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REGULAR

L; = {a"a" : n > 1000} = {a*" : n > 1000}

All even-length strings of a's of length at least 2000.
Here is a Textbook Regex for it:

a2000 a*
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Prob 2b: L, = {a"a" : n < 1000}

REGULAR
This is a finite set.
Here is a Textbook Regex for it:

{eyu{a®lu{a*}u---u{a®}.
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Prob 2c: L3 = {all°(") : n > 1}

REGULAR
This is just a*.
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REGULAR

We give both an regex for it and a DFA for it.

Regex Note that you have an ab in the string when the
current letter switches from a to b, and a ba in the string
when the current letter switches from ba.

Thus, a string is in L4 iff it starts and ends with the same
letter.
Here is a regex for it:

{e,a,b} UaX*auU bX*b
DFA on Next Page
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DFA:

Figure: DFA for Ly
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x =a™
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Prob 3a: Ls = {w: #,(w) = 2#p(w)}

Let a>"b" be a long string in Ls.
Long enough so that the PL has all of the a's in xy.

x =a™

y =a™ (NOTE: n, # 0)

7 = aZn—nl—nz bn.

By the PL xyyz € Ls. But

nyZ — an1+2n2+2n—n1—n2 bn — a2n—&—n2 bn.

Since ny # 0, 2n+ ny > 2n. So this string IS NOT in Ls.

Contradiction.



Prob 3b: Lg = {w : 3#.(w) = 3#p(w)}

Let a®"b" be a long string in Lg.
From this point on the proof is very similar to Part a.
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Let a?’b°" be a long string in Ls.
Take it long enough so that the PL has all of the a's in xy.

x =a™"
y =a™ (NOTE: n, #0)

7 = adn—nl—nQ bcn.

By the PL xyyz € Ls.
Xyyz = an1+2n2+dn—n1—n2 bcn — adn—i—ng bcn.

Since ny # 0, dn + ny # dn, So this string IS NOT in L.

Contradiction.
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Prob 4: L Regular — ISAAC(L) Regular
Definition Let w € ¥*. ISAAC(w) is the set of words formed
by removing any set of symbols from w. Example:

ISAAC(abab) = {e, a, b, aa, ab, ba, bb, aab, aba, abb, bab, abab}

If L is a langauge (a subset of ¥*) then

ISAAC(L) = ] ISAAC(w).

weL

For example if L = {abab, bbbb} then ISAAC(L) is:

{e, a, b, aa, ab, ba, bb, aab, aba, abb, bab, bbb, abab, bbbb}

Show that if L is regular then ISAAC(L) is regular.
Solution on next slide.
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Prob 4: L Regular — ISAAC(L) Regular

Intuition If §(p, o) = g then also put an e-transition between

p and g.
Formally We create an NFA for ISAAC(L).

(Q,X,0,s,F).

(p, o) =d(p,0).
(p,e) ={q: (3o € X)[6(p.0) = ql}.



