
Homework 6 Morally Due March 12 at 3:30PM

1. (0 points, but if you actually miss the midterm without telling Dr.
Gasarch ahead of time, you will lose 100 points on this homework)
When will the midterm be (give date and time)?
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2. (25 points) In class I showed a protocol for EQ that used O(log n) bits
but had an error of ∼ 1

n
.

(a) (10 points) Sam DEMANDS that we get a protocol that has error
of ∼ 1

n2 and still uses ≪ n bits. Give such a protocol. Prove that
the error rate is ∼ 1

n2 . State how many bit are used. Use big O
notation.

(b) (15 points) Let k(n) be a very slow growing function of n (so per-
haps k = log log n). Now Sam DEMANDS that we get a protocol
that has error of ∼ 1

nk(n) and still uses ≪ n bits. Give such a
protocol. Prove that the error rate is ∼ 1

nk(n) . State how many bit
are used. Use big O notation.

SOLUTION

We do a protocol with error ∼ 1
nL−1 .

For the first problem plug in L = 3.

For the second problem plug in L = k(n) + 1.

i. Alice has a0 · · · an−1, Bob has b0 · · · bn−1.

ii. Alice sends a prime p such that nL ≤ p ≤ 2nL.

iii. Alice picks z ∈ {0, . . . , p} randomly.
Alice computes, mod p,
y = a0 + a1z + · · ·+ an−1z

n−1.
Alice sends (z, y) to Bob.

iv. Bob computes, mod p,
y′ = b0 + b1z + · · ·+ bn−1z

n−1.
If y = y′ then send 1, else send 0.

The prob of error is the prob that z is a rood of a(x)− b(x) = 0.

There are n roots. Their domain {0, . . . , p− 1} is of size p ∼ nL.
Hence the error is ∼ n

nL = 1
nL−1 .

If L = 3 you get error 1
n2 .

If L = k(n) + 1 you get error 1
nk(n) .

The number of bits is the number of bits for the numbers p and y.
Since nL ≤ p, y ≤ 2nL, both take ≤ log(2nL) = O(L log n) bits.

If L = 3 you get the number of bits is error O(log n).

If L = k(n) + 1 you get the number of bits is O(k(n) log n).

END OF SOLUTION

2



3. (25 points)

In this problem we guide you the the proof that f(45, 26) ≤ 32
78
.

Assume, by way of contradiction, that there is a (45, 26)-procedure with
smallest piece > 32

78
.

By the usual techniques, we can assume that every muffins is cut into
exactly 2 pieces. Hence there are 90 pieces.

Case 1: Alice gets ≥ 5 shares. SHOW HOW THIS LEADS TO SOME
SHARE BEING of size < 32

78
.

Case 2: Bob gets ≤ 2 shares. SHOW HOW THIS LEADS TO SOME
SHARE BEING of size < 32

78
.

In the subsequent cases we assume the negation of Cases 1 and 2. Hence
every student either gets 3 shares or 4 shares.

A student who gets 3 shares is called a 3-student.

A student who gets 4 shares is called a 4-student.

A share that is given to a 3-student is called a 3-share.

A share that is given to a 4-student is called a 4-share.

Let s3 (resp. s4) be the number of 3-students (resp. 4-students).
SHOWHOWYOUDEDUCE there are 14 3-students and 12 4-students.
Note that there are 42 3-shares, and 48 4-shares.

We now look at intervals.

Case 3: Alice has a 4-share ≥ 39
78
. SHOW HOW THIS LEADS TO

SOME SHARE BEING of size ≤ 32
78
.

Case 4: Bob has a 3-share ≤ 43
78
. SHOW HOW THIS LEADS TO

SOME SHARE BEING of size ≤ 32
78
.

Case 5: The following picture captures the negation of cases 1,2,3,
and 4.

( 48 4-shs )[ 0 ]( 42 3-shs )
32
78

39
78

43
78

46
78

SHOW HOW WE GET A CONTRADICTION.
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Hint: Note that 39
78

= 1
2
.

END OF PROOF

SOLUTION

In this problem we guide you the the proof that f(45, 26) ≤ 32
78
.

Assume, by way of contradiction, that there is a (45, 26)-procedure with
smallest piece > 32

78
.

By the usual techniques, we can assume that every muffins is cut into
exactly 2 pieces.

Case 1: Alice gets ≥ 5 shares. Then one of them is ≤ 45
26
× 1

5
= 27

78
< 32

78
.

Case 2: Bob gets ≤ 2 shares. Then one of the shares is ≥ 45
26
× 1

2
= 67.5

78
.

Its buddy is ≤ 1− 67.5
78

= 10.5
78

< 32
78
.

In the subsequent cases we assume the negation of Cases 1 and 2. Hence
everyone is either a 3-student or a 4-student. Let s3 (resp. s4) be the
number of 3-students (resp. 4-students). Since there are 90 pieces and
26 students,

3s3 + 4s4 = 90
s3 + s4 = 26.

Hence s3 = 14 and s4 = 12. So there are fourteen 3-students, twelve
4-students, forty-two 3-shares, and forty-eight 4-shares. Since 48 > 45,
if all of the 4-shares are < 1

2
, that will be a contradiction (since at least

half of the pieces must be ≥ 1
2
). Indeed, this will be our contradiction.

We now look at intervals.

Case 3: Alice has a 4-share ≥ 39
78
. Alice’s other three 4-shares add up

to ≤ 135
78

− 39
78

= 96
78
, hence one of them is ≤ 96

78
× 1

3
= 32

78
.

Case 4: Bob has a 3-share ≤ 43
78
. Bob’s other two 3-shares add up to

≥ 135
78

− 43
78

= 92
78
, hence one of the shares is ≥ 92

78
× 1

2
= 46

78
. Its buddy is

≤ 1− 46
78

= 32
78
.

Case 5: The following picture captures the negation of cases 1,2,3,
and 4.

( 48 4-shs )[ 0 ]( 42 3-shs )
32
78

39
78

43
78

46
78
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The midpoint is 1
2
= 39

78
. Note that all forty-eight 4-shares are < 1

2
.

This is a contradiction.

END OF PROOF

END OF SOLUTION

5



4. (25 points)

(a) (10 points) Proof without using the Floor-Ceiling theorem that
any protocol that takes 10 muffins and divides them for 3 people
so that everyone gets 10

3
has to have a piece of size ≤ 4

9
. (So

f(10, 3) ≤ 4
9
.) You can assume that in any such protocol every

muffins is cut into exactly 2 pieces.

(b) (15 points) Give a protocol that takes 10 muffins and divides them
for 3 people so that everyone gets 10

3
, and every piece is of size

≥ 4
9
. (So f(10, 3) ≥ 4

9
.)

SOLUTION

PART (a): f(10, 3) ≤ 4
9
.

Assume there is a protocol for (10, 3). Since every muffin is cut into
2 pieces there are 20 pieces. Since there are 3 people BOTH of the
following happen

• Some student gets ≥
⌈
20
3

⌉
= 7 pieces. Then one of her pieces is

≤ 10
3
× 1

7
= 10

21
. SO some piece is ≤ 10

21
. NOT helpful!

• Some student gets ≤
⌊
20
3

⌋
= 6 pieces. Then one of her pieces is

≥ 10
3
× 1

6
= 5

9
. Look at the muffin that piece came from. The

other part of that muffin is of size ≤ 1− 5
9
= 4

9
. GREAT!

PART (b): f(10, 3) ≥ 4
9
.

(a) Cut 6 muffins (4
9
, 5
9
).

(b) Cut 4 muffins (1
2
, 1
2
).

(c) Give one student 6 pieces of size 5
9
. That’s 30

9
= 10

3
.

(d) Give two students 3 pieces of size 4
9
and 4 pieces of size 1

2
. That’s

3× 4
9
+ 4× 1

2
= 4

3
+ 2 = 10

3
.

END OF SOLUTION
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5. (25 points)

(a) (15 points) Consider the formula

(x1 ∨ ¬x2)∧
(x2 ∨ ¬x3)∧
(x3 ∨ ¬x4)∧
...

(xn−1 ∨ ¬xn)∧
(xn ∨ ¬x1)

How many satisfying assignments does this formula have? Justify!
(Note that it may be a function of n.)

SOL

Recall that p → q is equivalent to p∨ ̸ q. Hence we can rewrite
the formula as

(x1 =⇒ x2)∧
(x2 =⇒ x3)∧
(x3 =⇒ x4)∧
...

(xn−1 =⇒ xn)∧
(xn =⇒ x1)

If x1 = T then this forces x2 = T , . . ., xn = T . So one satisfying
assignment is (T, . . . , T ).

If x1 = F then this forces xn = F , . . ., x2 = F . So one satisfying
assignment is (F, . . . , F ).

Since either x1 = T or x1 = F , there are exactly two satisfying
assignments.

END OF SOL

(b) (10 points) Let n ≥ 4. Give an example of a 2CNF formula which
uses n variables and is NOT satisfiable. (You may assume n is
even or odd or anything of that sort to make the answer smoother.)

SOL

We use x1, . . . , xn.

We will assume n is even.
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(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)∧

(x3 ∨ x4) ∧ (x5 ∨ x6) ∧ · · · ∧ (xn−1 ∨ xn)

note that since the last var of each clause has an even index, it
was good that n is even.

END OF SOL TO 1d
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