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I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.

i(s,a) = 1.
d(i,a)=i+1if1<i<999
5(1000, 2) = d.

i(d,a) =d.

F = Q — {1000}.

Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with < 1001 states? NO.
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» 89 CANNOT be expressed as 10x + 11y.

» 100 CANNOT be expressed as 10x + 11y + 11.

» For all z > 90, x CAN be expressed as 10x + 11y.

» For all z > 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:

From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.

Make O-state of Mod-11 loop a final state.

This final state accepts a' iff (Ix,y € N)[i = 10x + 11y + 11]
iff 7 > 101.
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See Next Page.



Prob 4c: Regex For {a':i # 100} Shorter
Use Chicken McNugget Theorem++ with 13,9 to get



Prob 4c: Regex For {a':i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.



Prob 4c: Regex For {a':i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.
This regex generates every a’ with i > 101.



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.
This regex generates every a’ with i > 101.
We need a regex for the smaller strings. We use mod 2,3,5,7.



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.
This regex generates every a’ with i > 101.
We need a regex for the smaller strings. We use mod 2,3,5,7.

Mod-2: {a':i# 0 (mod 2)} is (aa)*. Length: 3



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.

This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2,3,5,7.
Mod-2: {a':i# 0 (mod 2)} is (aa)*. Length: 3

Mod-3: {a": i # 1 (mod 3)} is {e, aa}*(aaa)*. Length: 7



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.

This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2,3,5,7.
Mod-2: {a':i# 0 (mod 2)} is (aa)*. Length: 3

Mod-3: {a": i # 1 (mod 3)} is {e, aa}*(aaa)*. Length: 7
Mod-5: {a': i # 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)*.
Length: 16



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
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aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.

This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2,3,5,7.
Mod-2: {a':i# 0 (mod 2)} is (aa)*. Length: 3

Mod-3: {a": i # 1 (mod 3)} is {e, aa}*(aaa)*. Length: 7
Mod-5: {a': i # 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)*.
Length: 16

Mod-7: {a' : i # 2 (mod 7)} is

{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)*: 28.

Total Length: 27+3+7+16+-28=81.
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Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get

100 CANNOT be written as 13x + 9y + 5.

Any i > 101 CAN be written as 13x + 9y + 5.

a5(a9 U a13)*

Regex Length: Ig(5) +1g(9) +1g(13) +1 =3+4+4+1=12.
This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2, 3,5,7.
Mod-2 regex for {a' : i # 0 (mod 2)} is (a%)*.

Mod-3 regex for {a' : i # 1 (mod 3)} is {e, a*}*(a°)*.



Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get

100 CANNOT be written as 13x + 9y + 5.

Any i > 101 CAN be written as 13x + 9y + 5.

35(39 U a13)*

Regex Length: Ig(5) +1g(9) +1g(13) +1 =3+4+4+1=12.
This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2, 3,5,7.
Mod-2 regex for {a' : i # 0 (mod 2)} is (a%)*.

Mod-3 regex for {a' : i # 1 (mod 3)} is {e, a*}*(a°)*.

Mod-5 regex for {a’ : i # 0 (mod 5)} is {a, a%, a°, a*}(a%)".



Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get

100 CANNOT be written as 13x + 9y + 5.

Any i > 101 CAN be written as 13x + 9y + 5.

35(39 U a13)*

Regex Length: Ig(5) +1g(9) +1g(13) +1 =3+4+4+1=12.
This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2, 3,5,7.
Mod-2 regex for {a' : i # 0 (mod 2)} is (a%)*.

Mod-3 regex for {a' : i # 1 (mod 3)} is {e, a*}*(a°)*.

Mod-5 regex for {a’ : i # 0 (mod 5)} is {a, a%, a°, a*}(a%)".
Mod-7 regex for {a': i £ 2 (mod 7)} is

{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)*:
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Want regex for L. How can | obtain one?
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Prob 5: Regex for.. ..

L={w:#.w)=17 (mod 102) A #,(w) =10 (mod 91)}.

Want regex for L. How can | obtain one?

1. Create a DFA M for L. It will be easy and have
102 x 91 = 9282.

2. Use the R(/, j, k) construction on DFA M.



