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Deterministic Finite
Automata (DFA)
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Nondeterministic Finite
Automata (NFA)



NFA’s Intuitively

1. An NFA is a DFA that can guess.

2. NFAs do not really exist.

3. Good for ∪ since can guess which one.

4. An NFA accepts iff SOME guess accepts.



Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf Sketch L is accepted by NFA (Q,Σ,∆, s,F ) where

1. Get rid of e-transitions using reachability.

2. Get rid of non-determinism by using power sets. Possibly 2n

blowup.



Regular Expressions



Examples

1. b∗(ab∗ab∗)∗ab∗

2. b∗(ab∗ab∗ab∗)∗

3. (b∗(ab∗ab∗)∗ab∗) ∪ (b∗(ab∗ab∗ab∗)∗)



DFA = NFA = REGEX

NFA ⊆ DFA: Use Power Set Construction. Exp Blowup.

DFA ⊆ REGEX: Use R(i , j , k) construction.

REGEX ⊆ NFA: Induction on formation of regex. Linear.
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Closure Properties



Summary of Proofs of Closure Properties

Prod means product construction where you use Q1 × Q2

Def means by Definition, e.g., L1 ∪ L2 for regex.

Swap means swapping final and non-final states.

e-trans means by using e-transitions, e.g., L1 · L2 for NFAs.

X means hard to prove, e.g., L for NFA.

Property DFA NFA regex
L1 ∪ L2 Prod e-trans Def
L1 ∩ L2 Prod Prod X

L Swap X X
L1 · L2 X e-trans Def
L∗ X e-trans Def
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Summary of Blowup for Closure Properties

X means Can’t Prove Easily

n1, n2 are number of states in a DFA or NFA.

ℓ,ℓ2 are length of regex.

Closure Property DFA NFA Regex

L1 ∪ L2 n1n2 n1 + n2 ℓ1 + ℓ2
L1 ∩ L2 n1n2 n1n2 X
L1 · L2 X n1 + n2 + 1 ℓ1 + ℓ2

L n X X
L∗ X n + 1 ℓ+ 1
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Number of States for
DFAs and NFAs



Minimal DFA for L1 = {ai : i ≡ 0 (mod 35)}

0 1 2 . . . 34
a a a a

a



Min DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.
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Small NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

Need these two NFA’s.
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Small NFA for L2 = {ai : i ̸≡ 0 (mod 35)}
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L2 = {ai : i ̸≡ 0 (mod 35)}

DFA for L2 requires 35 states.

NFA for L2 can be done with 1 + 5 + 7 = 13 states.
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Proving That a Language
Is Not Regular



Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ
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How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.
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REDO: L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.
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L3 = {w : #a(w) ̸= #b(w)} is Not Regular

PL Does Not Help. When you increase the number of y ’s
there is no way to control it so carefully to make the number
of a’s EQUAL the number of b’s.

So what do to?

If L3 is regular then L2 = L3 is regular. But we know that L2 is
not regular. DONE!
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L4 = {an2
: n ∈ N} is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a
word in the language.
We omit details.
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Applications of DFAs

1. Lexical Analyzer for compilers (we didn’t do this).

2. Pattern Matching Algorithms like grep (we didn’t do this).

3. Decidability of WS1S (we did this).
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