
HW03 Solution



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.

Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.

s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.

If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .

d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.

δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.

δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .

δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .

F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.

Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states?

NO.



Prob 2: L = {ai : i ̸= 1000}. DFA

I’ll do a transition table for it. There are 1002 states.
Q = {s} ∪ {1, . . . , 1000} ∪ {d}.
s is the start state.
If 1 ≤ i ≤ 1000 then state i means you have see ai .
d is a trap state for ai where i > 1000. It is final.

δ(s, a) = 1.
δ(i , a) = i + 1 if 1 ≤ i ≤ 999.
δ(1000, a) = d .
δ(d , a) = d .
F = Q − {1000}.
Note that d is the opposite of a dump state- YES strings get
trapped there, but they are HAPPY! They are accepted!

Vote Is there a DFA with ≤ 1001 states? NO.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop

Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?

Guesswork Note that x , y will be close
√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.

By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++

▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .

▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.

▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .

▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:

From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.

Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.

This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 1-Big Loop
Need x , y rel primes s.t. xy − x − y < 100 but close.
Question From Students How do we find x , y?
Guesswork Note that x , y will be close

√
n

x = 10, y = 11. xy − x − y = 110− 10− 11 = 89.
max(x , y) = 11 11 states. Shortcut at 10.
By Chicken McNugget Theorem++
▶ 89 CANNOT be expressed as 10x + 11y .
▶ 100 CANNOT be expressed as 10x + 11y + 11.
▶ For all z ≥ 90, x CAN be expressed as 10x + 11y .
▶ For all z ≥ 101, x CAN be expressed as 10x + 11y + 11.

Using the Loop:
From start state have chain of 11 states to 0-state of Mod-11
loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.
This final state accepts ai iff (∃x , y ∈ N)[i = 10x + 11y + 11]
iff i ≥ 101.



Prob 3: L = {ai : i ̸= 100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Question by Students How to pick primes?

I try 2, 3, 5, . . . until the product is ≥ 100.

In this case thats {2, 3, 5, 7}.
Mod-2 loop acc iff i ̸≡ 0 (mod 2). (100 ≡ 0 (mod 2).)

Mod-3 loop acc iff i ̸≡ 1 (mod 3). (100 ≡ 1 (mod 3).)

Mod-5 loop acc iff i ̸≡ 0 (mod 5). (100 ≡ 0 (mod 5).)

Mod-7 loop acc iff i ̸≡ 2 (mod 5). (100 ≡ 2 (mod 7).)



Prob 3: L = {ai : i ̸= 100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Question by Students How to pick primes?

I try 2, 3, 5, . . . until the product is ≥ 100.

In this case thats {2, 3, 5, 7}.
Mod-2 loop acc iff i ̸≡ 0 (mod 2). (100 ≡ 0 (mod 2).)

Mod-3 loop acc iff i ̸≡ 1 (mod 3). (100 ≡ 1 (mod 3).)

Mod-5 loop acc iff i ̸≡ 0 (mod 5). (100 ≡ 0 (mod 5).)

Mod-7 loop acc iff i ̸≡ 2 (mod 5). (100 ≡ 2 (mod 7).)



Prob 3: L = {ai : i ̸= 100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Question by Students How to pick primes?

I try 2, 3, 5, . . . until the product is ≥ 100.

In this case thats {2, 3, 5, 7}.
Mod-2 loop acc iff i ̸≡ 0 (mod 2). (100 ≡ 0 (mod 2).)

Mod-3 loop acc iff i ̸≡ 1 (mod 3). (100 ≡ 1 (mod 3).)

Mod-5 loop acc iff i ̸≡ 0 (mod 5). (100 ≡ 0 (mod 5).)

Mod-7 loop acc iff i ̸≡ 2 (mod 5). (100 ≡ 2 (mod 7).)



Prob 3: L = {ai : i ̸= 100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Question by Students How to pick primes?

I try 2, 3, 5, . . . until the product is ≥ 100.

In this case thats {2, 3, 5, 7}.
Mod-2 loop acc iff i ̸≡ 0 (mod 2). (100 ≡ 0 (mod 2).)

Mod-3 loop acc iff i ̸≡ 1 (mod 3). (100 ≡ 1 (mod 3).)

Mod-5 loop acc iff i ̸≡ 0 (mod 5). (100 ≡ 0 (mod 5).)

Mod-7 loop acc iff i ̸≡ 2 (mod 5). (100 ≡ 2 (mod 7).)



Prob 3: L = {ai : i ̸= 100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Question by Students How to pick primes?

I try 2, 3, 5, . . . until the product is ≥ 100.

In this case thats {2, 3, 5, 7}.

Mod-2 loop acc iff i ̸≡ 0 (mod 2). (100 ≡ 0 (mod 2).)

Mod-3 loop acc iff i ̸≡ 1 (mod 3). (100 ≡ 1 (mod 3).)

Mod-5 loop acc iff i ̸≡ 0 (mod 5). (100 ≡ 0 (mod 5).)

Mod-7 loop acc iff i ̸≡ 2 (mod 5). (100 ≡ 2 (mod 7).)



Prob 3: L = {ai : i ̸= 100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Question by Students How to pick primes?

I try 2, 3, 5, . . . until the product is ≥ 100.

In this case thats {2, 3, 5, 7}.
Mod-2 loop acc iff i ̸≡ 0 (mod 2). (100 ≡ 0 (mod 2).)

Mod-3 loop acc iff i ̸≡ 1 (mod 3). (100 ≡ 1 (mod 3).)

Mod-5 loop acc iff i ̸≡ 0 (mod 5). (100 ≡ 0 (mod 5).)

Mod-7 loop acc iff i ̸≡ 2 (mod 5). (100 ≡ 2 (mod 7).)



Prob 3: L = {ai : i ̸= 100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Question by Students How to pick primes?

I try 2, 3, 5, . . . until the product is ≥ 100.

In this case thats {2, 3, 5, 7}.
Mod-2 loop acc iff i ̸≡ 0 (mod 2). (100 ≡ 0 (mod 2).)

Mod-3 loop acc iff i ̸≡ 1 (mod 3). (100 ≡ 1 (mod 3).)

Mod-5 loop acc iff i ̸≡ 0 (mod 5). (100 ≡ 0 (mod 5).)

Mod-7 loop acc iff i ̸≡ 2 (mod 5). (100 ≡ 2 (mod 7).)



Prob 3: L = {ai : i ̸= 100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Question by Students How to pick primes?

I try 2, 3, 5, . . . until the product is ≥ 100.

In this case thats {2, 3, 5, 7}.
Mod-2 loop acc iff i ̸≡ 0 (mod 2). (100 ≡ 0 (mod 2).)

Mod-3 loop acc iff i ̸≡ 1 (mod 3). (100 ≡ 1 (mod 3).)

Mod-5 loop acc iff i ̸≡ 0 (mod 5). (100 ≡ 0 (mod 5).)

Mod-7 loop acc iff i ̸≡ 2 (mod 5). (100 ≡ 2 (mod 7).)



Prob 3: L = {ai : i ̸= 100}. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Question by Students How to pick primes?

I try 2, 3, 5, . . . until the product is ≥ 100.

In this case thats {2, 3, 5, 7}.
Mod-2 loop acc iff i ̸≡ 0 (mod 2). (100 ≡ 0 (mod 2).)

Mod-3 loop acc iff i ̸≡ 1 (mod 3). (100 ≡ 1 (mod 3).)

Mod-5 loop acc iff i ̸≡ 0 (mod 5). (100 ≡ 0 (mod 5).)

Mod-7 loop acc iff i ̸≡ 2 (mod 5). (100 ≡ 2 (mod 7).)



Prob 3: L = {ai : i ̸= 100} Part 3-Combine

NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has

1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.

2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,
Mod-7 DFA.

▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.

▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.

▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.

▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.

▶ None of the Mod Machines accept a100.
NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.

1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine?

VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL

UNKNOWN TO BILL



Prob 3: L = {ai : i ̸= 100} Part 3-Combine
NFA has
1. s–chain of length 11–Mod 11 with Shortcut at 10.
2. s–e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA,

Mod-7 DFA.
▶ If i ≥ 101 then big-Loop NFA will accept it.
▶ The big-Loop DOES NOT accept a100.
▶ If i ≤ 99 then one of the Mod Machines will accept it.
▶ None of the Mod Machines accept a100.

NFA has 1 + 11 + 11 + 2 + 3 + 5 + 7 = 40 states.
1) Can we do better? Yes. No Chain, diff primes. Discuss!

2) Loop NFA accepts SOME ai with i ≤ 99. Mod NFA’s
accepts SOME ai with e ≥ 101. Can we use that to get a
smaller machine? VOTE
YES- and this is known
NO- and it is known that this can’t help
UNKNOWN TO BILL
UNKNOWN TO BILL



Prob 4a: Regex for {a100}

aa · · · a (100 a’s)

Length 100.

Is there a shorter regex? NO.



Prob 4a: Regex for {a100}

aa · · · a (100 a’s)

Length 100.

Is there a shorter regex? NO.



Prob 4a: Regex for {a100}

aa · · · a (100 a’s)

Length 100.

Is there a shorter regex?

NO.



Prob 4a: Regex for {a100}

aa · · · a (100 a’s)

Length 100.

Is there a shorter regex? NO.



Prob 4b: Textbook Regex for {a100}

Convention We take ⌈lg(x)⌉ to be the length of the binary
number x . This is not quite right but we don’t care. The main
point is that Textbook Regex’s are much shorter. We leave off
the ceiling sign.

a100.

Length lg(100) = 7.

Is there a shorter Textbook Regex? NO.



Prob 4b: Textbook Regex for {a100}

Convention We take ⌈lg(x)⌉ to be the length of the binary
number x . This is not quite right but we don’t care. The main
point is that Textbook Regex’s are much shorter. We leave off
the ceiling sign.

a100.

Length lg(100) = 7.

Is there a shorter Textbook Regex? NO.



Prob 4b: Textbook Regex for {a100}

Convention We take ⌈lg(x)⌉ to be the length of the binary
number x . This is not quite right but we don’t care. The main
point is that Textbook Regex’s are much shorter. We leave off
the ceiling sign.

a100.

Length lg(100) = 7.

Is there a shorter Textbook Regex? NO.



Prob 4b: Textbook Regex for {a100}

Convention We take ⌈lg(x)⌉ to be the length of the binary
number x . This is not quite right but we don’t care. The main
point is that Textbook Regex’s are much shorter. We leave off
the ceiling sign.

a100.

Length lg(100) = 7.

Is there a shorter Textbook Regex?

NO.



Prob 4b: Textbook Regex for {a100}

Convention We take ⌈lg(x)⌉ to be the length of the binary
number x . This is not quite right but we don’t care. The main
point is that Textbook Regex’s are much shorter. We leave off
the ceiling sign.

a100.

Length lg(100) = 7.

Is there a shorter Textbook Regex? NO.



Prob 4c: Regex For {ai : i ̸= 100}

{a} ∪ {aa} ∪ · · · ∪ {aa · · · a} ∪ a · · · aa∗

(The second · · · is 99 a’s. The third is 101 a’s.)

Is there a shorter Regex for {ai : i ̸= 100}?
Vote
YES
NO
UNKNOWN TO BILL
See Next Page.



Prob 4c: Regex For {ai : i ̸= 100}

{a} ∪ {aa} ∪ · · · ∪ {aa · · · a} ∪ a · · · aa∗

(The second · · · is 99 a’s. The third is 101 a’s.)

Is there a shorter Regex for {ai : i ̸= 100}?
Vote
YES
NO
UNKNOWN TO BILL

See Next Page.



Prob 4c: Regex For {ai : i ̸= 100}

{a} ∪ {aa} ∪ · · · ∪ {aa · · · a} ∪ a · · · aa∗

(The second · · · is 99 a’s. The third is 101 a’s.)

Is there a shorter Regex for {ai : i ̸= 100}?
Vote
YES
NO
UNKNOWN TO BILL
See Next Page.



Prob 4c: Regex For {ai : i ̸= 100} Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get

100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa ∪ aaaaaaaaaaaaa)∗

Regex Length: 5 + 9 + 13 = 27.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2: {ai : i ̸≡ 0 (mod 2)} is (aa)∗. Length: 3

Mod-3: {ai : i ̸≡ 1 (mod 3)} is {e, aa}∗(aaa)∗. Length: 7
Mod-5: {ai : i ̸≡ 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)∗.
Length: 16
Mod-7: {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗: 28.
Total Length: 27+3+7+16+28=81.



Prob 4c: Regex For {ai : i ̸= 100} Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.

Any i ≥ 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa ∪ aaaaaaaaaaaaa)∗

Regex Length: 5 + 9 + 13 = 27.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2: {ai : i ̸≡ 0 (mod 2)} is (aa)∗. Length: 3

Mod-3: {ai : i ̸≡ 1 (mod 3)} is {e, aa}∗(aaa)∗. Length: 7
Mod-5: {ai : i ̸≡ 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)∗.
Length: 16
Mod-7: {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗: 28.
Total Length: 27+3+7+16+28=81.



Prob 4c: Regex For {ai : i ̸= 100} Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa ∪ aaaaaaaaaaaaa)∗

Regex Length: 5 + 9 + 13 = 27.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2: {ai : i ̸≡ 0 (mod 2)} is (aa)∗. Length: 3

Mod-3: {ai : i ̸≡ 1 (mod 3)} is {e, aa}∗(aaa)∗. Length: 7
Mod-5: {ai : i ̸≡ 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)∗.
Length: 16
Mod-7: {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗: 28.
Total Length: 27+3+7+16+28=81.



Prob 4c: Regex For {ai : i ̸= 100} Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa ∪ aaaaaaaaaaaaa)∗

Regex Length: 5 + 9 + 13 = 27.
This regex generates every ai with i ≥ 101.

We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2: {ai : i ̸≡ 0 (mod 2)} is (aa)∗. Length: 3

Mod-3: {ai : i ̸≡ 1 (mod 3)} is {e, aa}∗(aaa)∗. Length: 7
Mod-5: {ai : i ̸≡ 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)∗.
Length: 16
Mod-7: {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗: 28.
Total Length: 27+3+7+16+28=81.



Prob 4c: Regex For {ai : i ̸= 100} Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa ∪ aaaaaaaaaaaaa)∗

Regex Length: 5 + 9 + 13 = 27.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.

Mod-2: {ai : i ̸≡ 0 (mod 2)} is (aa)∗. Length: 3

Mod-3: {ai : i ̸≡ 1 (mod 3)} is {e, aa}∗(aaa)∗. Length: 7
Mod-5: {ai : i ̸≡ 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)∗.
Length: 16
Mod-7: {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗: 28.
Total Length: 27+3+7+16+28=81.



Prob 4c: Regex For {ai : i ̸= 100} Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa ∪ aaaaaaaaaaaaa)∗

Regex Length: 5 + 9 + 13 = 27.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2: {ai : i ̸≡ 0 (mod 2)} is (aa)∗. Length: 3

Mod-3: {ai : i ̸≡ 1 (mod 3)} is {e, aa}∗(aaa)∗. Length: 7
Mod-5: {ai : i ̸≡ 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)∗.
Length: 16
Mod-7: {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗: 28.
Total Length: 27+3+7+16+28=81.



Prob 4c: Regex For {ai : i ̸= 100} Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa ∪ aaaaaaaaaaaaa)∗

Regex Length: 5 + 9 + 13 = 27.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2: {ai : i ̸≡ 0 (mod 2)} is (aa)∗. Length: 3

Mod-3: {ai : i ̸≡ 1 (mod 3)} is {e, aa}∗(aaa)∗. Length: 7

Mod-5: {ai : i ̸≡ 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)∗.
Length: 16
Mod-7: {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗: 28.
Total Length: 27+3+7+16+28=81.



Prob 4c: Regex For {ai : i ̸= 100} Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa ∪ aaaaaaaaaaaaa)∗

Regex Length: 5 + 9 + 13 = 27.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2: {ai : i ̸≡ 0 (mod 2)} is (aa)∗. Length: 3

Mod-3: {ai : i ̸≡ 1 (mod 3)} is {e, aa}∗(aaa)∗. Length: 7
Mod-5: {ai : i ̸≡ 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)∗.
Length: 16

Mod-7: {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗: 28.
Total Length: 27+3+7+16+28=81.



Prob 4c: Regex For {ai : i ̸= 100} Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

aaaaa(aaaaaaaaa ∪ aaaaaaaaaaaaa)∗

Regex Length: 5 + 9 + 13 = 27.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2: {ai : i ̸≡ 0 (mod 2)} is (aa)∗. Length: 3

Mod-3: {ai : i ̸≡ 1 (mod 3)} is {e, aa}∗(aaa)∗. Length: 7
Mod-5: {ai : i ̸≡ 0 (mod 5)} is {a, aa, aaa, aaaa}(aaaaa)∗.
Length: 16
Mod-7: {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗: 28.
Total Length: 27+3+7+16+28=81.



Prob 4c: Text Regex For {ai : i ̸= 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13, 9 to get

100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

a5(a9 ∪ a13)∗

Regex Length: lg(5)+ lg(9)+ lg(13)+ 1 = 3+4+4+1 = 12.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2 regex for {ai : i ̸≡ 0 (mod 2)} is (a2)∗.

Mod-3 regex for {ai : i ̸≡ 1 (mod 3)} is {e, a2}∗(a2)∗.
Mod-5 regex for {ai : i ̸≡ 0 (mod 5)} is {a, a2, a3, a4}(a5)∗.
Mod-7 regex for {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗:



Prob 4c: Text Regex For {ai : i ̸= 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.

Any i ≥ 101 CAN be written as 13x + 9y + 5.

a5(a9 ∪ a13)∗

Regex Length: lg(5)+ lg(9)+ lg(13)+ 1 = 3+4+4+1 = 12.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2 regex for {ai : i ̸≡ 0 (mod 2)} is (a2)∗.

Mod-3 regex for {ai : i ̸≡ 1 (mod 3)} is {e, a2}∗(a2)∗.
Mod-5 regex for {ai : i ̸≡ 0 (mod 5)} is {a, a2, a3, a4}(a5)∗.
Mod-7 regex for {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗:



Prob 4c: Text Regex For {ai : i ̸= 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

a5(a9 ∪ a13)∗

Regex Length: lg(5)+ lg(9)+ lg(13)+ 1 = 3+4+4+1 = 12.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2 regex for {ai : i ̸≡ 0 (mod 2)} is (a2)∗.

Mod-3 regex for {ai : i ̸≡ 1 (mod 3)} is {e, a2}∗(a2)∗.
Mod-5 regex for {ai : i ̸≡ 0 (mod 5)} is {a, a2, a3, a4}(a5)∗.
Mod-7 regex for {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗:



Prob 4c: Text Regex For {ai : i ̸= 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

a5(a9 ∪ a13)∗

Regex Length: lg(5)+ lg(9)+ lg(13)+ 1 = 3+4+4+1 = 12.
This regex generates every ai with i ≥ 101.

We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2 regex for {ai : i ̸≡ 0 (mod 2)} is (a2)∗.

Mod-3 regex for {ai : i ̸≡ 1 (mod 3)} is {e, a2}∗(a2)∗.
Mod-5 regex for {ai : i ̸≡ 0 (mod 5)} is {a, a2, a3, a4}(a5)∗.
Mod-7 regex for {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗:



Prob 4c: Text Regex For {ai : i ̸= 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

a5(a9 ∪ a13)∗

Regex Length: lg(5)+ lg(9)+ lg(13)+ 1 = 3+4+4+1 = 12.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.

Mod-2 regex for {ai : i ̸≡ 0 (mod 2)} is (a2)∗.

Mod-3 regex for {ai : i ̸≡ 1 (mod 3)} is {e, a2}∗(a2)∗.
Mod-5 regex for {ai : i ̸≡ 0 (mod 5)} is {a, a2, a3, a4}(a5)∗.
Mod-7 regex for {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗:



Prob 4c: Text Regex For {ai : i ̸= 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

a5(a9 ∪ a13)∗

Regex Length: lg(5)+ lg(9)+ lg(13)+ 1 = 3+4+4+1 = 12.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2 regex for {ai : i ̸≡ 0 (mod 2)} is (a2)∗.

Mod-3 regex for {ai : i ̸≡ 1 (mod 3)} is {e, a2}∗(a2)∗.
Mod-5 regex for {ai : i ̸≡ 0 (mod 5)} is {a, a2, a3, a4}(a5)∗.
Mod-7 regex for {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗:



Prob 4c: Text Regex For {ai : i ̸= 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

a5(a9 ∪ a13)∗

Regex Length: lg(5)+ lg(9)+ lg(13)+ 1 = 3+4+4+1 = 12.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2 regex for {ai : i ̸≡ 0 (mod 2)} is (a2)∗.

Mod-3 regex for {ai : i ̸≡ 1 (mod 3)} is {e, a2}∗(a2)∗.

Mod-5 regex for {ai : i ̸≡ 0 (mod 5)} is {a, a2, a3, a4}(a5)∗.
Mod-7 regex for {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗:



Prob 4c: Text Regex For {ai : i ̸= 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

a5(a9 ∪ a13)∗

Regex Length: lg(5)+ lg(9)+ lg(13)+ 1 = 3+4+4+1 = 12.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2 regex for {ai : i ̸≡ 0 (mod 2)} is (a2)∗.

Mod-3 regex for {ai : i ̸≡ 1 (mod 3)} is {e, a2}∗(a2)∗.
Mod-5 regex for {ai : i ̸≡ 0 (mod 5)} is {a, a2, a3, a4}(a5)∗.

Mod-7 regex for {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗:



Prob 4c: Text Regex For {ai : i ̸= 100} Shorter

We leave the actual lengths to you, but note they are much
shorter.
Use Chicken McNugget Theorem with 13, 9 to get
100 CANNOT be written as 13x + 9y + 5.
Any i ≥ 101 CAN be written as 13x + 9y + 5.

a5(a9 ∪ a13)∗

Regex Length: lg(5)+ lg(9)+ lg(13)+ 1 = 3+4+4+1 = 12.
This regex generates every ai with i ≥ 101.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7.
Mod-2 regex for {ai : i ̸≡ 0 (mod 2)} is (a2)∗.

Mod-3 regex for {ai : i ̸≡ 1 (mod 3)} is {e, a2}∗(a2)∗.
Mod-5 regex for {ai : i ̸≡ 0 (mod 5)} is {a, a2, a3, a4}(a5)∗.
Mod-7 regex for {ai : i ̸≡ 2 (mod 7)} is
{e, a, aaa, aaaa, aaaaa, aaaaaa}(aaaaaaa)∗:



Prob 5: Regex for. . ..

L = {w : #a(w) ≡ 17 (mod 102) ∧#b(w) ≡ 10 (mod 91)}.

Want regex for L. How can I obtain one?

1. Create a DFA M for L. It will be easy and have
102× 91 = 9282.

2. Use the R(i , j , k) construction on DFA M .



Prob 5: Regex for. . ..

L = {w : #a(w) ≡ 17 (mod 102) ∧#b(w) ≡ 10 (mod 91)}.

Want regex for L. How can I obtain one?

1. Create a DFA M for L. It will be easy and have
102× 91 = 9282.

2. Use the R(i , j , k) construction on DFA M .



Prob 5: Regex for. . ..

L = {w : #a(w) ≡ 17 (mod 102) ∧#b(w) ≡ 10 (mod 91)}.

Want regex for L. How can I obtain one?

1. Create a DFA M for L. It will be easy and have
102× 91 = 9282.

2. Use the R(i , j , k) construction on DFA M .


