
Review for CMSC 452
Final

Deterministic Finite
Automata (DFA)

{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

0, 0 1, 0

0, 1 1, 1

0, 2 1, 2

a

a

b b

b b

b

a

a

a

a

b

{w : #a(w) ≡ 1 (mod 2)∧#b(w) ≡ 2 (mod 3)}

0, 0 1, 0

0, 1 1, 1

0, 2 1, 2

a

a

b b

b b

b

a

a

a

a

b

Nondeterministic Finite
Automata (NFA)

NFA’s Intuitively

1. An NFA is a DFA that can guess.

2. NFAs do not really exist.

3. Good for ∪ since can guess which one.

4. An NFA accepts iff SOME guess accepts.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf Sketch L is accepted by NFA (Q,Σ,∆, s,F) where

1. Get rid of e-transitions using reachability.

2. Get rid of non-determinism by using power sets. Possibly 2n

blowup.

Regular Expressions

Examples

1. b∗(ab∗ab∗)∗ab∗

2. b∗(ab∗ab∗ab∗)∗

3. (b∗(ab∗ab∗)∗ab∗) ∪ (b∗(ab∗ab∗ab∗)∗)

DFA = NFA = REGEX

NFA ⊆ DFA: Use Power Set Construction. Exp Blowup.

DFA ⊆ REGEX: Use R(i , j , k) construction.

REGEX ⊆ NFA: Induction on formation of regex. Linear.

DFA = NFA = REGEX

NFA ⊆ DFA: Use Power Set Construction. Exp Blowup.

DFA ⊆ REGEX: Use R(i , j , k) construction.

REGEX ⊆ NFA: Induction on formation of regex. Linear.

DFA = NFA = REGEX

NFA ⊆ DFA: Use Power Set Construction. Exp Blowup.

DFA ⊆ REGEX: Use R(i , j , k) construction.

REGEX ⊆ NFA: Induction on formation of regex. Linear.

Closure Properties

Summary of Proofs of Closure Properties

Prod means product construction where you use Q1 × Q2

Def means by Definition, e.g., L1 ∪ L2 for regex.

Swap means swapping final and non-final states.

e-trans means by using e-transitions, e.g., L1 · L2 for NFAs.

X means hard to prove, e.g., L for NFA.

Property DFA NFA regex
L1 ∪ L2 Prod e-trans Def
L1 ∩ L2 Prod Prod X

L Swap X X
L1 · L2 X e-trans Def
L∗ X e-trans Def

Summary of Proofs of Closure Properties

Prod means product construction where you use Q1 × Q2

Def means by Definition, e.g., L1 ∪ L2 for regex.

Swap means swapping final and non-final states.

e-trans means by using e-transitions, e.g., L1 · L2 for NFAs.

X means hard to prove, e.g., L for NFA.

Property DFA NFA regex
L1 ∪ L2 Prod e-trans Def
L1 ∩ L2 Prod Prod X

L Swap X X
L1 · L2 X e-trans Def
L∗ X e-trans Def

Summary of Proofs of Closure Properties

Prod means product construction where you use Q1 × Q2

Def means by Definition, e.g., L1 ∪ L2 for regex.

Swap means swapping final and non-final states.

e-trans means by using e-transitions, e.g., L1 · L2 for NFAs.

X means hard to prove, e.g., L for NFA.

Property DFA NFA regex
L1 ∪ L2 Prod e-trans Def
L1 ∩ L2 Prod Prod X

L Swap X X
L1 · L2 X e-trans Def
L∗ X e-trans Def

Summary of Proofs of Closure Properties

Prod means product construction where you use Q1 × Q2

Def means by Definition, e.g., L1 ∪ L2 for regex.

Swap means swapping final and non-final states.

e-trans means by using e-transitions, e.g., L1 · L2 for NFAs.

X means hard to prove, e.g., L for NFA.

Property DFA NFA regex
L1 ∪ L2 Prod e-trans Def
L1 ∩ L2 Prod Prod X

L Swap X X
L1 · L2 X e-trans Def
L∗ X e-trans Def

Summary of Proofs of Closure Properties

Prod means product construction where you use Q1 × Q2

Def means by Definition, e.g., L1 ∪ L2 for regex.

Swap means swapping final and non-final states.

e-trans means by using e-transitions, e.g., L1 · L2 for NFAs.

X means hard to prove, e.g., L for NFA.

Property DFA NFA regex
L1 ∪ L2 Prod e-trans Def
L1 ∩ L2 Prod Prod X

L Swap X X
L1 · L2 X e-trans Def
L∗ X e-trans Def

Summary of Proofs of Closure Properties

Prod means product construction where you use Q1 × Q2

Def means by Definition, e.g., L1 ∪ L2 for regex.

Swap means swapping final and non-final states.

e-trans means by using e-transitions, e.g., L1 · L2 for NFAs.

X means hard to prove, e.g., L for NFA.

Property DFA NFA regex
L1 ∪ L2 Prod e-trans Def
L1 ∩ L2 Prod Prod X

L Swap X X
L1 · L2 X e-trans Def
L∗ X e-trans Def

Summary of Proofs of Closure Properties

Prod means product construction where you use Q1 × Q2

Def means by Definition, e.g., L1 ∪ L2 for regex.

Swap means swapping final and non-final states.

e-trans means by using e-transitions, e.g., L1 · L2 for NFAs.

X means hard to prove, e.g., L for NFA.

Property DFA NFA regex
L1 ∪ L2 Prod e-trans Def
L1 ∩ L2 Prod Prod X

L Swap X X
L1 · L2 X e-trans Def
L∗ X e-trans Def

Summary of Blowup for Closure Properties

X means Can’t Prove Easily

n1, n2 are number of states in a DFA or NFA.

ℓ,ℓ2 are length of regex.

Closure Property DFA NFA Regex

L1 ∪ L2 n1n2 n1 + n2 ℓ1 + ℓ2
L1 ∩ L2 n1n2 n1n2 X
L1 · L2 X n1 + n2 + 1 ℓ1 + ℓ2

L n X X
L∗ X n + 1 ℓ+ 1

Summary of Blowup for Closure Properties

X means Can’t Prove Easily

n1, n2 are number of states in a DFA or NFA.

ℓ,ℓ2 are length of regex.

Closure Property DFA NFA Regex

L1 ∪ L2 n1n2 n1 + n2 ℓ1 + ℓ2
L1 ∩ L2 n1n2 n1n2 X
L1 · L2 X n1 + n2 + 1 ℓ1 + ℓ2

L n X X
L∗ X n + 1 ℓ+ 1

Summary of Blowup for Closure Properties

X means Can’t Prove Easily

n1, n2 are number of states in a DFA or NFA.

ℓ,ℓ2 are length of regex.

Closure Property DFA NFA Regex

L1 ∪ L2 n1n2 n1 + n2 ℓ1 + ℓ2
L1 ∩ L2 n1n2 n1n2 X
L1 · L2 X n1 + n2 + 1 ℓ1 + ℓ2

L n X X
L∗ X n + 1 ℓ+ 1

Summary of Blowup for Closure Properties

X means Can’t Prove Easily

n1, n2 are number of states in a DFA or NFA.

ℓ,ℓ2 are length of regex.

Closure Property DFA NFA Regex

L1 ∪ L2 n1n2 n1 + n2 ℓ1 + ℓ2
L1 ∩ L2 n1n2 n1n2 X
L1 · L2 X n1 + n2 + 1 ℓ1 + ℓ2

L n X X
L∗ X n + 1 ℓ+ 1

Number of States for
DFAs and NFAs

Minimal DFA for L1 = {ai : i ≡ 0 (mod 35)}

0 1 2 . . . 34
a a a a

a

Min DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Min DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Small NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

Need these two NFA’s.

0 1 2 3 4
a a a a

a

0 1 2 3 4 5 6
a a a a a a

a

Small NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

0 1 2 3 4

0 1 2 3 4 5

6

e a a a a

a

e

a a a a a

a

a

L2 = {ai : i ̸≡ 0 (mod 35)}

DFA for L2 requires 35 states.

NFA for L2 can be done with 1 + 5 + 7 = 13 states.

L2 = {ai : i ̸≡ 0 (mod 35)}

DFA for L2 requires 35 states.

NFA for L2 can be done with 1 + 5 + 7 = 13 states.

L2 = {ai : i ̸≡ 0 (mod 35)}

DFA for L2 requires 35 states.

NFA for L2 can be done with 1 + 5 + 7 = 13 states.

Proving That a Language
Is Not Regular

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:

For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ

How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.

REDO: L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.

By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :

1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.

x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn.

Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.

By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn

= an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.

Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

REDO: L1 = {anbn : n ∈ N} is Not Regular
Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.

L3 = {w : #a(w) ̸= #b(w)} is Not Regular

PL Does Not Help. When you increase the number of y ’s
there is no way to control it so carefully to make the number
of a’s EQUAL the number of b’s.

So what do to?

If L3 is regular then L2 = L3 is regular. But we know that L2 is
not regular. DONE!

L3 = {w : #a(w) ̸= #b(w)} is Not Regular

PL Does Not Help. When you increase the number of y ’s
there is no way to control it so carefully to make the number
of a’s EQUAL the number of b’s.

So what do to?

If L3 is regular then L2 = L3 is regular. But we know that L2 is
not regular. DONE!

L3 = {w : #a(w) ̸= #b(w)} is Not Regular

PL Does Not Help. When you increase the number of y ’s
there is no way to control it so carefully to make the number
of a’s EQUAL the number of b’s.

So what do to?

If L3 is regular then L2 = L3 is regular. But we know that L2 is
not regular. DONE!

L3 = {w : #a(w) ̸= #b(w)} is Not Regular

PL Does Not Help. When you increase the number of y ’s
there is no way to control it so carefully to make the number
of a’s EQUAL the number of b’s.

So what do to?

If L3 is regular then L2 = L3 is regular. But we know that L2 is
not regular. DONE!

L4 = {an2
: n ∈ N} is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a
word in the language.
We omit details.

L4 = {an2
: n ∈ N} is Not Regular

Intuition Perfect squares keep getting further apart.

PL says you can always add some constant k to produce a
word in the language.
We omit details.

L4 = {an2
: n ∈ N} is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a
word in the language.
We omit details.

Applications of DFAs

1. Lexical Analyzer for compilers (we didn’t do this).

2. Pattern Matching Algorithms like grep (we didn’t do this).

3. Decidability of WS1S (we did this).

Applications of DFAs

1. Lexical Analyzer for compilers (we didn’t do this).

2. Pattern Matching Algorithms like grep (we didn’t do this).

3. Decidability of WS1S (we did this).

Applications of DFAs

1. Lexical Analyzer for compilers (we didn’t do this).

2. Pattern Matching Algorithms like grep (we didn’t do this).

3. Decidability of WS1S (we did this).

Applications of DFAs

1. Lexical Analyzer for compilers (we didn’t do this).

2. Pattern Matching Algorithms like grep (we didn’t do this).

3. Decidability of WS1S (we did this).

