L(G).

This is not obvious!

We must show that every w with #,(w) = #,(w) can be

generated.
DISCUSS!



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG

S —aSb|bSa|SS|e

Thm {w | #.(w) = #p(w)} C L(G).

This is not obvious!

We must show that every w with #,(w) = #,(w) can be

generated.
DISCUSS!
We use induction on |w|.



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG

S —aSb| bSa|SS|e

Thm {w | #.(w) = #p(w)} C L(G).
This is not obvious!

We must show that every w with #,(w) = #,(w) can be

generated.
DISCUSS!
We use induction on |w|.

Base Case |w| =0. So w = e. Can be generated by S — e.



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG

S —aSb| bSa|SS|e

Thm {w | #.(w) = #p(w)} C L(G).
This is not obvious!

We must show that every w with #,(w) = #,(w) can be
generated.

DISCUSS!

We use induction on |w|.

Base Case |w| =0. So w = e. Can be generated by S — e.

Ind Hyp If [W/| < n—1 and #,(w') = #p(w’) then w' € L(G).



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG

S —aSb| bSa|SS|e

Thm {w | #.(w) = #p(w)} C L(G).
This is not obvious!

We must show that every w with #,(w) = #,(w) can be
generated.
DISCUSS!

We use induction on |w|.

Base Case |w| =0. So w = e. Can be generated by S — e.
Ind Hyp If [W/| < n—1 and #,(w') = #p(w’) then w' € L(G).
Ind Step Let w be such that #.(w) = #(w).



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG

S —aSb| bSa|SS|e

Thm {w | #.(w) = #p(w)} C L(G).
This is not obvious!

We must show that every w with #,(w) = #,(w) can be
generated.

DISCUSS!

We use induction on |w|.

Base Case |w| =0. So w = e. Can be generated by S — e.
Ind Hyp If [W/| < n—1 and #,(w') = #p(w’) then w' € L(G).
Ind Step Let w be such that #.(w) = #(w).

Case 1 w = aw’b. Then w' € L(G). By IH S = w'.
S — aSb = aw'b.



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG

S —aSb| bSa|SS|e

Thm {w | #.(w) = #p(w)} C L(G).
This is not obvious!

We must show that every w with #,(w) = #,(w) can be

generated.
DISCUSS!
We use induction on |w|.

Base Case |w| =0. So w = e. Can be generated by S — e.
Ind Hyp If [W/| < n—1 and #,(w') = #p(w’) then w' € L(G).
Ind Step Let w be such that #.(w) = #(w).

Case 1 w = aw’b. Then w' € L(G). By IH S = w'.
S — aSb = aw'b.

Case 2 w = bw’a. Similar.



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG

S —aSb| bSa|SS|e

Thm {w | #.(w) = #p(w)} C L(G).
This is not obvious!

We must show that every w with #,(w) = #,(w) can be

generated.
DISCUSS!
We use induction on |w|.

Base Case |w| =0. So w = e. Can be generated by S — e.
Ind Hyp If [W/| < n—1 and #,(w') = #p(w’) then w' € L(G).
Ind Step Let w be such that #,(w) = #p(w).

Case 1 w = aw’b. Then w' € L(G). By IH S = w'.
S — aSb = aw'b.

Case 2 w = bw’a. Similar.
Case 3 w = aw’a. This is first NON-OBVIOUS part!



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG

S —aSb| bSa|SS|e

Thm {w | #.(w) = #p(w)} C L(G).
This is not obvious!

We must show that every w with #,(w) = #,(w) can be

generated.
DISCUSS!
We use induction on |w|.

Base Case |w| =0. So w = e. Can be generated by S — e.
Ind Hyp If [W/| < n—1 and #,(w') = #p(w’) then w' € L(G).
Ind Step Let w be such that #,(w) = #p(w).

Case 1 w = aw’b. Then w' € L(G). By IH S = w'.
S — aSb = aw'b.

Case 2 w = bw’a. Similar.
Case 3 w = aw’a. This is first NON-OBVIOUS part! Next Slide.



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG
S —aSb|bSa|SS|e



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG
S —aSb|bSa|SS|e

Case 3 w = aw’a. Let w = aoy---0,_1a. Look at prefixes of w:



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG
S —aSb|bSa|SS|e

Case 3 w = aw’a. Let w = aoy---0,_1a. Look at prefixes of w:

a: #a(a) > #»(a)



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG
S —aSb|bSa|SS|e

Case 3 w = aw’a. Let w = aoy---0,_1a. Look at prefixes of w:
a: #a(a) > #»(a)

Forall2<ji<n-1, EITHER

#a.(aoz---0;) = #a(ao2---0i_1) + 1.

OR

#p(ao2---0i) = #p(aoz---0j_1) + 1.

But NOT both.



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG
S —aSb|bSa|SS|e

Case 3 w = aw’a. Let w = aoy---0,_1a. Look at prefixes of w:
a: #a(a) > #»(a)

Forall2<ji<n-1, EITHER

#3(30'2 cee 0',') = #3(30'2 cee 0','_1) + 1.

OR

#p(aoz---0j) = #p(aca---0j-1) + 1.

But NOT both.
#3(302 te O'n—l) =
#p(aoa---op-1) =



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG
S —aSb|bSa|SS|e

Case 3 w = aw’a. Let w = aoy---0,_1a. Look at prefixes of w:
a: #a(a) > #»(a)

Forall2<ji<n-1, EITHER

#3(30'2 cee 0',') = #3(30'2 cee 0','_1) + 1.

OR

#p(aoz---0j) = #p(aca---0j-1) + 1.

But NOT both.
#3(302 te O'n—l) =
#p(aoa---op-1) =
Hence



{w | #a(w) = #p(w)} € L(G)

Let G be the CFG
S —aSb|bSa|SS|e

Case 3 w = aw’a. Let w = aoy---0,_1a. Look at prefixes of w:
a: #a(a) > #»(a)

Forall2<ji<n-1, EITHER

#3(30'2 cee 0',') = #3(30'2 cee 0','_1) + 1.

OR

#p(aoz---0j) = #p(aca---0j-1) + 1.

But NOT both.
#3(30'2 te O'n—l) =
#p(aoa---op-1) =
Hence

#a(aon - -op_1) < #p(aoz---op_1)

-1

NISNIS



Recap

1) a: #a(a) > #5(a)



Recap

1) a: #a(a) > #s(a)
2) Forall2<i<n-—1, EITHER

#a(aoa -~ 0i) = #fa(aoz---0i-1) + 1.
OR

#b(302 s O‘,') = #3(80'2 s O‘,'_1) + 1.



Recap

1) a: #a(a) > #s(a)
2) Forall2<i<n-—1, EITHER

#a(aoa -~ 0i) = #fa(aoz---0i-1) + 1.
OR

#b(302 s U,') = #3(80'2 s O‘,'_1) + 1.
3) #3(302 e 'O'nfl) < #b(302 ce O'nfl)
Hence there exists 2 << n-1
#a(ao - 0;) = #p(aoa - - 0j_1).



Recap

1) a: #a(a) > #s(a)

2) Forall2<i<n-—1, EITHER
#a(aoa -~ 0i) = #fa(aoz---0i-1) + 1.
OR

#b(302 s U,') = #3(80'2 s O‘,'_1) + 1.
3) #a(aoa - on_1) < #p(aoa---0n_1)
Hence there exists 2 << n-1
#a(aoz - 0i) = #p(aoz - 0j-1).

So w = w'w” where w,w’ € L(G). Since |w/| < |w| and
w”| < |w|, by IH

S=w and S = w".



Recap

1) a: #a(a) > #s(a)

2) Forall2<i<n-—1, EITHER
#a(aoa -~ 0i) = #fa(aoz---0i-1) + 1.
OR

#b(302 s U,') = #3(80'2 s O‘,'_1) + 1.
3) #a(aoa - on_1) < #p(aoa---0n_1)
Hence there exists 2 << n-1
#a(aoz - 0i) = #p(aoz - 0j-1).

So w = w'w” where w,w’ € L(G). Since |w/| < |w| and
w”| < |w|, by IH

S=w and S = w".

So

S+ SS=ww'=w.



Example of a Lang that is NOT a CFL

1) {a"b"c" : n € N} is NOT a CFL.



Example of a Lang that is NOT a CFL

1) {a"b"c" : n € N} is NOT a CFL.
2) {a™ :ne N} is NOT a CFL.



Example of a Lang that is NOT a CFL

1) {a"b"c" : n € N} is NOT a CFL.
2) {a"™ : ne N} is NOT a CFL.
3) If L C a* and L is not regular than L is not a CFL.



Example of a Lang that is NOT a CFL

1) {a"b"c" : n € N} is NOT a CFL.

2) {a™ :ne N} is NOT a CFL.

3) If L C a* and L is not regular than L is not a CFL.
We will not be proving Langs NOT CFL.



CLOSURE PROPERTIES
AND REGC CFL



Closure Properties: PROVE or DISPROVE

If L1, Ly are Context Free Languages then

1. IS L1 U Ly is a context free Lang?
2. 1S L1 N Ly is a context free Lang?
3.

4. IS Ly is a context free Lang?

5.

IS L; - Ly is a context free Lang?

IS L7 is a context free Lang?

DISCUSS



Li,L, CFL —- L UL, CFL

L1 is CFL via CFG (Nl,Z, R1,51).
L2 is CFL via CFG (NQ,Z, RQ,SQ).



Li,L, CFL —- L UL, CFL

L1 is CFL via CFG (Nl,Z, R1,51).

L2 is CFL via CFG (NQ,Z, RQ,SQ).

The following CFG generates L1 U L.

L1 U Ly is CFL via CFG (N, X%, R, S) where



Li,L, CFL —- L UL, CFL

L1 is CFL via CFG (Nl,Z, R1,51).
L2 is CFL via CFG (NQ,Z, R2,52).

The following CFG generates L1 U L.
L1 U Ly is CFL via CFG (N, X%, R, S) where
N=NUNU {5}



Li,L, CFL —- L UL, CFL

L1 is CFL via CFG (Nl,Z, R1,51).

L2 is CFL via CFG (NQ,Z, R2,52).

The following CFG generates L1 U L.

L1 U Ly is CFL via CFG (N, X%, R, S) where
N =N UN,U{S}

S is start state.



Li,L, CFL —- L UL, CFL

Ly is CFL via CFG (N1, X, Ry, S1).

[_2 is CFL via CFG (NQ,Z, R2,52).

The following CFG generates L1 U L.

L1 U Ly is CFL via CFG (N, X%, R, S) where
N =N UN,U{S}

S is start state.
R:R1UR2U{5—>51|52}



Li,L, CFL —- L UL, CFL

L1 is CFL via CFG (Nl,Z, R1,51).

L2 is CFL via CFG (NQ,Z, R2,52).

The following CFG generates L1 U L.

L1 U Ly is CFL via CFG (N, X%, R, S) where
N =N UN,U{S}

S is start state.
R:R1UR2U{5—>51|52}

Note We assume N; N No = ().



Finite vs Infinite Union

If L1 and Ly are regular then L1 U Ly is regular.

This is true for 3 languages or 4 languages or 98 languages.



Finite vs Infinite Union

If L1 and Ly are regular then L1 U Ly is regular.
This is true for 3 languages or 4 languages or 98 languages.

But if L1, Ly, L3,--- is an infinite set of regular languages, is
Ly ULy U... regular?



Finite vs Infinite Union

If L1 and Ly are regular then L1 U Ly is regular.
This is true for 3 languages or 4 languages or 98 languages.

But if L1, Ly, L3,--- is an infinite set of regular languages, is
Ly ULy U... regular?

No, because:
» L; = {ab} is regular.
> Ly = {a¥bk} is regular.
» LiULpU---={a"b": n € N} is not regular.



Finite vs Infinite Union

If L1 and Ly are regular then L1 U Ly is regular.
This is true for 3 languages or 4 languages or 98 languages.

But if L1, Ly, L3,--- is an infinite set of regular languages, is
Ly ULy U... regular?

No, because:

» [y = {ab} is regular.

> Ly = {a¥bk} is regular.

» LiULpU---={a"b": n € N} is not regular.
What about for CFLs?

» [; ={abc} is a CFL.
> L, = {akbkck} is a CFL.
> We will see later that |J;2, L; = {a"b"c" : n € N} is not CFL.



Li,L, CFL —- Lin L, CFL

NOT TRUE: a"b"c* N a*b"c” = a"b"c".



Ll, L2 CFL — L1 . L2 CFL

L1 is CFL via CFG (Nl,Z, R1,51).
L2 is CFL via CFG (NQ,Z, RQ,SQ).



L1, L, CFL — L, - L, CFL

L1 is CFL via CFG (Nl,Z, R1,51).
L2 is CFL via CFG (NQ,Z, RQ,SQ).

The following CFG generates L; - Lo.
Ly - Ly is CFL via CFG (N, X%, R, S) where



L1, L, CFL — L, - L, CFL

L1 is CFL via CFG (Nl,Z, R1,51).
L2 is CFL via CFG (NQ,Z, R2,52).

The following CFG generates L; - Lo.
Ly - Ly is CFL via CFG (N, X%, R, S) where
N=NUN,



L1, L, CFL — L, - L, CFL

L1 is CFL via CFG (Nl,Z, R1,51).
L2 is CFL via CFG (NQ,Z, R2,52).

The following CFG generates L; - L.

Ly - Ly is CFL via CFG (N, X%, R, S) where
N=NUN,

S is the start state.



L1, L, CFL — L, - L, CFL

Ly is CFL via CFG (Ng, X, Ry, 51).
[_2 is CFL via CFG (NQ,Z, R2,52).

The following CFG generates L; - Lo.
Ly - Ly is CFL via CFG (N, X%, R, S) where

N=NUN,
S is the start state.
R:R1UR2U{5%51'52}.



L1, L, CFL — L, - L, CFL

Ly is CFL via CFG (Ng, X, Ry, 51).
[_2 is CFL via CFG (NQ,Z, R2,52).

The following CFG generates L; - L.

Ly - Ly is CFL via CFG (N, X%, R, S) where
N=NUN,

S is the start state.
R:R1UR2U{5%51'52}.

Note We assume Ny N N = ().



L CFL — L CFL

FALSE.
Let

L={a"b"c": ne N}



L CFL — L CFL

FALSE.
Let

L={a"b"c": ne N}
This is a CFL. This will be a HW.



L CFL — L* CFL

L is CFL via CFG (N, %, R, S).



L CFL — L* CFL

L is CFL via CFG (N, Z,R, S).
Here is a CFL for L*: (N, X, R, S") where



L CFL — L* CFL

Lis CFL via CFG (N, X, R,S).
Here is a CFL for L*: (N, X, R, S") where
S’ is new start nonterminal.



L CFL — L* CFL

L is CFL via CFG (N, Z,R, S).
Here is a CFL for L*: (N, X, R, S") where

S’ is new start nonterminal.
N' = NuU{S}.



L CFL — L* CFL

Lis CFL via CFG (N, X, R,S).

Here is a CFL for L*: (N, X, R, S") where
S’ is new start nonterminal.

N' = NuU{S}.

R’ has R and also



L CFL — L* CFL

Lis CFL via CFG (N, X, R,S).

Here is a CFL for L*: (N, X, R, S") where
S’ is new start nonterminal.

N' = NuU{S}.

R’ has R and also

S —e



L CFL — L* CFL

Lis CFL via CFG (N, X, R,S).

Here is a CFL for L*: (N, X, R, S") where
S’ is new start nonterminal.

N' = NuU{S}.

R’ has R and also

S —e

S = S'S



REG contained in CFL

Thm If L is regular then L is CFL.
DISCUSS



REG contained in CFL

For every regex «, L(«a) is a CFL.



REG contained in CFL

For every regex «, L(«) is a CFL.
Prove by ind on the length of a.



REG contained in CFL

For every regex «, L(«) is a CFL.
Prove by ind on the length of a.

Base Case |a| =1 then ais o or e. Both {sigma} and {e} are
CFL's.



REG contained in CFL

For every regex «, L(«) is a CFL.
Prove by ind on the length of a.

Base Case |a| =1 then ais o or e. Both {sigma} and {e} are
CFL's.

Ind Hyp For all regex 8 with |3| < n there exists CFG G such that
L(B) = L(G).



REG contained in CFL

For every regex «, L(«) is a CFL.
Prove by ind on the length of a.

Base Case |a| =1 then ais o or e. Both {sigma} and {e} are
CFL's.

Ind Hyp For all regex 8 with |3| < n there exists CFG G such that
L(B) = L(G).
Ind Step |a| = n.



REG contained in CFL

For every regex «, L(«) is a CFL.
Prove by ind on the length of a.

Base Case |a| =1 then ais o or e. Both {sigma} and {e} are
CFL's.

Ind Hyp For all regex 8 with |3| < n there exists CFG G such that
L(B) = L(G).

Ind Step |a| = n.

Case 1 a= 1 U . By IH L(51) and L(f2) are CFL's. By closure
under U, L(«) is CFL.



REG contained in CFL

For every regex «, L(«) is a CFL.
Prove by ind on the length of a.

Base Case |a| =1 then ais o or e. Both {sigma} and {e} are
CFL's.

Ind Hyp For all regex 8 with || < n there exists CFG G such that
L(B) = L(G).

Ind Step |a| = n.

Case 1 a= 1 U . By IH L(51) and L(f2) are CFL's. By closure
under U, L(«) is CFL.

Case 2 a = 31 - f2. By IH L(p1) and L(B2) are CFL's. By closure
under -, L(a) is CFL.



REG contained in CFL

For every regex «, L(«) is a CFL.
Prove by ind on the length of a.

Base Case |a| =1 then ais o or e. Both {sigma} and {e} are
CFL's.

Ind Hyp For all regex 8 with |3| < n there exists CFG G such that
L(B) = L(G).

Ind Step |a| = n.

Case 1 a= 1 U . By IH L(51) and L(f2) are CFL's. By closure
under U, L(«) is CFL.

Case 2 a = 31 - f2. By IH L(p1) and L(B2) are CFL's. By closure
under -, L(a) is CFL.

Case 3 aw = p*. By IH L(3) is CFL. By closure under %, L(«) is
CFL.



Examples of CFL’s and
Size of CFG’s



Size of CFGs

How big is a CFL for the language {aaaaaaaa} (there are 8 a's).



Size of CFGs

How big is a CFL for the language {aaaaaaaa} (there are 8 a's).
We could say the size is 1:

S — aaaaaaaa



Size of CFGs

How big is a CFL for the language {aaaaaaaa} (there are 8 a's).
We could say the size is 1:

S — aaaaaaaa

This does not seem quite right.



Size of CFGs

How big is a CFL for the language {aaaaaaaa} (there are 8 a's).
We could say the size is 1:

S — aaaaaaaa

This does not seem quite right.

Next slide has a standard form for CFL's that make size make
sense.



Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:



Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:
1) A— BC where A, B, C € N (nonterminals).



Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:

1) A— BC where A, B, C € N (nonterminals).

2) A— o (where Ac Nand o € ¥).



Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:

1) A— BC where A, B, C € N (nonterminals).

2) A— o (where Ac Nand o € ¥).

3) S — e (where S is the start state).



Example of Chomsky Normal Form

Recall the CFG:

S — aaaaaaaa



Example of Chomsky Normal Form

Recall the CFG:

S — aaaaaaaa

DISCUSS TO FIND A CHOMSKY NORMAL FORM CFG FOR
{aaaaaaaa}.



Example of Chomsky Normal Form

Recall the CFG:
S — aaaaaaaa



Example of Chomsky Normal Form

Recall the CFG:
S — aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S— AA



Example of Chomsky Normal Form

Recall the CFG:

S — aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S5 — AA

A — BB



Example of Chomsky Normal Form

Recall the CFG:

S — aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S — AA

A— BB

B — CC



Example of Chomsky Normal Form

Recall the CFG:
S — aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S— AA

A — BB

B — CC

C—a



Example of Chomsky Normal Form

Recall the CFG:
S — aaaaaaaa

Chomsky Normal form CFG that generates same lang:

S— AA

A — BB

B — CC

C—a

We measure the size of a Chomsky Normal Form CFG by the
number of rules.



Example of Chomsky Normal Form

Recall the CFG:
S — aaaaaaaa

Chomsky Normal form CFG that generates same lang:
S—AA

A — BB

B — CC

C—a

We measure the size of a Chomsky Normal Form CFG by the
number of rules.

So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.



Chomsky Normal Form CFG for {a"}

We say that {a®} has a CNF CFG of size 4.



Chomsky Normal Form CFG for {a"}

We say that {a®} has a CNF CFG of size 4.
What about {a'°}? Vote



Chomsky Normal Form CFG for {a"}

We say that {a®} has a CNF CFG of size 4.
What about {a'°}? Vote

1) Size 8

2) Size 5



Chomsky Normal Form CFG for {a"}

We say that {38} has a CNF CFG of size 4.
What about {a'°}? Vote

1) Size 8

2) Size 5

The answer is 5. Next slide.



Chomsky Normal Form CFG for {a'%}

S AA



Chomsky Normal Form CFG for {a'%}

S AA
A — BB



Chomsky Normal Form CFG for {a'%}

S — AA
A — BB
B — CC



Chomsky Normal Form CFG for {a'%}

S AA
A — BB
B — CC
C — DD



Chomsky Normal Form CFG for {a'%}

S AA
A — BB
B — CC
C — DD
D— a



Chomsky Normal Form CFG for {a'%}

S AA
A — BB
B — CC
C — DD
D— a

What to do if nis not a power of 2. HW.



L= {a}"

Upshot

For L, ={a"}:
» Any DFA or NFA that recognizes L, has n+ Q(1) states.
» There is a CFG that generates L, with O(log n) rules.



Our Old Friend L = {a, b}*a{a, b}"

1) We showed that L requires a 2"*! size DFA.



Our OId Friend L = {a, b}*a{a, b}"

1) We showed that L requires a 2"*1 size DFA.

2) We have an NFA of size n+ 2. There is no NFA of size n since
then there would be a DFA of size 2" < 201,



Our OId Friend L = {a, b}*a{a, b}"

1) We showed that L requires a 2"*1 size DFA.

2) We have an NFA of size n+ 2. There is no NFA of size n since
then there would be a DFA of size 2" < 201,

3) DISCUSS for getting a CFG of size < n.



DFA, NFA, CFG



DFA, NFA, CFG

L =1Lq1-L> where



DFA, NFA, CFG

L =1Lq1-L> where

Ly ={a, b}*a. Has 5-rule Chomsky Normal Form CFG:
S—AS|BS|a

A—a

B —b



DFA, NFA, CFG

L =17 Ly where

Ly ={a, b}*a. Has 5-rule Chomsky Normal Form CFG:
S—AS|BS|a

A—a

B —b

Ly ={a,b}". Alg(n)+ 3 rule Chomsky Normal Form CFG.
S— 5151

51 — 5252

Sig(n)+1 — Slg(n) Slg(n)
Slg(n) — a | b
Note We are assuming n is a power of 2.



DFA, NFA, CFG Size Diff

L={a, b}*a{a, b}"



DFA, NFA, CFG Size Diff

L={a, b}*a{a, b}"
1) DFA of size ©(2").



DFA, NFA, CFG Size Diff

L={a, b}*a{a, b}"

1) DFA of size ©(2").
2) NFA of size n+ ©(1).



DFA, NFA, CFG Size Diff

L={a, b}*a{a, b}"

1) DFA of size ©(2").
2) NFA of size n+ ©(1).
3) CFG of size ©(lg(n)).



Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {a™b" : m > n}. We put it into Chomsky
Normal Form.

1) S — AT

2) T —aTb
3) T —e
4) A — Aa
5) A—a



Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {a™b" : m > n}. We put it into Chomsky
Normal Form.

1) S — AT

2) T —aTb

3) T —e

4) A — Aa

5) A—a

New nonterminals [aT], [b], [a]. Replace T — aTb with:
T — [aT][b]

[aT] — [a] T

[b] — b.

[a] — a



Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {a™b" : m > n}. We put it into Chomsky
Normal Form.

1) S — AT

2) T —aTb

3) T —e

4) A — Aa

5) A—a

New nonterminals [aT], [b], [a]. Replace T — aTb with:
T — [aT][b]

[aT] — [a] T

[b] — b.

[a] — a

Repeat the process with the other rules.



MISC



MISC

1) There is a pumping theorem for CFL's but we won't be doing it.



MISC

1) There is a pumping theorem for CFL's but we won't be doing it.
2) If Ly is a CFL and Lj is regular then L3 N Ly is a CFL.



MISC

1) There is a pumping theorem for CFL's but we won't be doing it.

2) If Ly is a CFL and Lj is regular then L3 N Ly is a CFL.

3) Recall: DFA’s are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDAs



MISC

1) There is a pumping theorem for CFL's but we won't be doing it.

2) If Ly is a CFL and Lj is regular then L3 N Ly is a CFL.

3) Recall: DFA’s are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDAs

PDA does not stand for Public Display of Affection



MISC

1) There is a pumping theorem for CFL's but we won't be doing it.

2) If Ly is a CFL and Lj is regular then L3 N Ly is a CFL.

3) Recall: DFA’s are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDAs

PDA does not stand for Public Display of Affection

PDA does stand for Push Down Automata.

They are NFAs with a stack.



MISC

1) There is a pumping theorem for CFL's but we won't be doing it.

2) If Ly is a CFL and Lj is regular then L3 N Ly is a CFL.

3) Recall: DFA’s are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDAs

PDA does not stand for Public Display of Affection

PDA does stand for Push Down Automata.

They are NFAs with a stack.

Deterministic CFG's are defined by DPDA'’s where are DFAs with

a stack.



MISC

1) There is a pumping theorem for CFL's but we won't be doing it.

2) If Ly is a CFL and Lj is regular then L3 N Ly is a CFL.

3) Recall: DFA’s are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDAs

PDA does not stand for Public Display of Affection

PDA does stand for Push Down Automata.

They are NFAs with a stack.

Deterministic CFG's are defined by DPDA'’s where are DFAs with

a stack.

The proof that PDA-recognizers and CFG-generators are

equivalent is messy so we won't be doing it. We won't deal with

PDA's in this course at all.



