
Review for CMSC 452
Final: Grammars
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Context Free Grammars

Def A Context Free Grammar is a tuple G = (N,Σ,R, S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ N × (N ∪ Σ)∗ and are called Rules.

▶ S ∈ N, the start symbol.



L(G)

If A is non-terminal then the CFG gives us gives us rules like:

▶ A → AB

▶ A → a

For any string of terminals and non-terminals α, A ⇒ α means
that, starting from A, some combination of the rules produces α.
Examples:

▶ A ⇒ a

▶ A ⇒ aB

Then, if w is string of non-terminals only, we define L(G ) by:

L(G ) = {w ∈ Σ∗ | S ⇒ w}
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Example of a Lang that is NOT a CFL

1) {anbncn : n ∈ N} is NOT a CFL.

2) {an2 : n ∈ N} is NOT a CFL.

3) If L ⊆ a∗ and L is not regular than L is not a CFL.

One proves theorems NON CFL using the PL for CFL’s (we omit)
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Closure Properties and
REG⊂ CFL



Closure Properties.

1. CFL’s closed under UNION-easy.

2. CFL’s closed under CONCAT-easy.

3. CFL’s closed under *-easy.

4. CFL’s closed under INTER-FALSE:
anbnc∗ ∩ a∗bncn = anbncn.

5. CFL’s closed under COMPLEMENTATION: FALSE: anbncn

is CFL.
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REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

We omit from this review.
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Examples of CFL’s and
Size of CFG’s



Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:

1) A → BC where A,B,C ∈ N (nonterminals).
2) A → σ (where A ∈ N and σ ∈ Σ).
3) S → e (where S is the start state).
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Languges for Singleton Sets

All CFL’s are in Chomsky Normal Form. |G | is the number of rules.

1. (∀w ∈ {a, b}n)(∃G )[L(G ) = {w} ∧ |G | = n].

2. (∀n ∈ N)(∃G )[L(G ) = {an} ∧ |G | = O(log n)].

3. Does there exist a string w such that for all G such that
L(G ) = {w}, |G | is large?
Yes: Let w be Kolm. Random.
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Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

w = σ1 · · ·σn.
We want to know if w ∈ L. We assume w ̸= e.

For i ≤ j let

GEN[i , j ] = {A : A ⇒ σi · · ·σj}

Find GEN[i , j ] with Dynamic Programming.
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