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Review for Final



Rules

1. Begin Final Tuesday May 17, 10:30PM-12:30PM in CSI
3117. (IF this is a problem for you contact me ASAP!!)

2. Resources You can bring two sheets of notes and use both
sides.

3. Warning Cramming the entire course on to those pages does
not work.

4. Scope of the Exam: My Slides and the HW.
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Turing Machines

1. For this review we omit definitions and conventions.

2. There is a JAVA program for function f iff there is a TM that
computes f .

3. Everything computable can be done by a TM.
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Def A set A is DECIDABLE if there is a Turing Machine M such
that

x ∈ A → M(x) = Y
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What is a Theory

1. All theories have the usual logical symbols, a domain of
discourse for the quantifiers, and Additional Symbols .

2. Sentences are combos of Atomic Fmls using ∧, ∨, ¬, ∃ that
have all variables quantified over.

3. Hence sentences are either TRUE or FALSE.

4. Our main question will be Is this theory decidable?
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WS1S Formulas and Sentences

1. Variables x , y , z range over N, X ,Y ,Z range over finite
subsets of N.

2. Symbols: <, ∈, ≡ (mod ) (usual meaning), S (meaning
S(x) = x + 1), = (for numbers and sets).

3. Define atomic formulas, formulas, and sentences in the usual
way.
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TRUE Sets

Def If ϕ(x1, . . . , xn,X1, . . . ,Xm) is a WS1S Formula then
TRUE (ϕ) is the set

{(a1, . . . , an,A1, . . . ,Am) | ϕ(a1, . . . , an,A1, . . . ,Am) = T}
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KEY THEOREM

Thm For all WS1S formulas ϕ the set TRUEϕ is regular.

Need to clarify representation and the define stupid states to make
all of this work.

We prove this by induction on the formation of a formula. If you
prefer- induction on the LENGTH of a formula.
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DECIDABILITY OF WS1S

Thm: WS1S is Decidable.
Proof:

1. Given a SENTENCE in WS1S put it into the form

(Q1X1) · · · (QnXn)(Qn+1x1) · · · (Qn+mxm)[ϕ(x1, . . . , xm,X1, . . . ,Xn)]

2. Assume Q1 = ∃. (If not then negate and negate answer.)

3. View as (∃X )[ϕ(X )], a FORMULA with ONE free var.

4. Construct DFA M for {X | ϕ(X ) is true}.
5. Test if L(M) = ∅.
6. If L(M) ̸= ∅ then (∃X )[ϕ(X )] is TRUE.

If L(M) = ∅ then (∃X )[ϕ(X )] is FALSE.
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Lemma on Quantifier Elimination

Lemma ∃ an algorithm that will, given a sentence of the form

(Q1x1) · · · (Qn−1xn−1)(∃xn)[ϕ(x1, . . . , xn)]

(where the Qi are quantifiers) return a sentence of the form

(Q1x1) · · · (Qn−1xn−1)[ϕ
′(x1, . . . , xn−1)]



(Q,<) is Decidable: The Algorithm

Algorithm

1. (Q1x1) · · · (Qnxn)[ϕ(x1, . . . , xn)]. Replace ∀ with ¬∃¬.
2. Apply the Quant Elim Lemma over and over again until either

you end up with a TRUE or a FALSE or a sentence with one
variable whose truth will be easily discerned.
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Undecidability



Notation

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
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Noncomputable Sets

Are there any noncomputable sets?

1. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

2. YES—HALT is undecidable, and once you have that you have
many other sets undec.

3. YES—the problem of telling if a p ∈ Z[x1, . . . , xn] has an int
solution is undecidable.

4. YES—there are other natural problems that are undecidable.



The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thm HALT is not computable.
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A = {x : (∃y)[(x , y) ∈ B]}
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Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.
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Kolmogorov Complexity



Def of Randomness

Def

1. If x ∈ {0, 1}n then C(x) is the length of the shortest TM
that, on input e, prints out x . Note that C (x) ≤ n + O(1).

2. A string is Kolmogorov random if C (x) ≥ n.

Note Machine Ind up to additive O(1).
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Do Kolm-Random Strings Exist?

Is there a string of length n that has C (x) ≥ n?

YES- there are more Strings of length n then TMs of length
≤ n − 1.



Applications

Kolm Random Strings were used for:

1. Alternative way to show langs are regular (we did this).

2. Gave a string w such that any CFG G with L(G ) = {w} is
large. (this was HW).

3. Avg case analysis (we did not do this).

4. Lower bounds for a variety of models of computation (we did
not do this).
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