
BILL AND NATHAN, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Factoring
Is Probably Not NPC

BILL START
RECORDING

Factoring: Some History

Jevons’ Number

In the 1870s William Stanley Jevons wrote of the difficulty of
factoring. We paraphrase Solomon Golomb’s paraphrase:

Jevons observed that there are many cases where an
operation is easy but it’s inverse is hard. He mentioned
encryption and decryption. He mentioned multiplication and
factoring. He anticipated RSA!
Jevons thought factoring was hard (prob correct!) and that a
certain number would never be factored (wrong!). Here is a quote:
Can the reader say what two numbers multiplied together
will produce

8, 616, 460, 799

I think it is unlikely that anyone aside from myself will ever
know.

Jevons’ Number

In the 1870s William Stanley Jevons wrote of the difficulty of
factoring. We paraphrase Solomon Golomb’s paraphrase:
Jevons observed that there are many cases where an
operation is easy but it’s inverse is hard. He mentioned
encryption and decryption. He mentioned multiplication and
factoring. He anticipated RSA!

Jevons thought factoring was hard (prob correct!) and that a
certain number would never be factored (wrong!). Here is a quote:
Can the reader say what two numbers multiplied together
will produce

8, 616, 460, 799

I think it is unlikely that anyone aside from myself will ever
know.

Jevons’ Number

In the 1870s William Stanley Jevons wrote of the difficulty of
factoring. We paraphrase Solomon Golomb’s paraphrase:
Jevons observed that there are many cases where an
operation is easy but it’s inverse is hard. He mentioned
encryption and decryption. He mentioned multiplication and
factoring. He anticipated RSA!
Jevons thought factoring was hard (prob correct!) and that a
certain number would never be factored (wrong!). Here is a quote:

Can the reader say what two numbers multiplied together
will produce

8, 616, 460, 799

I think it is unlikely that anyone aside from myself will ever
know.

Jevons’ Number

In the 1870s William Stanley Jevons wrote of the difficulty of
factoring. We paraphrase Solomon Golomb’s paraphrase:
Jevons observed that there are many cases where an
operation is easy but it’s inverse is hard. He mentioned
encryption and decryption. He mentioned multiplication and
factoring. He anticipated RSA!
Jevons thought factoring was hard (prob correct!) and that a
certain number would never be factored (wrong!). Here is a quote:
Can the reader say what two numbers multiplied together
will produce

8, 616, 460, 799

I think it is unlikely that anyone aside from myself will ever
know.

Jevons’ Number

In the 1870s William Stanley Jevons wrote of the difficulty of
factoring. We paraphrase Solomon Golomb’s paraphrase:
Jevons observed that there are many cases where an
operation is easy but it’s inverse is hard. He mentioned
encryption and decryption. He mentioned multiplication and
factoring. He anticipated RSA!
Jevons thought factoring was hard (prob correct!) and that a
certain number would never be factored (wrong!). Here is a quote:
Can the reader say what two numbers multiplied together
will produce

8, 616, 460, 799

I think it is unlikely that anyone aside from myself will ever
know.

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers.

Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help.

Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly

Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.

Student: How did they live?
Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?

Bill: How indeed!

Jevons’ Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid?
Discuss

1. Jevons lived 1835–1882 (Died at 46, drowned while
swimming.)

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!

Was Jevons Arrogant?

Conjecture Jevons was arrogant. Likely true.

Conjecture We have the arrogance of hindsight.

▶ It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

▶ It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

▶ Conclusion
▶ His arrogance: assumed the world would not change much.
▶ Our arrogance: knowing how much the world did change.

Was Jevons Arrogant?

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

▶ It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

▶ It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

▶ Conclusion
▶ His arrogance: assumed the world would not change much.
▶ Our arrogance: knowing how much the world did change.

Was Jevons Arrogant?

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

▶ It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

▶ It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

▶ Conclusion
▶ His arrogance: assumed the world would not change much.
▶ Our arrogance: knowing how much the world did change.

Was Jevons Arrogant?

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

▶ It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

▶ It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

▶ Conclusion
▶ His arrogance: assumed the world would not change much.
▶ Our arrogance: knowing how much the world did change.

Was Jevons Arrogant?

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

▶ It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

▶ It’s easy for us to say

What a moron! He should have asked a Babbage or Lovelace
We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

▶ Conclusion
▶ His arrogance: assumed the world would not change much.
▶ Our arrogance: knowing how much the world did change.

Was Jevons Arrogant?

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

▶ It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

▶ It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

▶ Conclusion
▶ His arrogance: assumed the world would not change much.
▶ Our arrogance: knowing how much the world did change.

Was Jevons Arrogant?

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

▶ It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

▶ It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

▶ Conclusion
▶ His arrogance: assumed the world would not change much.
▶ Our arrogance: knowing how much the world did change.

Was Jevons Arrogant?

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

▶ It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

▶ It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

▶ Conclusion
▶ His arrogance: assumed the world would not change much.
▶ Our arrogance: knowing how much the world did change.

Factoring Algorithms

Factoring Algorithm Ground Rules

▶ We only consider algorithms that, given N, find a non-trivial
factor of N.

▶ We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

Factoring Algorithm Ground Rules

▶ We only consider algorithms that, given N, find a non-trivial
factor of N.

▶ We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

Factoring Algorithm Ground Rules

▶ We only consider algorithms that, given N, find a non-trivial
factor of N.

▶ We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.

How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) allowing randomized algorithms, we have:

▶ Easy: N1/2 = 2L/2.

▶ Pollard-Rho Algorithm (1975): N1/4 = 2L/4.

▶ Quad Sieve (1981): N1/L1/2 = 2L
1/2

.

▶ Number Field Sieve (∼1990): N1/L2/3 = 2L
1/3

.

▶ SVP algorithm (2020): Unclear!

Number Theory vs SAT

Has Number Theory been used to obtain fast factoring algorithms?

Yes

Has Logic been used to obtain fast SAT algorithms?
No.
There are algorithms for 3-SAT that take O((1.5)n).
They used cleverness but no hard math.

This is an informal diff between Factoring and SAT.

Number Theory vs SAT

Has Number Theory been used to obtain fast factoring algorithms?
Yes

Has Logic been used to obtain fast SAT algorithms?
No.
There are algorithms for 3-SAT that take O((1.5)n).
They used cleverness but no hard math.

This is an informal diff between Factoring and SAT.

Number Theory vs SAT

Has Number Theory been used to obtain fast factoring algorithms?
Yes

Has Logic been used to obtain fast SAT algorithms?

No.
There are algorithms for 3-SAT that take O((1.5)n).
They used cleverness but no hard math.

This is an informal diff between Factoring and SAT.

Number Theory vs SAT

Has Number Theory been used to obtain fast factoring algorithms?
Yes

Has Logic been used to obtain fast SAT algorithms?
No.

There are algorithms for 3-SAT that take O((1.5)n).
They used cleverness but no hard math.

This is an informal diff between Factoring and SAT.

Number Theory vs SAT

Has Number Theory been used to obtain fast factoring algorithms?
Yes

Has Logic been used to obtain fast SAT algorithms?
No.
There are algorithms for 3-SAT that take O((1.5)n).

They used cleverness but no hard math.

This is an informal diff between Factoring and SAT.

Number Theory vs SAT

Has Number Theory been used to obtain fast factoring algorithms?
Yes

Has Logic been used to obtain fast SAT algorithms?
No.
There are algorithms for 3-SAT that take O((1.5)n).
They used cleverness but no hard math.

This is an informal diff between Factoring and SAT.

Number Theory vs SAT

Has Number Theory been used to obtain fast factoring algorithms?
Yes

Has Logic been used to obtain fast SAT algorithms?
No.
There are algorithms for 3-SAT that take O((1.5)n).
They used cleverness but no hard math.

This is an informal diff between Factoring and SAT.

Factoring as a Set

Factoring is naturally thought of as a function:

f (n) = the least prime factor of n.

Here is the set version for purposes of NPC.

FACT = {(n, a) : (∃b ≤ a)[b divides n]}

Note that FACT ∈ NP.

Easy to show that FACT ∈ P iff f ∈ PF.

So our questions is: is FACT NPC?

Factoring as a Set

Factoring is naturally thought of as a function:

f (n) = the least prime factor of n.

Here is the set version for purposes of NPC.

FACT = {(n, a) : (∃b ≤ a)[b divides n]}

Note that FACT ∈ NP.

Easy to show that FACT ∈ P iff f ∈ PF.

So our questions is: is FACT NPC?

Factoring as a Set

Factoring is naturally thought of as a function:

f (n) = the least prime factor of n.

Here is the set version for purposes of NPC.

FACT = {(n, a) : (∃b ≤ a)[b divides n]}

Note that FACT ∈ NP.

Easy to show that FACT ∈ P iff f ∈ PF.

So our questions is: is FACT NPC?

Factoring as a Set

Factoring is naturally thought of as a function:

f (n) = the least prime factor of n.

Here is the set version for purposes of NPC.

FACT = {(n, a) : (∃b ≤ a)[b divides n]}

Note that FACT ∈ NP.

Easy to show that FACT ∈ P iff f ∈ PF.

So our questions is: is FACT NPC?

Factoring as a Set

Factoring is naturally thought of as a function:

f (n) = the least prime factor of n.

Here is the set version for purposes of NPC.

FACT = {(n, a) : (∃b ≤ a)[b divides n]}

Note that FACT ∈ NP.

Easy to show that FACT ∈ P iff f ∈ PF.

So our questions is: is FACT NPC?

Factoring as a Set

Factoring is naturally thought of as a function:

f (n) = the least prime factor of n.

Here is the set version for purposes of NPC.

FACT = {(n, a) : (∃b ≤ a)[b divides n]}

Note that FACT ∈ NP.

Easy to show that FACT ∈ P iff f ∈ PF.

So our questions is: is FACT NPC?

NP and co-NP

Def A ∈ NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.
Def A ∈ co-NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∀y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Example
TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP

NP and co-NP

Def A ∈ NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.
Def A ∈ co-NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∀y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Example
TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP

NP and co-NP

Def A ∈ NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.
Def A ∈ co-NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∀y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Example
TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP

NP and co-NP

Def A ∈ NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.
Def A ∈ co-NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∀y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Example
TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP

NP and co-NP

Def A ∈ NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

Def A ∈ co-NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∀y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Example
TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP

NP and co-NP

Def A ∈ NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.
Def A ∈ co-NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∀y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Example
TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP

NP and co-NP

Def A ∈ NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.
Def A ∈ co-NP if ∃ a set B ∈ P and a poly p such that
A = {x : (∀y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.
Example
TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP

Is TAUT in NP? Is SAT in coNP?

TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP

Vote TAUT ∈ NP ? YES, NO, or UNKNOWN TO BILL.
UNKNOWN TO BILL. Theorists think NO.

Seems hard to convince someone ϕ ∈ TAUT by giving them a
short string.

1. We do not think TAUT ∈ NP.

2. Hence we do not think SAT ∈ co-NP

Note If A ∈ co-NP and SAT ≤ A then SAT ∈ co-NP (left to you).
Hence if A ∈ co-NP we think A is not NP-complete.

Is TAUT in NP? Is SAT in coNP?

TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP
Vote TAUT ∈ NP ? YES, NO, or UNKNOWN TO BILL.

UNKNOWN TO BILL. Theorists think NO.

Seems hard to convince someone ϕ ∈ TAUT by giving them a
short string.

1. We do not think TAUT ∈ NP.

2. Hence we do not think SAT ∈ co-NP

Note If A ∈ co-NP and SAT ≤ A then SAT ∈ co-NP (left to you).
Hence if A ∈ co-NP we think A is not NP-complete.

Is TAUT in NP? Is SAT in coNP?

TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP
Vote TAUT ∈ NP ? YES, NO, or UNKNOWN TO BILL.
UNKNOWN TO BILL. Theorists think NO.

Seems hard to convince someone ϕ ∈ TAUT by giving them a
short string.

1. We do not think TAUT ∈ NP.

2. Hence we do not think SAT ∈ co-NP

Note If A ∈ co-NP and SAT ≤ A then SAT ∈ co-NP (left to you).
Hence if A ∈ co-NP we think A is not NP-complete.

Is TAUT in NP? Is SAT in coNP?

TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP
Vote TAUT ∈ NP ? YES, NO, or UNKNOWN TO BILL.
UNKNOWN TO BILL. Theorists think NO.

Seems hard to convince someone ϕ ∈ TAUT by giving them a
short string.

1. We do not think TAUT ∈ NP.

2. Hence we do not think SAT ∈ co-NP

Note If A ∈ co-NP and SAT ≤ A then SAT ∈ co-NP (left to you).
Hence if A ∈ co-NP we think A is not NP-complete.

Is TAUT in NP? Is SAT in coNP?

TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP
Vote TAUT ∈ NP ? YES, NO, or UNKNOWN TO BILL.
UNKNOWN TO BILL. Theorists think NO.

Seems hard to convince someone ϕ ∈ TAUT by giving them a
short string.

1. We do not think TAUT ∈ NP.

2. Hence we do not think SAT ∈ co-NP

Note If A ∈ co-NP and SAT ≤ A then SAT ∈ co-NP (left to you).
Hence if A ∈ co-NP we think A is not NP-complete.

Is TAUT in NP? Is SAT in coNP?

TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP
Vote TAUT ∈ NP ? YES, NO, or UNKNOWN TO BILL.
UNKNOWN TO BILL. Theorists think NO.

Seems hard to convince someone ϕ ∈ TAUT by giving them a
short string.

1. We do not think TAUT ∈ NP.

2. Hence we do not think SAT ∈ co-NP

Note If A ∈ co-NP and SAT ≤ A then SAT ∈ co-NP (left to you).
Hence if A ∈ co-NP we think A is not NP-complete.

Is TAUT in NP? Is SAT in coNP?

TAUT = {ϕ : (∀b⃗)[ϕ(b⃗) = T]} ∈ co-NP
Vote TAUT ∈ NP ? YES, NO, or UNKNOWN TO BILL.
UNKNOWN TO BILL. Theorists think NO.

Seems hard to convince someone ϕ ∈ TAUT by giving them a
short string.

1. We do not think TAUT ∈ NP.

2. Hence we do not think SAT ∈ co-NP

Note If A ∈ co-NP and SAT ≤ A then SAT ∈ co-NP (left to you).
Hence if A ∈ co-NP we think A is not NP-complete.

Our Plan for FACT

We show FACT ∈ co-NP.

Hence
We think FACT is not NP-complete

Do we still think FACT /∈ P?

1. Crytographers think FACT /∈ P.

2. Number Theorists think FACT ∈ P.

3. Quantum Computing People thing quantum computers will
factor very large numbers within 30 years. They are wrong.

Our Plan for FACT

We show FACT ∈ co-NP.
Hence
We think FACT is not NP-complete

Do we still think FACT /∈ P?

1. Crytographers think FACT /∈ P.

2. Number Theorists think FACT ∈ P.

3. Quantum Computing People thing quantum computers will
factor very large numbers within 30 years. They are wrong.

Our Plan for FACT

We show FACT ∈ co-NP.
Hence
We think FACT is not NP-complete

Do we still think FACT /∈ P?

1. Crytographers think FACT /∈ P.

2. Number Theorists think FACT ∈ P.

3. Quantum Computing People thing quantum computers will
factor very large numbers within 30 years. They are wrong.

Our Plan for FACT

We show FACT ∈ co-NP.
Hence
We think FACT is not NP-complete

Do we still think FACT /∈ P?

1. Crytographers think FACT /∈ P.

2. Number Theorists think FACT ∈ P.

3. Quantum Computing People thing quantum computers will
factor very large numbers within 30 years. They are wrong.

Our Plan for FACT

We show FACT ∈ co-NP.
Hence
We think FACT is not NP-complete

Do we still think FACT /∈ P?

1. Crytographers think FACT /∈ P.

2. Number Theorists think FACT ∈ P.

3. Quantum Computing People thing quantum computers will
factor very large numbers within 30 years. They are wrong.

Our Plan for FACT

We show FACT ∈ co-NP.
Hence
We think FACT is not NP-complete

Do we still think FACT /∈ P?

1. Crytographers think FACT /∈ P.

2. Number Theorists think FACT ∈ P.

3. Quantum Computing People thing quantum computers will
factor very large numbers within 30 years. They are wrong.

Primality in NP

What we Know about Primality

PRIMES = {x : (∀y , z)[x = yz → (y = 1 ∨ z = 1)]} ∈ co-NP

1. 1975: Von Pratt got PRIMES in NP.

2. 1976: Miller got ERH implies PRIMES in P.

3. 1977: Solovay-Strassen got PRIMES in RP. Real-world Fast!

4. 1980: Rabin got PRIMES in RP. Real-world Fast!

5. 2002 Agrawal-Kayal-Saxe got PRIMES in P. Real-world Slow!

We will present PRIMES in NP and that is all we will need in our
proof that FACT ∈ co-NP.

What we Know about Primality

PRIMES = {x : (∀y , z)[x = yz → (y = 1 ∨ z = 1)]} ∈ co-NP

1. 1975: Von Pratt got PRIMES in NP.

2. 1976: Miller got ERH implies PRIMES in P.

3. 1977: Solovay-Strassen got PRIMES in RP. Real-world Fast!

4. 1980: Rabin got PRIMES in RP. Real-world Fast!

5. 2002 Agrawal-Kayal-Saxe got PRIMES in P. Real-world Slow!

We will present PRIMES in NP and that is all we will need in our
proof that FACT ∈ co-NP.

What we Know about Primality

PRIMES = {x : (∀y , z)[x = yz → (y = 1 ∨ z = 1)]} ∈ co-NP

1. 1975: Von Pratt got PRIMES in NP.

2. 1976: Miller got ERH implies PRIMES in P.

3. 1977: Solovay-Strassen got PRIMES in RP. Real-world Fast!

4. 1980: Rabin got PRIMES in RP. Real-world Fast!

5. 2002 Agrawal-Kayal-Saxe got PRIMES in P. Real-world Slow!

We will present PRIMES in NP and that is all we will need in our
proof that FACT ∈ co-NP.

What we Know about Primality

PRIMES = {x : (∀y , z)[x = yz → (y = 1 ∨ z = 1)]} ∈ co-NP

1. 1975: Von Pratt got PRIMES in NP.

2. 1976: Miller got ERH implies PRIMES in P.

3. 1977: Solovay-Strassen got PRIMES in RP. Real-world Fast!

4. 1980: Rabin got PRIMES in RP. Real-world Fast!

5. 2002 Agrawal-Kayal-Saxe got PRIMES in P. Real-world Slow!

We will present PRIMES in NP and that is all we will need in our
proof that FACT ∈ co-NP.

What we Know about Primality

PRIMES = {x : (∀y , z)[x = yz → (y = 1 ∨ z = 1)]} ∈ co-NP

1. 1975: Von Pratt got PRIMES in NP.

2. 1976: Miller got ERH implies PRIMES in P.

3. 1977: Solovay-Strassen got PRIMES in RP. Real-world Fast!

4. 1980: Rabin got PRIMES in RP. Real-world Fast!

5. 2002 Agrawal-Kayal-Saxe got PRIMES in P. Real-world Slow!

We will present PRIMES in NP and that is all we will need in our
proof that FACT ∈ co-NP.

What we Know about Primality

PRIMES = {x : (∀y , z)[x = yz → (y = 1 ∨ z = 1)]} ∈ co-NP

1. 1975: Von Pratt got PRIMES in NP.

2. 1976: Miller got ERH implies PRIMES in P.

3. 1977: Solovay-Strassen got PRIMES in RP. Real-world Fast!

4. 1980: Rabin got PRIMES in RP. Real-world Fast!

5. 2002 Agrawal-Kayal-Saxe got PRIMES in P. Real-world Slow!

We will present PRIMES in NP and that is all we will need in our
proof that FACT ∈ co-NP.

What we Know about Primality

PRIMES = {x : (∀y , z)[x = yz → (y = 1 ∨ z = 1)]} ∈ co-NP

1. 1975: Von Pratt got PRIMES in NP.

2. 1976: Miller got ERH implies PRIMES in P.

3. 1977: Solovay-Strassen got PRIMES in RP. Real-world Fast!

4. 1980: Rabin got PRIMES in RP. Real-world Fast!

5. 2002 Agrawal-Kayal-Saxe got PRIMES in P. Real-world Slow!

We will present PRIMES in NP and that is all we will need in our
proof that FACT ∈ co-NP.

Terminology for NP

Recall that
A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[B(x , y) = 1]}.

The string y has been called

1. A proof that x ∈ A.

2. A certificate for x ∈ A.

We will use the term certificate since proof has a different
connotation.

We abbreviate certificate by cert.

Terminology for NP

Recall that
A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[B(x , y) = 1]}.

The string y has been called

1. A proof that x ∈ A.

2. A certificate for x ∈ A.

We will use the term certificate since proof has a different
connotation.

We abbreviate certificate by cert.

Terminology for NP

Recall that
A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[B(x , y) = 1]}.

The string y has been called

1. A proof that x ∈ A.

2. A certificate for x ∈ A.

We will use the term certificate since proof has a different
connotation.

We abbreviate certificate by cert.

Terminology for NP

Recall that
A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[B(x , y) = 1]}.

The string y has been called

1. A proof that x ∈ A.

2. A certificate for x ∈ A.

We will use the term certificate since proof has a different
connotation.

We abbreviate certificate by cert.

Terminology for NP

Recall that
A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[B(x , y) = 1]}.

The string y has been called

1. A proof that x ∈ A.

2. A certificate for x ∈ A.

We will use the term certificate since proof has a different
connotation.

We abbreviate certificate by cert.

Terminology for NP

Recall that
A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[B(x , y) = 1]}.

The string y has been called

1. A proof that x ∈ A.

2. A certificate for x ∈ A.

We will use the term certificate since proof has a different
connotation.

We abbreviate certificate by cert.

Lucas’s Theorem

Let n ∈ N. Assume there exists a such that

1. an−1 ≡ 1 (mod n), and

2. for every factor q ̸= 1 of n − 1, a(n−1)/q ̸≡ 1 (mod n),

then n is prime.

Lucas’s Theorem

Let n ∈ N. Assume there exists a such that

1. an−1 ≡ 1 (mod n), and

2. for every factor q ̸= 1 of n − 1, a(n−1)/q ̸≡ 1 (mod n),

then n is prime.

Lucas’s Theorem

Let n ∈ N. Assume there exists a such that

1. an−1 ≡ 1 (mod n), and

2. for every factor q ̸= 1 of n − 1, a(n−1)/q ̸≡ 1 (mod n),

then n is prime.

Attempt at Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q ̸= 1 of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

(The cert included a factorization of n − 1 so the verifier
knows all of the factors of n − 1.)

Does this work? I said Attempt at. . . so no.
The verifier has to verify that the factorization of n − 1 is a
factorization into primes.

So need the cert to contain a cert that the claimed prime factors
of n − 1 are prime.

Attempt at Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q ̸= 1 of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

(The cert included a factorization of n − 1 so the verifier
knows all of the factors of n − 1.)

Does this work? I said Attempt at. . . so no.
The verifier has to verify that the factorization of n − 1 is a
factorization into primes.

So need the cert to contain a cert that the claimed prime factors
of n − 1 are prime.

Attempt at Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q ̸= 1 of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

(The cert included a factorization of n − 1 so the verifier
knows all of the factors of n − 1.)

Does this work? I said Attempt at. . . so no.
The verifier has to verify that the factorization of n − 1 is a
factorization into primes.

So need the cert to contain a cert that the claimed prime factors
of n − 1 are prime.

Attempt at Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q ̸= 1 of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

(The cert included a factorization of n − 1 so the verifier
knows all of the factors of n − 1.)

Does this work? I said Attempt at. . . so no.
The verifier has to verify that the factorization of n − 1 is a
factorization into primes.

So need the cert to contain a cert that the claimed prime factors
of n − 1 are prime.

Attempt at Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q ̸= 1 of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

(The cert included a factorization of n − 1 so the verifier
knows all of the factors of n − 1.)

Does this work? I said Attempt at. . . so no.
The verifier has to verify that the factorization of n − 1 is a
factorization into primes.

So need the cert to contain a cert that the claimed prime factors
of n − 1 are prime.

Attempt at Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q ̸= 1 of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

(The cert included a factorization of n − 1 so the verifier
knows all of the factors of n − 1.)

Does this work?

I said Attempt at. . . so no.
The verifier has to verify that the factorization of n − 1 is a
factorization into primes.

So need the cert to contain a cert that the claimed prime factors
of n − 1 are prime.

Attempt at Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q ̸= 1 of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

(The cert included a factorization of n − 1 so the verifier
knows all of the factors of n − 1.)

Does this work? I said Attempt at. . . so no.

The verifier has to verify that the factorization of n − 1 is a
factorization into primes.

So need the cert to contain a cert that the claimed prime factors
of n − 1 are prime.

Attempt at Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q ̸= 1 of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

(The cert included a factorization of n − 1 so the verifier
knows all of the factors of n − 1.)

Does this work? I said Attempt at. . . so no.
The verifier has to verify that the factorization of n − 1 is a
factorization into primes.

So need the cert to contain a cert that the claimed prime factors
of n − 1 are prime.

Attempt at Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q ̸= 1 of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

(The cert included a factorization of n − 1 so the verifier
knows all of the factors of n − 1.)

Does this work? I said Attempt at. . . so no.
The verifier has to verify that the factorization of n − 1 is a
factorization into primes.

So need the cert to contain a cert that the claimed prime factors
of n − 1 are prime.

Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

3. For each pi give a cert that pi is prime. (The cert will be a
number ai such that. . .) and a factorization of pi − 1. . ..

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

3. Check the cert that each pi is prime.

So it’s a recursive cert.
Need to check that the cert is short, but this is not difficult.

Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

3. For each pi give a cert that pi is prime. (The cert will be a
number ai such that. . .) and a factorization of pi − 1. . ..

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

3. Check the cert that each pi is prime.

So it’s a recursive cert.
Need to check that the cert is short, but this is not difficult.

Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

3. For each pi give a cert that pi is prime. (The cert will be a
number ai such that. . .) and a factorization of pi − 1. . ..

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

3. Check the cert that each pi is prime.

So it’s a recursive cert.
Need to check that the cert is short, but this is not difficult.

Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

3. For each pi give a cert that pi is prime. (The cert will be a
number ai such that. . .) and a factorization of pi − 1. . ..

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

3. Check the cert that each pi is prime.

So it’s a recursive cert.
Need to check that the cert is short, but this is not difficult.

Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

3. For each pi give a cert that pi is prime. (The cert will be a
number ai such that. . .) and a factorization of pi − 1. . ..

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

3. Check the cert that each pi is prime.

So it’s a recursive cert.
Need to check that the cert is short, but this is not difficult.

Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

3. For each pi give a cert that pi is prime. (The cert will be a
number ai such that. . .) and a factorization of pi − 1. . ..

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

3. Check the cert that each pi is prime.

So it’s a recursive cert.
Need to check that the cert is short, but this is not difficult.

Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

3. For each pi give a cert that pi is prime. (The cert will be a
number ai such that. . .) and a factorization of pi − 1. . ..

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

3. Check the cert that each pi is prime.

So it’s a recursive cert.
Need to check that the cert is short, but this is not difficult.

Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

3. For each pi give a cert that pi is prime. (The cert will be a
number ai such that. . .) and a factorization of pi − 1. . ..

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

3. Check the cert that each pi is prime.

So it’s a recursive cert.

Need to check that the cert is short, but this is not difficult.

Primality in NP

The cert for n prime is

1. A number a.

2. A factorization of n − 1 = pc11 · · · pckk where pi ’s are prime.

3. For each pi give a cert that pi is prime. (The cert will be a
number ai such that. . .) and a factorization of pi − 1. . ..

The verifier does the following:

1. Check that an−1 ≡ 1 (mod n),

2. Check that every for every factor q of n − 1,

a(n−1)/q ̸≡ 1 (mod n).

3. Check the cert that each pi is prime.

So it’s a recursive cert.
Need to check that the cert is short, but this is not difficult.

Back to Factoring

FACT ∈ NP

FACT = {(n, a) : (∃b ≤ a)[b divides n]}

FACT = {(n, a) : (∀b ≤ a)[b does not divides n]}

Here is cert that (n, a) ∈ FACT.

1. A factorization n = pc11 · · · pckk where p1 < · · · < pk .

2. For each pi , the cert that pi is prime.

Verifier has to check

1. n = pc11 · · · pckk .

2. a < p1.

3. Each pi is prime.

FACT ∈ NP

FACT = {(n, a) : (∃b ≤ a)[b divides n]}

FACT = {(n, a) : (∀b ≤ a)[b does not divides n]}

Here is cert that (n, a) ∈ FACT.

1. A factorization n = pc11 · · · pckk where p1 < · · · < pk .

2. For each pi , the cert that pi is prime.

Verifier has to check

1. n = pc11 · · · pckk .

2. a < p1.

3. Each pi is prime.

FACT ∈ NP

FACT = {(n, a) : (∃b ≤ a)[b divides n]}

FACT = {(n, a) : (∀b ≤ a)[b does not divides n]}

Here is cert that (n, a) ∈ FACT.

1. A factorization n = pc11 · · · pckk where p1 < · · · < pk .

2. For each pi , the cert that pi is prime.

Verifier has to check

1. n = pc11 · · · pckk .

2. a < p1.

3. Each pi is prime.

Recap What We Know

FACT ∈ NP

so

FACT ∈ co-NP

so
If FACT is NPC then

SAT ≤ FACT ∈ co-NP

so

NP = co-NP.

Could factoring be in P?
Next slide.

Recap What We Know

FACT ∈ NP

so

FACT ∈ co-NP

so
If FACT is NPC then

SAT ≤ FACT ∈ co-NP

so

NP = co-NP.

Could factoring be in P?
Next slide.

Recap What We Know

FACT ∈ NP

so

FACT ∈ co-NP

so
If FACT is NPC then

SAT ≤ FACT ∈ co-NP

so

NP = co-NP.

Could factoring be in P?
Next slide.

Recap What We Know

FACT ∈ NP

so

FACT ∈ co-NP

so
If FACT is NPC then

SAT ≤ FACT ∈ co-NP

so

NP = co-NP.

Could factoring be in P?
Next slide.

Recap What We Know

FACT ∈ NP

so

FACT ∈ co-NP

so
If FACT is NPC then

SAT ≤ FACT ∈ co-NP

so

NP = co-NP.

Could factoring be in P?
Next slide.

Recap What We Know

FACT ∈ NP

so

FACT ∈ co-NP

so
If FACT is NPC then

SAT ≤ FACT ∈ co-NP

so

NP = co-NP.

Could factoring be in P?

Next slide.

Recap What We Know

FACT ∈ NP

so

FACT ∈ co-NP

so
If FACT is NPC then

SAT ≤ FACT ∈ co-NP

so

NP = co-NP.

Could factoring be in P?
Next slide.

The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

▶ No progress since N.F.Sieve in 1988.

▶ My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
▶ Why hasn’t t been improved? Wagstaff told me:

▶ We’ve run out of parameters to optimize.
▶ Anthony, Davin, Erika, Jacob, and Nathan have not yet

applied Ramsey theory to this problem.

The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

▶ No progress since N.F.Sieve in 1988.

▶ My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
▶ Why hasn’t t been improved? Wagstaff told me:

▶ We’ve run out of parameters to optimize.
▶ Anthony, Davin, Erika, Jacob, and Nathan have not yet

applied Ramsey theory to this problem.

The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

▶ No progress since N.F.Sieve in 1988.

▶ My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.

▶ Why hasn’t t been improved? Wagstaff told me:
▶ We’ve run out of parameters to optimize.
▶ Anthony, Davin, Erika, Jacob, and Nathan have not yet

applied Ramsey theory to this problem.

The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

▶ No progress since N.F.Sieve in 1988.

▶ My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
▶ Why hasn’t t been improved? Wagstaff told me:

▶ We’ve run out of parameters to optimize.
▶ Anthony, Davin, Erika, Jacob, and Nathan have not yet

applied Ramsey theory to this problem.

The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

▶ No progress since N.F.Sieve in 1988.

▶ My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
▶ Why hasn’t t been improved? Wagstaff told me:

▶ We’ve run out of parameters to optimize.

▶ Anthony, Davin, Erika, Jacob, and Nathan have not yet
applied Ramsey theory to this problem.

The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

▶ No progress since N.F.Sieve in 1988.

▶ My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
▶ Why hasn’t t been improved? Wagstaff told me:

▶ We’ve run out of parameters to optimize.
▶ Anthony, Davin, Erika, Jacob, and Nathan have not yet

applied Ramsey theory to this problem.

BILL AND NATHAN
STOP RECORDING

