
Deterministic Finite
Automata (DFA)

DFAs

Three Examples

DFAs

Three Examples

Standard Conventions

1. The state that has an arrow pointing to it (from nowhere,
not from another state) is the start state.

2. The states that are circled are final states. If the
machine ends up there, then the string is accepted.

Standard Conventions

1. The state that has an arrow pointing to it (from nowhere,
not from another state) is the start state.

2. The states that are circled are final states. If the
machine ends up there, then the string is accepted.

Standard Conventions

1. The state that has an arrow pointing to it (from nowhere,
not from another state) is the start state.

2. The states that are circled are final states. If the
machine ends up there, then the string is accepted.

DFA Diagram: A First Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

What is the language?
Odd number of a’s followed by an even number of b’s, but at
least two.

DFA Diagram: A First Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

What is the language?
Odd number of a’s followed by an even number of b’s, but at
least two.

DFA Diagram: A First Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

What is the language?

Odd number of a’s followed by an even number of b’s, but at
least two.

DFA Diagram: A First Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

What is the language?
Odd number of a’s followed by an even number of b’s, but at
least two.

DFA Diagram: A Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

What is the language?
Odd number of a’s followed by an even number of b’s.

DFA Diagram: A Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

What is the language?
Odd number of a’s followed by an even number of b’s.

DFA Diagram: A Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

What is the language?

Odd number of a’s followed by an even number of b’s.

DFA Diagram: A Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

What is the language?
Odd number of a’s followed by an even number of b’s.

DFA Diagram: A Third Example

q1 q2 q3 q4

q5

q6q7q8q9

q10q11

Garbage State

A,...,Z A,...,Z

A,....,Z

#

A,...,Z

A,...,Z

A,....,Z

#A,...,ZA,...,Z

A,....,Z

.

#

.,# .,# . .,#
#

..,#.,#.,#

A,....,Z

What is the language? Messy

DFA Diagram: A Third Example

q1 q2 q3 q4

q5

q6q7q8q9

q10q11

Garbage State

A,...,Z A,...,Z

A,....,Z

#

A,...,Z

A,...,Z

A,....,Z

#A,...,ZA,...,Z

A,....,Z

.

#

.,# .,# . .,#
#

..,#.,#.,#

A,....,Z

What is the language? Messy

DFA Diagram: A Third Example

q1 q2 q3 q4

q5

q6q7q8q9

q10q11

Garbage State

A,...,Z A,...,Z

A,....,Z

#

A,...,Z

A,...,Z

A,....,Z

#A,...,ZA,...,Z

A,....,Z

.

#

.,# .,# . .,#
#

..,#.,#.,#

A,....,Z

What is the language?

Messy

DFA Diagram: A Third Example

q1 q2 q3 q4

q5

q6q7q8q9

q10q11

Garbage State

A,...,Z A,...,Z

A,....,Z

#

A,...,Z

A,...,Z

A,....,Z

#A,...,ZA,...,Z

A,....,Z

.

#

.,# .,# . .,#
#

..,#.,#.,#

A,....,Z

What is the language? Messy

DFA Diagram: A Third Example

q1 q2 q3 q4

q5

q6q7q8q9

q10q11Garbage State

A,...,Z A,...,Z

A,....,Z

#

A,...,Z

A,...,Z

A,....,Z

#A,...,ZA,...,Z

A,....,Z

.

#

.,# .,# . .,#
#

..,#.,#.,#

A,....,Z

What is the language? Messy

Third Example without Garbage State

q1 q2 q3 q4

q5

q6q7q8q9

q10

A,...,Z A,...,Z

A,....,Z

#

A,...,Z

A,...,Z

A,....,Z

#A,...,ZA,...,Z

A,....,Z

.

#

What is the language?

Third Example without Garbage State

q1 q2 q3 q4

q5

q6q7q8q9

q10

A,...,Z A,...,Z

A,....,Z

#

A,...,Z

A,...,Z

A,....,Z

#A,...,ZA,...,Z

A,....,Z

.

#

What is the language?

Third Example without Garbage State

q1 q2 q3 q4

q5

q6q7q8q9

q10

A,...,Z A,...,Z

A,....,Z

#

A,...,Z

A,...,Z

A,....,Z

#A,...,ZA,...,Z

A,....,Z

.

#

What is the language?

Short Detour

Modular Arithmetic

Short Detour

Modular Arithmetic

Modular Arithmetic: Definitions

▶ x ≡ y (mod N) if and only if N divides x − y .

▶ 25 ≡ 35 (mod 10).

▶ 100 ≡ 2 (mod 7) since 100 = 7× 14 + 2.

Modular Arithmetic: Definitions

▶ x ≡ y (mod N) if and only if N divides x − y .

▶ 25 ≡ 35 (mod 10).

▶ 100 ≡ 2 (mod 7) since 100 = 7× 14 + 2.

Modular Arithmetic: Definitions

▶ x ≡ y (mod N) if and only if N divides x − y .

▶ 25 ≡ 35 (mod 10).

▶ 100 ≡ 2 (mod 7) since 100 = 7× 14 + 2.

Modular Arithmetic: Definitions

▶ x ≡ y (mod N) if and only if N divides x − y .

▶ 25 ≡ 35 (mod 10).

▶ 100 ≡ 2 (mod 7) since 100 = 7× 14 + 2.

Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in mod n we have a large number on the
left and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.

Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in mod n we have a large number on the
left and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.

Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in mod n we have a large number on the
left and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.

Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.

−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).

Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.

Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut:

there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25.

Think about it.
No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.

Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

End of Detour

Another Example

End of Detour

Another Example

{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

0, 0 1, 0

0, 1 1, 1

0, 2 1, 2

a

a

b b

b b

b

a

a

a

a

b

{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

0, 0 1, 0

0, 1 1, 1

0, 2 1, 2

a

a

b b

b b

b

a

a

a

a

b

((#a(w) (mod 2),#b(w) (mod 3))

0, 0 1, 0

0, 1 1, 1

0, 2 1, 2

a

a

b b

b b

b

a

a

a

a

b

((#a(w) (mod 2),#b(w) (mod 3))

A DFA-classifier does not ACCEPT and REJECT. It classifies.

If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2),#b(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.

((#a(w) (mod 2),#b(w) (mod 3))

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2),#b(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.

((#a(w) (mod 2),#b(w) (mod 3))

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2),#b(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.

((#a(w) (mod 2),#b(w) (mod 3))

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2),#b(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.

Short Detour

Alphabets, Strings, and
Languages

Short Detour

Alphabets, Strings, and
Languages

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.

▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.

▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.

▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}

▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).

Languages

Def A language over an alphabet Σ is a subset of Σ∗.

Def Let M be a machine that accepts (or rejects) words.
Then the language L(M) = {w : M accepts w}.

Draw the DFA that accepts the empty language over
the alphabet {a, b}. I.e., L = {}.

q a, b

Draw the DFA that accepts the language L over the
alphabet {a, b} with only the empty word. I.e. L = {e}.

q1 q2
a, b

a, b

Languages

Def A language over an alphabet Σ is a subset of Σ∗.

Def Let M be a machine that accepts (or rejects) words.
Then the language L(M) = {w : M accepts w}.

Draw the DFA that accepts the empty language over
the alphabet {a, b}. I.e., L = {}.

q a, b

Draw the DFA that accepts the language L over the
alphabet {a, b} with only the empty word. I.e. L = {e}.

q1 q2
a, b

a, b

Languages

Def A language over an alphabet Σ is a subset of Σ∗.

Def Let M be a machine that accepts (or rejects) words.
Then the language L(M) = {w : M accepts w}.

Draw the DFA that accepts the empty language over
the alphabet {a, b}. I.e., L = {}.

q a, b

Draw the DFA that accepts the language L over the
alphabet {a, b} with only the empty word. I.e. L = {e}.

q1 q2
a, b

a, b

Languages

Def A language over an alphabet Σ is a subset of Σ∗.

Def Let M be a machine that accepts (or rejects) words.
Then the language L(M) = {w : M accepts w}.

Draw the DFA that accepts the empty language over
the alphabet {a, b}. I.e., L = {}.

q a, b

Draw the DFA that accepts the language L over the
alphabet {a, b} with only the empty word. I.e. L = {e}.

q1 q2
a, b

a, b

Languages

Def A language over an alphabet Σ is a subset of Σ∗.

Def Let M be a machine that accepts (or rejects) words.
Then the language L(M) = {w : M accepts w}.

Draw the DFA that accepts the empty language over
the alphabet {a, b}. I.e., L = {}.

q a, b

Draw the DFA that accepts the language L over the
alphabet {a, b} with only the empty word. I.e. L = {e}.

q1 q2
a, b

a, b

Languages

Def A language over an alphabet Σ is a subset of Σ∗.

Def Let M be a machine that accepts (or rejects) words.
Then the language L(M) = {w : M accepts w}.

Draw the DFA that accepts the empty language over
the alphabet {a, b}. I.e., L = {}.

q a, b

Draw the DFA that accepts the language L over the
alphabet {a, b} with only the empty word. I.e. L = {e}.

q1 q2
a, b

a, b

Languages

Def A language over an alphabet Σ is a subset of Σ∗.

Def Let M be a machine that accepts (or rejects) words.
Then the language L(M) = {w : M accepts w}.

Draw the DFA that accepts the empty language over
the alphabet {a, b}. I.e., L = {}.

q a, b

Draw the DFA that accepts the language L over the
alphabet {a, b} with only the empty word. I.e. L = {e}.

q1 q2
a, b

a, b

End of Detour

Start of Transition Tables

End of Detour

Start of Transition Tables

Recall Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Recall Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Recall Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Recall Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

Transition Table:

▶ States: {q1, q2, q3, q4, q5}

▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Recall Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}

▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Recall Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1

▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Recall Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Recall Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Formal definition of DFAs

Def A DFA M is a 5-tuple (Q,Σ, δ, s,F) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ → Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Informally DFA M accepts w if when M is run on w it
ends up in a final state.

Formally
Def If M is a DFA and w ∈ Σ∗ is a word of length n, then M
accepts w if there is a sequence of states r0, r1, r2, . . . , rn
such that r0 = s, ri = δ(ri−1, xi) for 1 ≤ i ≤ n, and rn ∈ F .

Def Language L ⊆ Σ∗ is regular if there exists a DFA M such
that L(M) = L.

Formal definition of DFAs

Def A DFA M is a 5-tuple (Q,Σ, δ, s,F) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ → Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Informally DFA M accepts w if when M is run on w it
ends up in a final state.

Formally
Def If M is a DFA and w ∈ Σ∗ is a word of length n, then M
accepts w if there is a sequence of states r0, r1, r2, . . . , rn
such that r0 = s, ri = δ(ri−1, xi) for 1 ≤ i ≤ n, and rn ∈ F .

Def Language L ⊆ Σ∗ is regular if there exists a DFA M such
that L(M) = L.

Formal definition of DFAs

Def A DFA M is a 5-tuple (Q,Σ, δ, s,F) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ → Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Informally DFA M accepts w if when M is run on w it
ends up in a final state.

Formally
Def If M is a DFA and w ∈ Σ∗ is a word of length n, then M
accepts w if there is a sequence of states r0, r1, r2, . . . , rn
such that r0 = s, ri = δ(ri−1, xi) for 1 ≤ i ≤ n, and rn ∈ F .

Def Language L ⊆ Σ∗ is regular if there exists a DFA M such
that L(M) = L.

Formal definition of DFAs

Def A DFA M is a 5-tuple (Q,Σ, δ, s,F) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ → Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Informally DFA M accepts w if when M is run on w it
ends up in a final state.

Formally
Def If M is a DFA and w ∈ Σ∗ is a word of length n, then M
accepts w if there is a sequence of states r0, r1, r2, . . . , rn
such that r0 = s, ri = δ(ri−1, xi) for 1 ≤ i ≤ n, and rn ∈ F .

Def Language L ⊆ Σ∗ is regular if there exists a DFA M such
that L(M) = L.

Formal definition of DFAs

Def A DFA M is a 5-tuple (Q,Σ, δ, s,F) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ → Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Informally DFA M accepts w if when M is run on w it
ends up in a final state.

Formally
Def If M is a DFA and w ∈ Σ∗ is a word of length n, then M
accepts w if there is a sequence of states r0, r1, r2, . . . , rn
such that r0 = s, ri = δ(ri−1, xi) for 1 ≤ i ≤ n, and rn ∈ F .

Def Language L ⊆ Σ∗ is regular if there exists a DFA M such
that L(M) = L.

Computer Implementation
of DFAs

Recall Second Example

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Implementation of Transition Table:

▶ States: {1, 2, 3, 4, 5}
▶ Alphabet: {1, 2}
▶ Start state: 1

▶ Final states: {2, 4}

▶ Transition function
1 2

1 2 5
2 1 3
3 5 4
4 5 3
5 5 5

Linear time!

Recall Second Example
Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Implementation of Transition Table:

▶ States: {1, 2, 3, 4, 5}
▶ Alphabet: {1, 2}
▶ Start state: 1

▶ Final states: {2, 4}

▶ Transition function
1 2

1 2 5
2 1 3
3 5 4
4 5 3
5 5 5

Linear time!

Recall Second Example
Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Implementation of Transition Table:

▶ States: {1, 2, 3, 4, 5}
▶ Alphabet: {1, 2}
▶ Start state: 1

▶ Final states: {2, 4}

▶ Transition function
1 2

1 2 5
2 1 3
3 5 4
4 5 3
5 5 5

Linear time!

Recall Second Example
Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Implementation of Transition Table:

▶ States: {1, 2, 3, 4, 5}
▶ Alphabet: {1, 2}
▶ Start state: 1

▶ Final states: {2, 4}

▶ Transition function
1 2

1 2 5
2 1 3
3 5 4
4 5 3
5 5 5

Linear time!

Diagrams Versus Transition Tables

Finite state automata are essentially graphs. Same rules apply:

▶ Diagrams are good for people to understand if the DFAs
are small.

▶ Transition tables are good for algorithms and formal
proofs.

Diagrams Versus Transition Tables

Finite state automata are essentially graphs. Same rules apply:

▶ Diagrams are good for people to understand if the DFAs
are small.

▶ Transition tables are good for algorithms and formal
proofs.

Diagrams Versus Transition Tables

Finite state automata are essentially graphs. Same rules apply:

▶ Diagrams are good for people to understand if the DFAs
are small.

▶ Transition tables are good for algorithms and formal
proofs.

Diagrams Versus Transition Tables

Finite state automata are essentially graphs. Same rules apply:

▶ Diagrams are good for people to understand if the DFAs
are small.

▶ Transition tables are good for algorithms and formal
proofs.

