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Recall Turing Machines

I am not going to bother defining TM’s again.

Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them M1,M2, . . ..

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total .
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Computable Sets

Def A set A is computable if there exists a Turing Machine M
that behaves as follows:

M(x) =

{
Y if x ∈ A

N if x /∈ A
(1)

Computable sets are also called decidable or solvable. A machine
such as M above is said to decide A.

Notation DEC is the set of Decidable Sets.
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Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.
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Noncomputable Sets

Are there any noncomputable sets?

1. Yes—if not then my PhD thesis would have been a lot shorter.

2. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

3. That last answer is true but unsatisfying. We want an actual
example of an noncomputable set.
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The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) ∈ HALT .

Given (e, d) run Me(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this? No.

We need to prove this. We must show that it is NOT the case
that some clever person can look at the code and figure out that
its NOT going to halt.

Recall You all thought there was no small NFA for {ai : i ̸= n}
and were wrong. Hence lower bounds need proof.
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HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.
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Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : Me halts on at least 12 numbers } (at most ,exactly )

{e : Me halts on an infinite number of numbers}
{e : Me halts on a finite number of numbers}
{e : Me does the Hokey Pokey and turns itself around }
TOT = {e : Me halts on all inputs}
Proofs by reductions. Similar to NPC. We will not do that.
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Why we will not be doing reductions in computability theory I:

Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula ϕ maps to graph G: ϕ ∈ SAT iff G ∈ 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. HALT undecidable. TOT is undecidable by a reduction:
Given (e, d) we can find e ′ such that (e, d) ∈ HALT iff
e ′ ∈ TOT
Is this interesting? No Machines related to other machines.
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Why we will not be doing reductions in computability theory II:

Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula ϕ maps to graph G: ϕ ∈ SAT iff G ∈ 3COL.
A poly time alg maps formulas to graphs .

2. HALT undecidable. TOT is undecidable by a reduction:
A Turing Machine maps Turing Machines to Turing
Machines .
A pedagogical nightmare!
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What Sets of TMs Are Decidable?

Decidable sets:

{e : Me has a prime number of states }

{e : Me has a square number of alphabet symbols}

{e : no transition of Me is a MOVE-L}

Key Difference:

▶ Semantic Question : What does Me do? is usually
undecidable.

▶ Syntactic Question : What does Me look like? is usually
decidable.
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Σ1 Sets

HALT is undecidable.

How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.
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Compare NP to Σ1

1. Both use a quant and then something easy. So the sets are
difficult because of the quant.

2. 2.1 For NP easy means P and the quant is over an exp size set.
2.2 For Σ1 easy means DEC and the quant is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?
Yes, to a limited extent.
My thesis was on showing some of those limits.
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More on Σ1

Thm Let A be any set. The following are equivalent:

(1) A is Σ1.

(2) There exists a TM such that A = {x : (∃s)[Me,s(x) ↓]}.
(3) There exists a total TM such that

A = {y : (∃e, s)[Me,s(x) ↓= y ]}.
Because of (3) Σ1 is often called recursively enumerable or
computably enumerable .
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Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.
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More Examples of Σi and Πi Sets

Set of Turing Machines that compute increasing functions:

{e : (∀x < y)(∃s)[Me,s(x) ↓< Me,s(y) ↓]} ∈ Π2.

Set of Turing machines that halt on all but a finite number of
inputs

{e : (∃x)(∀y > x)(∃s)[Me,s(y) ↓].
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Hilbert’s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Def Z[x1, . . . , xn] is the set of all polys in variables x1, . . . , xn with
coefficients in Z.
Example 13x7 + 8x5 − 19x2 + 19

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.
Hilbert thought this would inspire interesting Number Theory.
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Hilbert’s Tenth Problem (cont)

In 1959

Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Kiersten Stasko presidency.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.
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Hilbert’s Tenth Problem (cont)

Martin Davis was asked who might take their work and extend it
to get that H10 cannot be solved. He said

A young Russian Mathematician
He was right!
In 1970 a young Russian named Yuri Matiyasevich finished the
proof.
It is often said
H10 was proven undecidable by
Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

The proof involved coding Turing Machines into Polynomials.

Upshot This problem of, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] does
it have an integer solution is a natural question that is undecidable.
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Historical Aside

The history of H10 is interesting because it’s boring .

1. Davis, Putnam, Robinson were delighted that the problem
was solved.

2. Davis, Putnam, Robinson, Matiyasevich all get credit which is
how it should be.

3. There have been no duels over who deserves more credit, as
their have been in the past.

4. Various combinations of the four have had papers since then
simplifying and modifying the proof.

Math (and the rest of life) is full of stories of jealousy and
credit-claimers (e.g., Newton vs Leibnitz) so its interesting that
this aspect is boring.
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Back to Math

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

We now know this is undeciable.
For which degrees d and number-of-vars n is it undec? Dec?
For a full account see Gasarch’s survey h10.pdf

highlights

1. Undec with deg-8, vars-174.

2. Undec with deg-1045, vars-20.

3. Undec with deg-some d ; vars-11;

4. Dec with deg-1, vars-∞. Easy.

5. Dec with deg-∞, vars-1. Easy.

6. Dec with deg-2, vars-2. Hard. Gauss.

7. Dec with deg-2, vars-∞. Hard. Recent (1972).

h10.pdf
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A Simple Case

Consider the following problem: Given k , determine if
(∃x , y , z ∈ Z)[x3 + y3 + z3 = k].

Vote

▶ It has been proven that there is no algorithm

▶ It has been proven that there is an algorithm

▶ This is unknown but people think no algorithm

▶ This is unknown but people think there is an algorithm

▶ This is unknown but there is no consensus

▶ This is a weird problem that only Bill cares about

Answer on next slide.
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Thought Decidable

1. Easy to show that if k ≡ 4, 5 (mod 9) then NO solution. All
future items assume that restriction.

2. If k ≤ 1000, k not on list below, and max{|x |, |y |, |z |} ≤ 1015

then k is sum of three cubes.

114, 164, 390, 579, 627, 633, 732, 921, 975

3. Number Theorists think that there is a solution iff k ̸≡ 4, 5
(mod 9).

4. Number Theorists think that this will be hard to prove.

5. LARGE knowledge gap between decidable and undecidable.
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The Matrix Mortality Question

Input n ∈ N and a set {M1, . . . ,Mm} of n × n matrices over Z.

Question Does some product of the matrices equal the ZERO
matrix? (You can use a matrix more than once.)
This problem is undecidable. We refine this:

1. For two 15× 15 matrices, undecidable.

2. For three 9× 9 matrices, undecidable.

3. For four 5× 5 matrices, undecidable.

4. For six 3× 3 matrices, undecidable.

5. For two 2× 2 matrices, decidable.

Everything elseis unknown to science . We pick out two:

1. For two 3× 3 matrices, unknown.

2. For three 2× 2 matrices, unknown.
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No Some math objects just don’t like being complimented.
Why? Shy? Modest?



Can you Compliment a Context Free Grammar

No

Some math objects just don’t like being complimented.
Why? Shy? Modest?



Can you Compliment a Context Free Grammar

No Some math objects just don’t like being complimented.

Why? Shy? Modest?



Can you Compliment a Context Free Grammar

No Some math objects just don’t like being complimented.
Why?

Shy? Modest?



Can you Compliment a Context Free Grammar

No Some math objects just don’t like being complimented.
Why? Shy?

Modest?



Can you Compliment a Context Free Grammar

No Some math objects just don’t like being complimented.
Why? Shy? Modest?



Can you Complement a Context Free Grammar

Input A CFG G .
Question Is L(G ) a CFL?

This problem is undecidable.

Proof involves looking at the set of all accepting sequences of
configurations.
(We will not be doing that, but the proof is here:
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/

notes/undcfg.pdf

https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf
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Are These Problem Natural?

For each of the following problems we will VOTE on if they are
natural.

(1) Given p ∈ Z[x1, . . . , xn] does p have an integer solution?

(2) Given Matrices M1, . . . ,Mm, does some product = ZERO?

(3) Given a CFG G , is L(G ) a CFL?
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