HWO03 Solution



Prob 2: L = {a':i# 1000}. DFA



Prob 2: L = {a':i# 1000}. DFA

I'll do a transition table for it. There are 1002 states.



Prob 2: L = {a':i# 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.



Prob 2: L = {a':i# 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.
s is the start state.



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.

i(s,a) = 1.



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.

i(s,a) = 1.
5(i,a)=i+1if1<i<999,



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.

i(s,a) = 1.
5(i,a)=i+1if1<i<999,
5(1000, 2) = d.



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.

i(s,a) = 1.
d(i,a)=i+1if1<i<999
5(1000, 2) = d.

i(d,a) =d.



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.

i(s,a) = 1.
d(i,a)=1i+1if1<i<999.
5(1000, a) = d.

i(d,a) =d.

F = Q — {1000}.



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.

i(s,a) = 1.
d(i,a)=i+1if1<i<999
5(1000, 2) = d.

i(d,a) =d.

F = Q — {1000}.

Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.

i(s,a) = 1.
d(i,a)=i+1if1<i<999
5(1000, 2) = d.

i(d,a) =d.

F = Q — {1000}.

Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote s there a DFA with < 1001 states?



Prob 2: L= {a':i # 1000}. DFA

I'll do a transition table for it. There are 1002 states.
Q= {s}u{l,...,1000} U {d}.

s is the start state.

If 1 </ < 1000 then state i means you have see a'.
d is a trap state for a’ where /i > 1000. It is final.

i(s,a) = 1.
d(i,a)=i+1if1<i<999
5(1000, 2) = d.

i(d,a) =d.

F = Q — {1000}.

Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with < 1001 states? NO.



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy — x — y < 100 but close.
Question From Students How do we find x, y?



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy — x — y < 100 but close.
Question From Students How do we find x, y?
Guesswork Note that x, y will be close v/n



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy —x — y < 100 but close.
Question From Students How do we find x, y?

Guesswork Note that x, y will be close v/n
x=10,y=11. xy —x—y =110— 10— 11 = 89.
max(x, y) = 11 11 states. Shortcut at 10.



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy —x — y < 100 but close.
Question From Students How do we find x, y?
Guesswork Note that x, y will be close v/n
x=10,y=11. xy —x—y =110— 10— 11 = 89.
max(x, y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem+-+



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy —x — y < 100 but close.
Question From Students How do we find x, y?
Guesswork Note that x, y will be close v/n
x=10,y=11. xy —x—y =110— 10— 11 = 89.
max(x, y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem+-+

» 89 CANNOT be expressed as 10x + 11y.



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy —x — y < 100 but close.
Question From Students How do we find x, y?
Guesswork Note that x, y will be close v/n
x=10,y=11. xy —x—y =110— 10— 11 = 89.
max(x, y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem+-+
» 89 CANNOT be expressed as 10x + 11y.

» 100 CANNOT be expressed as 10x + 11y + 11.



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy —x — y < 100 but close.
Question From Students How do we find x, y?
Guesswork Note that x, y will be close v/n
x=10,y=11. xy —x—y =110— 10— 11 = 89.
max(x, y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem+-+
» 89 CANNOT be expressed as 10x + 11y.
» 100 CANNOT be expressed as 10x + 11y + 11.
» For all z > 90, x CAN be expressed as 10x + 11y.



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy —x — y < 100 but close.
Question From Students How do we find x, y?
Guesswork Note that x, y will be close v/n
x=10,y=11. xy —x—y =110—-10 — 11 = 89.
max(x, y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem+-+

» 89 CANNOT be expressed as 10x + 11y.

» 100 CANNOT be expressed as 10x + 11y + 11.

» For all z > 90, x CAN be expressed as 10x + 11y.

» For all z > 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:



Prob 3: L = {a': i #100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy —x — y < 100 but close.
Question From Students How do we find x, y?
Guesswork Note that x, y will be close v/n
x=10,y=11. xy —x—y =110—-10 — 11 = 89.
max(x, y) = 11 11 states. Shortcut at 10.

By Chicken McNugget Theorem+-+
» 89 CANNOT be expressed as 10x + 11y.
» 100 CANNOT be expressed as 10x + 11y + 11.
» For all z > 90, x CAN be expressed as 10x + 11y.
» For all z > 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.



Prob 3: L = {a': i #100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy —x — y < 100 but close.
Question From Students How do we find x, y?
Guesswork Note that x, y will be close v/n
x=10,y=11. xy —x—y =110—-10 — 11 = 89.
max(x, y) = 11 11 states. Shortcut at 10.

By Chicken McNugget Theorem+-+
» 89 CANNOT be expressed as 10x + 11y.
» 100 CANNOT be expressed as 10x + 11y + 11.
» For all z > 90, x CAN be expressed as 10x + 11y.
» For all z > 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:

From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.

Make O-state of Mod-11 loop a final state.



Prob 3: L = {a':i # 100}. NFA. Part 1-Big Loop
Need x, y rel primes s.t. xy —x — y < 100 but close.
Question From Students How do we find x, y?
Guesswork Note that x, y will be close v/n
x=10, y=11. xy —x —y =110 — 10 — 11 = 89.
max(x, y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem+-+

» 89 CANNOT be expressed as 10x + 11y.

» 100 CANNOT be expressed as 10x + 11y + 11.

» For all z > 90, x CAN be expressed as 10x + 11y.

» For all z > 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:

From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.

Make O-state of Mod-11 loop a final state.

This final state accepts a' iff (Ix,y € N)[i = 10x + 11y + 11]
iff 7 > 101.



Prob 3: L = {a': i #100}. NFA. Part 2-Primes



Prob 3: L = {a': i #100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is > 100.



Prob 3: L = {a': i #100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is > 100.
Question by Students How to pick primes?



Prob 3: L = {a': i #100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is > 100.
Question by Students How to pick primes?
| try 2,3,5, ... until the product is > 100.



Prob 3: L = {a': i #100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is > 100.
Question by Students How to pick primes?

| try 2,3,5, ... until the product is > 100.

In this case thats {2,3,5,7}.



Prob 3: L = {a': i #100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is > 100.
Question by Students How to pick primes?
| try 2,3,5, ... until the product is > 100.

In this case thats {2,3,5,7}.
Mod-2 loop acc iff i £ 0 (mod 2). (100 =0 (mod 2).)



Prob 3: L = {a': i #100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is > 100.
Question by Students How to pick primes?

| try 2,3,5, ... until the product is > 100.

In this case thats {2,3,5,7}.

Mod-2 loop acc iff i £ 0 (mod 2). (100 =0 (mod 2).)
Mod-3 loop acc iff i £ 1 (mod 3). (100 =1 (mod 3).)



Prob 3: L = {a': i #100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is > 100.
Question by Students How to pick primes?

| try 2,3,5,... until the product is > 100.

In this case thats {2,3,5,7}.

Mod-2 loop acc iff i £ 0 (mod 2). (100 =0 (mod 2).)
Mod-3 loop acc iff i £ 1 (mod 3). (100 =1 (mod 3).)
Mod-5 loop acc iff i £ 0 (mod 5). (100 =0 (mod 5).)



Prob 3: L = {a': i #100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is > 100.
Question by Students How to pick primes?

| try 2,3,5,... until the product is > 100.

In this case thats {2,3,5,7}.

Mod-2 loop acc iff i £ 0 (mod 2). (100 =0 (mod 2).)
Mod-3 loop acc iff i Z1 (mod 3). (100 =1 (mod 3).)
Mod-5 loop acc iff i £ 0 (mod 5). (100 =0 (mod 5).)
Mod-7 loop acc iff i Z2 (mod 5). (100 =2 (mod 7).)



Prob 3: L = {a': i # 100} Part 3-Combine



Prob 3: L = {a': i # 100} Part 3-Combine
NFA has



Prob 3: L = {a': i # 100} Part 3-Combine
NFA has
1. s—chain of length 11-Mod 11 with Shortcut at 10.



Prob 3: L = {a': i # 100} Part 3-Combine
NFA has
1. s—chain of length 11-Mod 11 with Shortcut at 10.

2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.



Prob 3: L = {a': i # 100} Part 3-Combine
NFA has

1. s—chain of length 11-Mod 11 with Shortcut at 10.

2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.

» If i > 101 then big-Loop NFA will accept it.



Prob 3: L = {a': i # 100} Part 3-Combine
NFA has
1. s—chain of length 11-Mod 11 with Shortcut at 10.
2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.
» If i > 101 then big-Loop NFA will accept it.
» The big-Loop DOES NOT accept a'®.



Prob 3: L = {a':i # 100} Part 3-Combine
NFA has
1. s—chain of length 11-Mod 11 with Shortcut at 10.
2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.
» If i > 101 then big-Loop NFA will accept it.
The big-Loop DOES NOT accept a'®.
» |f i <99 then one of the Mod Machines will accept it.

\4



Prob 3: L = {a':i # 100} Part 3-Combine
NFA has

1. s—chain of length 11-Mod 11 with Shortcut at 10.

2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.
If i > 101 then big-Loop NFA will accept it.
The big-Loop DOES NOT accept a'®.
If i <99 then one of the Mod Machines will accept it.
None of the Mod Machines accept a'®.

vVvyyvyy



Prob 3: L = {a':i # 100} Part 3-Combine
NFA has
1. s—chain of length 11-Mod 11 with Shortcut at 10.
2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.
» If i > 101 then big-Loop NFA will accept it.
» The big-Loop DOES NOT accept a'®.
» |f i <99 then one of the Mod Machines will accept it.
» None of the Mod Machines accept a'®.
NFA has 1+ 11+ 11+ 2+ 3+ 54 7 = 40 states.



Prob 3: L = {a':i # 100} Part 3-Combine
NFA has
1. s—chain of length 11-Mod 11 with Shortcut at 10.
2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.
» If i > 101 then big-Loop NFA will accept it.
» The big-Loop DOES NOT accept a'®.
» |f i <99 then one of the Mod Machines will accept it.
» None of the Mod Machines accept a'®.
NFA has 1+ 11+ 11+ 2+ 3+ 54 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!



Prob 3: L = {a':i # 100} Part 3-Combine
NFA has
1. s—chain of length 11-Mod 11 with Shortcut at 10.
2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.

» If i > 101 then big-Loop NFA will accept it.

» The big-Loop DOES NOT accept a'®.

» |f i <99 then one of the Mod Machines will accept it.

» None of the Mod Machines accept a'®.
NFA has 1+ 11+ 11+ 2+ 3+ 54 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!
2) Loop NFA accepts SOME a’ with / < 99. Mod NFA's
accepts SOME a' with e > 101. Can we use that to get a
smaller machine?



Prob 3: L = {a':i # 100} Part 3-Combine
NFA has
1. s—chain of length 11-Mod 11 with Shortcut at 10.
2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.
» If i > 101 then big-Loop NFA will accept it.
» The big-Loop DOES NOT accept a'®.
» |f i <99 then one of the Mod Machines will accept it.
» None of the Mod Machines accept a'®.
NFA has 1+ 11+ 11+ 2+ 3+ 54 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!
2) Loop NFA accepts SOME a’ with / < 99. Mod NFA's
accepts SOME a' with e > 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL



Prob 3: L = {a':i # 100} Part 3-Combine
NFA has
1. s—chain of length 11-Mod 11 with Shortcut at 10.
2. s—e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.
» If i > 101 then big-Loop NFA will accept it.
» The big-Loop DOES NOT accept a'®.
» |f i <99 then one of the Mod Machines will accept it.
» None of the Mod Machines accept a'®.
NFA has 1+ 11+ 11+ 2+ 3+ 54 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!
2) Loop NFA accepts SOME a’ with / < 99. Mod NFA's
accepts SOME a' with e > 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 4a: Regex for {a!%0}

aa---a (100 a's)



Prob 4a: Regex for {a!%0}

aa---a (100 a's)

Length 100.



Prob 4a: Regex for {al%}

aa---a (100 a's)
Length 100.

Is there a shorter regex?



Prob 4a: Regex for {al%}

aa---a (100 a's)
Length 100.

Is there a shorter regex? NO.



Prob 4b: Textbook Regex for {a'%}

Convention We take [Ig(x)] to be the length of the binary
number x. This is not quite right but we don't care. The main
point is that Textbook Regex's are much shorter. We leave off
the ceiling sign.



Prob 4b: Textbook Regex for {a'%}

Convention We take [Ig(x)] to be the length of the binary
number x. This is not quite right but we don't care. The main
point is that Textbook Regex's are much shorter. We leave off
the ceiling sign.

alOO.



Prob 4b: Textbook Regex for {a'%}

Convention We take [Ig(x)] to be the length of the binary
number x. This is not quite right but we don't care. The main
point is that Textbook Regex's are much shorter. We leave off
the ceiling sign.

alOO.

Length 1g(100) = 7.



Prob 4b: Textbook Regex for {a'%}

Convention We take [Ig(x)] to be the length of the binary
number x. This is not quite right but we don't care. The main
point is that Textbook Regex's are much shorter. We leave off
the ceiling sign.

alOO.

Length 1g(100) = 7.

Is there a shorter Textbook Regex?



Prob 4b: Textbook Regex for {a'%}

Convention We take [Ig(x)] to be the length of the binary
number x. This is not quite right but we don't care. The main
point is that Textbook Regex's are much shorter. We leave off
the ceiling sign.

alOO.

Length 1g(100) = 7.

Is there a shorter Textbook Regex? NO.



Prob 4c: Regex For {a’: i # 100}

{a}U{aalu---U{aa---atUa---aa"
(The second - -+ is 99 a's. The third is 101 a's.)



Prob 4c: Regex For {a’: i # 100}

{a}U{aalu---U{aa---atUa---aa"
(The second - -+ is 99 a's. The third is 101 a's.)

Is there a shorter Regex for {a' : i # 100}?
Vote

YES

NO

UNKNOWN TO BILL



Prob 4c: Regex For {a’: i # 100}

{a}U{aalu---U{aa---atUa---aa"
(The second - -+ is 99 a's. The third is 101 a's.)

Is there a shorter Regex for {a' : i # 100}?
Vote

YES

NO

UNKNOWN TO BILL

See Next Page.



Prob 4c: Regex For {a':i # 100} Shorter
Use Chicken McNugget Theorem++ with 13,9 to get



Prob 4c: Regex For {a':i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.



Prob 4c: Regex For {a':i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.
This regex generates every a’ with i > 101.



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.
This regex generates every a’ with i > 101.
We need a regex for the smaller strings. We use mod 2,3,5,7.



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.
This regex generates every a’ with i > 101.
We need a regex for the smaller strings. We use mod 2,3,5,7.

Mod-2: {a':i# 0 (mod 2)} is (aa)*. Length: 3



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.

This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2,3,5,7.
Mod-2: {a':i# 0 (mod 2)} is (aa)*. Length: 3

Mod-3: {a": i # 1 (mod 3)} is {e, aa}*(aaa)*. Length: 7



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.

This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2,3,5,7.
Mod-2: {a':i# 0 (mod 2)} is (aa)*. Length: 3

Mod-3: {a": i # 1 (mod 3)} is {e, aa}*(aaa)*. Length: 7
Mod-5: {a': i # 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)*.
Length: 16



Prob 4c: Regex For {a’ : i # 100} Shorter

Use Chicken McNugget Theorem-++ with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa U aaaaaaaaaaaaa)”

Regex Length: 5+ 9+ 13 = 27.

This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2,3,5,7.
Mod-2: {a':i# 0 (mod 2)} is (aa)*. Length: 3

Mod-3: {a": i # 1 (mod 3)} is {e, aa}*(aaa)*. Length: 7
Mod-5: {a': i # 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)*.
Length: 16

Mod-7: {a' : i # 2 (mod 7)} is

{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)*: 28.

Total Length: 27+3+7+16+-28=81.



Prob 4c: Text Regex For {a':i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13,9 to get



Prob 4c: Text Regex For {a':i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get

100 CANNOT be written as 13x + 9y + 5.



Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.



Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i > 101 CAN be written as 13x + 9y + 5.

a5(a9 U a13)*

Regex Length: Ig(5) +1g(9) +1g(13) +1 =3+4+4+1=12.
This regex generates every a’ with i > 101.



Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get

100 CANNOT be written as 13x + 9y + 5.

Any i > 101 CAN be written as 13x + 9y + 5.

a5(a9 U a13)*

Regex Length: Ig(5) +1g(9) +1g(13) +1 =3+4+4+1=12.
This regex generates every a’ with i > 101.
We need a regex for the smaller strings. We use mod 2,3,5,7.



Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get

100 CANNOT be written as 13x + 9y + 5.

Any i > 101 CAN be written as 13x + 9y + 5.

a5(a9 U a13)*

Regex Length: Ig(5) +1g(9) +1g(13) +1 =3+4+4+1=12.
This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2,3,5,7.
Mod-2 regex for {a' : i £ 0 (mod 2)} is (a°)*.



Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get

100 CANNOT be written as 13x + 9y + 5.

Any i > 101 CAN be written as 13x + 9y + 5.

a5(a9 U a13)*

Regex Length: Ig(5) +1g(9) +1g(13) +1 =3+4+4+1=12.
This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2, 3,5,7.
Mod-2 regex for {a' : i # 0 (mod 2)} is (a%)*.

Mod-3 regex for {a' : i # 1 (mod 3)} is {e, a*}*(a°)*.



Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get

100 CANNOT be written as 13x + 9y + 5.

Any i > 101 CAN be written as 13x + 9y + 5.

35(39 U a13)*

Regex Length: Ig(5) +1g(9) +1g(13) +1 =3+4+4+1=12.
This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2, 3,5,7.
Mod-2 regex for {a' : i # 0 (mod 2)} is (a%)*.

Mod-3 regex for {a' : i # 1 (mod 3)} is {e, a*}*(a°)*.

Mod-5 regex for {a’ : i # 0 (mod 5)} is {a, a%, a°, a*}(a%)".



Prob 4c: Text Regex For {a’' : i # 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.

Use Chicken McNugget Theorem with 13,9 to get

100 CANNOT be written as 13x + 9y + 5.

Any i > 101 CAN be written as 13x + 9y + 5.

35(39 U a13)*

Regex Length: Ig(5) +1g(9) +1g(13) +1 =3+4+4+1=12.
This regex generates every a’ with i > 101.

We need a regex for the smaller strings. We use mod 2, 3,5,7.
Mod-2 regex for {a' : i # 0 (mod 2)} is (a%)*.

Mod-3 regex for {a' : i # 1 (mod 3)} is {e, a*}*(a°)*.

Mod-5 regex for {a’ : i # 0 (mod 5)} is {a, a%, a°, a*}(a%)".
Mod-7 regex for {a': i £ 2 (mod 7)} is

{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)*:



Prob 5: Regex for.. ..

L={w:#.w)=17 (mod 102) A #,(w) =10 (mod 91)}.

Want regex for L. How can | obtain one?



Prob 5: Regex for.. ..

L={w:#.w)=17 (mod 102) A #,(w) =10 (mod 91)}.

Want regex for L. How can | obtain one?

1. Create a DFA M for L. It will be easy and have
102 x 91 = 9282.



Prob 5: Regex for.. ..

L={w:#.w)=17 (mod 102) A #,(w) =10 (mod 91)}.

Want regex for L. How can | obtain one?

1. Create a DFA M for L. It will be easy and have
102 x 91 = 9282.

2. Use the R(/, j, k) construction on DFA M.



