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2. Prob of error is ≤ 1
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WHY
If there is an error then z is a root of the poly a(x)− b(x)
There are only n such roots so the probability of this is very low:
There are n roots and there are p ≥ n2 elements to pick from.
Prob of getting a root is ≤ n

n2
= 1

n .
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