
HW07 Solution

PROMISE-SAT PROBLEM

Let PROMISE-SAT be the following problem:

Input A boolean formula ϕ(x1, . . . , xn) that you are PROMISED
has ≥ 1 satisfying assignment.
Output YES if ϕ has ≥ 2 satisfying assignments and NO if it has
exactly 1 satisfying assignment. (Because of the PROMISE ϕ
cannot have 0 satisfying assignments.)

Prove PROMISE-SAT in P → SAT in P.

PROMISE-SAT PROBLEM

Let PROMISE-SAT be the following problem:

Input A boolean formula ϕ(x1, . . . , xn) that you are PROMISED
has ≥ 1 satisfying assignment.

Output YES if ϕ has ≥ 2 satisfying assignments and NO if it has
exactly 1 satisfying assignment. (Because of the PROMISE ϕ
cannot have 0 satisfying assignments.)

Prove PROMISE-SAT in P → SAT in P.

PROMISE-SAT PROBLEM

Let PROMISE-SAT be the following problem:

Input A boolean formula ϕ(x1, . . . , xn) that you are PROMISED
has ≥ 1 satisfying assignment.
Output YES if ϕ has ≥ 2 satisfying assignments and NO if it has
exactly 1 satisfying assignment. (Because of the PROMISE ϕ
cannot have 0 satisfying assignments.)

Prove PROMISE-SAT in P → SAT in P.

PROMISE-SAT PROBLEM

Let PROMISE-SAT be the following problem:

Input A boolean formula ϕ(x1, . . . , xn) that you are PROMISED
has ≥ 1 satisfying assignment.
Output YES if ϕ has ≥ 2 satisfying assignments and NO if it has
exactly 1 satisfying assignment. (Because of the PROMISE ϕ
cannot have 0 satisfying assignments.)

Prove PROMISE-SAT in P → SAT in P.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn). Plug in (T , . . . ,T).
If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).
Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).
ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.
▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One

of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn).

Plug in (T , . . . ,T).
If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).
Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).
ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.
▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One

of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn). Plug in (T , . . . ,T).

If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).
Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).
ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.
▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One

of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn). Plug in (T , . . . ,T).
If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).
Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).
ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.
▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One

of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn). Plug in (T , . . . ,T).
If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).

Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).
ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.
▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One

of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn). Plug in (T , . . . ,T).
If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).
Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).

ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.
▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One

of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn). Plug in (T , . . . ,T).
If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).
Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).
ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.
▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One

of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn). Plug in (T , . . . ,T).
If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).
Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).
ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.

▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One
of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn). Plug in (T , . . . ,T).
If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).
Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).
ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.
▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One

of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

PROMISE-SAT PROBLEM: SOLUTION

M is poly time program for Promise-SAT

1. Input ψ(x1, . . . , xn). Plug in (T , . . . ,T).
If returns T then output YES.

2. (If here then ψ(T , . . . ,T) = F).
Create ϕ = ψ(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn).
ϕ has at least one satisfying assignment, (T , . . . ,T).

3. Run M on ϕ.
▶ If output is YES then ϕ has ≥ 2 satisfying assignments. One

of them is (T , . . . ,T). Other one has to be a SAT assignment
for ψ. So output YES.

▶ If output is NO then ϕ has Hence ϕ has 1 satisfying
assignments. Its. (T , . . . ,T). So ψ /∈ SAT. So output NO.

What about Other Variants?

Think About What if we are promised that ϕ has either 0 or 1
satisfying assignments? If PROMISE-SAT-0-1 problem is in P,
then do you get SAT in P?

Vote
What are the consequences of PROMISE-SAT-0-1 in P?

1. SAT in P and this is known.

2. SAT not in P and this is known.

3. Some other consequence of interest is known.

4. No consequences known to Bill

Some other consequence of interest is known.
SAT is in randomized poly time.
So there is a fast randomized algorithm for SAT with a very small
prob of error.

What about Other Variants?

Think About What if we are promised that ϕ has either 0 or 1
satisfying assignments? If PROMISE-SAT-0-1 problem is in P,
then do you get SAT in P?
Vote
What are the consequences of PROMISE-SAT-0-1 in P?

1. SAT in P and this is known.

2. SAT not in P and this is known.

3. Some other consequence of interest is known.

4. No consequences known to Bill

Some other consequence of interest is known.
SAT is in randomized poly time.
So there is a fast randomized algorithm for SAT with a very small
prob of error.

What about Other Variants?

Think About What if we are promised that ϕ has either 0 or 1
satisfying assignments? If PROMISE-SAT-0-1 problem is in P,
then do you get SAT in P?
Vote
What are the consequences of PROMISE-SAT-0-1 in P?

1. SAT in P and this is known.

2. SAT not in P and this is known.

3. Some other consequence of interest is known.

4. No consequences known to Bill

Some other consequence of interest is known.
SAT is in randomized poly time.
So there is a fast randomized algorithm for SAT with a very small
prob of error.

What about Other Variants?

Think About What if we are promised that ϕ has either 0 or 1
satisfying assignments? If PROMISE-SAT-0-1 problem is in P,
then do you get SAT in P?
Vote
What are the consequences of PROMISE-SAT-0-1 in P?

1. SAT in P and this is known.

2. SAT not in P and this is known.

3. Some other consequence of interest is known.

4. No consequences known to Bill

Some other consequence of interest is known.
SAT is in randomized poly time.
So there is a fast randomized algorithm for SAT with a very small
prob of error.

What about Other Variants?

Think About What if we are promised that ϕ has either 0 or 1
satisfying assignments? If PROMISE-SAT-0-1 problem is in P,
then do you get SAT in P?
Vote
What are the consequences of PROMISE-SAT-0-1 in P?

1. SAT in P and this is known.

2. SAT not in P and this is known.

3. Some other consequence of interest is known.

4. No consequences known to Bill

Some other consequence of interest is known.
SAT is in randomized poly time.
So there is a fast randomized algorithm for SAT with a very small
prob of error.

What about Other Variants?

Think About What if we are promised that ϕ has either 0 or 1
satisfying assignments? If PROMISE-SAT-0-1 problem is in P,
then do you get SAT in P?
Vote
What are the consequences of PROMISE-SAT-0-1 in P?

1. SAT in P and this is known.

2. SAT not in P and this is known.

3. Some other consequence of interest is known.

4. No consequences known to Bill

Some other consequence of interest is known.
SAT is in randomized poly time.
So there is a fast randomized algorithm for SAT with a very small
prob of error.

What about Other Variants?

Think About What if we are promised that ϕ has either 0 or 1
satisfying assignments? If PROMISE-SAT-0-1 problem is in P,
then do you get SAT in P?
Vote
What are the consequences of PROMISE-SAT-0-1 in P?

1. SAT in P and this is known.

2. SAT not in P and this is known.

3. Some other consequence of interest is known.

4. No consequences known to Bill

Some other consequence of interest is known.

SAT is in randomized poly time.
So there is a fast randomized algorithm for SAT with a very small
prob of error.

What about Other Variants?

Think About What if we are promised that ϕ has either 0 or 1
satisfying assignments? If PROMISE-SAT-0-1 problem is in P,
then do you get SAT in P?
Vote
What are the consequences of PROMISE-SAT-0-1 in P?

1. SAT in P and this is known.

2. SAT not in P and this is known.

3. Some other consequence of interest is known.

4. No consequences known to Bill

Some other consequence of interest is known.
SAT is in randomized poly time.

So there is a fast randomized algorithm for SAT with a very small
prob of error.

What about Other Variants?

Think About What if we are promised that ϕ has either 0 or 1
satisfying assignments? If PROMISE-SAT-0-1 problem is in P,
then do you get SAT in P?
Vote
What are the consequences of PROMISE-SAT-0-1 in P?

1. SAT in P and this is known.

2. SAT not in P and this is known.

3. Some other consequence of interest is known.

4. No consequences known to Bill

Some other consequence of interest is known.
SAT is in randomized poly time.
So there is a fast randomized algorithm for SAT with a very small
prob of error.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.

Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).

3. Run the Y -algorithm on y . Time q(p(|x |)).
3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.

3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Reductions and P

Question Show that if X ≤ Y and Y ∈ P then X ∈ P.
Answer

Assume X ≤ Y via f . Assume f takes p(n) to compute.

Assume Y ∈ P. Assume the algorithm takes q(n) steps.

Here is the procedure for X :

1. Input x

2. Compute y = f (x). Time p(|x |). Note |y | ≤ p(|x |).
3. Run the Y -algorithm on y . Time q(p(|x |)).

3.1 If answer is YES then output YES.
3.2 If answer is NO then output NO.

Algorithm takes time O((p(|x |) + q(p(|x |)) which is poly in |x |.

Vertex Cover

Def Let G = (V ,E) be a graph. A vertex cover for G of size k
is a set U ⊆ V such that

▶ |U| = k, and

▶ For every (a, b) ∈ E either a ∈ U or b ∈ U (or both).

VC = {(G , k) : G has a Vertex Cover of size k}.
(It is known that VC is NP-complete.)

VC1000 = {G : G has a Vertex Cover of size 1000}.

Show that VC1000 is in P.

Vertex Cover

Def Let G = (V ,E) be a graph. A vertex cover for G of size k
is a set U ⊆ V such that

▶ |U| = k, and

▶ For every (a, b) ∈ E either a ∈ U or b ∈ U (or both).

VC = {(G , k) : G has a Vertex Cover of size k}.
(It is known that VC is NP-complete.)

VC1000 = {G : G has a Vertex Cover of size 1000}.

Show that VC1000 is in P.

Vertex Cover

Def Let G = (V ,E) be a graph. A vertex cover for G of size k
is a set U ⊆ V such that

▶ |U| = k, and

▶ For every (a, b) ∈ E either a ∈ U or b ∈ U (or both).

VC = {(G , k) : G has a Vertex Cover of size k}.
(It is known that VC is NP-complete.)

VC1000 = {G : G has a Vertex Cover of size 1000}.

Show that VC1000 is in P.

Vertex Cover

Def Let G = (V ,E) be a graph. A vertex cover for G of size k
is a set U ⊆ V such that

▶ |U| = k, and

▶ For every (a, b) ∈ E either a ∈ U or b ∈ U (or both).

VC = {(G , k) : G has a Vertex Cover of size k}.
(It is known that VC is NP-complete.)

VC1000 = {G : G has a Vertex Cover of size 1000}.

Show that VC1000 is in P.

Vertex Cover

Def Let G = (V ,E) be a graph. A vertex cover for G of size k
is a set U ⊆ V such that

▶ |U| = k, and

▶ For every (a, b) ∈ E either a ∈ U or b ∈ U (or both).

VC = {(G , k) : G has a Vertex Cover of size k}.

(It is known that VC is NP-complete.)

VC1000 = {G : G has a Vertex Cover of size 1000}.

Show that VC1000 is in P.

Vertex Cover

Def Let G = (V ,E) be a graph. A vertex cover for G of size k
is a set U ⊆ V such that

▶ |U| = k, and

▶ For every (a, b) ∈ E either a ∈ U or b ∈ U (or both).

VC = {(G , k) : G has a Vertex Cover of size k}.
(It is known that VC is NP-complete.)

VC1000 = {G : G has a Vertex Cover of size 1000}.

Show that VC1000 is in P.

Vertex Cover

Def Let G = (V ,E) be a graph. A vertex cover for G of size k
is a set U ⊆ V such that

▶ |U| = k, and

▶ For every (a, b) ∈ E either a ∈ U or b ∈ U (or both).

VC = {(G , k) : G has a Vertex Cover of size k}.
(It is known that VC is NP-complete.)

VC1000 = {G : G has a Vertex Cover of size 1000}.

Show that VC1000 is in P.

Vertex Cover

Def Let G = (V ,E) be a graph. A vertex cover for G of size k
is a set U ⊆ V such that

▶ |U| = k, and

▶ For every (a, b) ∈ E either a ∈ U or b ∈ U (or both).

VC = {(G , k) : G has a Vertex Cover of size k}.
(It is known that VC is NP-complete.)

VC1000 = {G : G has a Vertex Cover of size 1000}.

Show that VC1000 is in P.

VC1000 in P

Notation
(V
1000

)
is the set of 1000-sized subsets of V .

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a VC.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

VC1000 in P

Notation
(V
1000

)
is the set of 1000-sized subsets of V .

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a VC.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

VC1000 in P

Notation
(V
1000

)
is the set of 1000-sized subsets of V .

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)

2.1 test if U is a VC.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

VC1000 in P

Notation
(V
1000

)
is the set of 1000-sized subsets of V .

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a VC.

2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

VC1000 in P

Notation
(V
1000

)
is the set of 1000-sized subsets of V .

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a VC.
2.2 If YES then output YES and STOP.

2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

VC1000 in P

Notation
(V
1000

)
is the set of 1000-sized subsets of V .

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a VC.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

VC1000 in P

Notation
(V
1000

)
is the set of 1000-sized subsets of V .

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a VC.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

VC1000 in P

Notation
(V
1000

)
is the set of 1000-sized subsets of V .

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a VC.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

VC1000 in Time n1000: Can We Do Better?

Vote

1. Bill will show you some way to do VC1000 in time O(n3) and
give his Fire and Brimstone Sermon about Lower Bounds.

2. Bill will tell you about some kind of complexity theory to show
that it is likely VC1000 requires Ω(n1000) time.

3. Bill will tell you that the the theory community has no
consensus on whether VC1000 can be done in n<1000.

VC1000 in Time n1000: Can We Do Better?

Vote

1. Bill will show you some way to do VC1000 in time O(n3) and
give his Fire and Brimstone Sermon about Lower Bounds.

2. Bill will tell you about some kind of complexity theory to show
that it is likely VC1000 requires Ω(n1000) time.

3. Bill will tell you that the the theory community has no
consensus on whether VC1000 can be done in n<1000.

VC1000 in Time n1000: Can We Do Better?

Vote

1. Bill will show you some way to do VC1000 in time O(n3) and
give his Fire and Brimstone Sermon about Lower Bounds.

2. Bill will tell you about some kind of complexity theory to show
that it is likely VC1000 requires Ω(n1000) time.

3. Bill will tell you that the the theory community has no
consensus on whether VC1000 can be done in n<1000.

VC1000 in Time n1000: Can We Do Better?

Vote

1. Bill will show you some way to do VC1000 in time O(n3) and
give his Fire and Brimstone Sermon about Lower Bounds.

2. Bill will tell you about some kind of complexity theory to show
that it is likely VC1000 requires Ω(n1000) time.

3. Bill will tell you that the the theory community has no
consensus on whether VC1000 can be done in n<1000.

VC1000 in Time n1000: We Can Do Better!

Bill will show you some way to do VC1000 in time O(n3) and give
his Fire and Brimstone Sermon about Lower Bounds.

1. The Graph Minor Theorem implies VC1000 is in O(n3) time.
The GMT took 20 hard papers to prove.

2. A very clever algorithm enables you to solve VCk in time
O(kn + 2kk2k+2). Note k is not in the exponent of the poly
in n.

Algorithm Sketch Given G , all vertices of degree ≥ k + 1 are
in the VC. Remove them to form G ′. Now want VC of G ′ of
size ≤ k ′. If G ′ has a VC of size ≤ k ′ then G ′ has ≤ kk ′ ≤ k2

vertices. Do Brute Force on G ′.

VC1000 in Time n1000: We Can Do Better!

Bill will show you some way to do VC1000 in time O(n3) and give
his Fire and Brimstone Sermon about Lower Bounds.

1. The Graph Minor Theorem implies VC1000 is in O(n3) time.
The GMT took 20 hard papers to prove.

2. A very clever algorithm enables you to solve VCk in time
O(kn + 2kk2k+2). Note k is not in the exponent of the poly
in n.

Algorithm Sketch Given G , all vertices of degree ≥ k + 1 are
in the VC. Remove them to form G ′. Now want VC of G ′ of
size ≤ k ′. If G ′ has a VC of size ≤ k ′ then G ′ has ≤ kk ′ ≤ k2

vertices. Do Brute Force on G ′.

VC1000 in Time n1000: We Can Do Better!

Bill will show you some way to do VC1000 in time O(n3) and give
his Fire and Brimstone Sermon about Lower Bounds.

1. The Graph Minor Theorem implies VC1000 is in O(n3) time.
The GMT took 20 hard papers to prove.

2. A very clever algorithm enables you to solve VCk in time
O(kn + 2kk2k+2). Note k is not in the exponent of the poly
in n.

Algorithm Sketch Given G , all vertices of degree ≥ k + 1 are
in the VC. Remove them to form G ′. Now want VC of G ′ of
size ≤ k ′. If G ′ has a VC of size ≤ k ′ then G ′ has ≤ kk ′ ≤ k2

vertices. Do Brute Force on G ′.

VC1000 in Time n1000: We Can Do Better!

Bill will show you some way to do VC1000 in time O(n3) and give
his Fire and Brimstone Sermon about Lower Bounds.

1. The Graph Minor Theorem implies VC1000 is in O(n3) time.
The GMT took 20 hard papers to prove.

2. A very clever algorithm enables you to solve VCk in time
O(kn + 2kk2k+2). Note k is not in the exponent of the poly
in n.

Algorithm Sketch Given G , all vertices of degree ≥ k + 1 are
in the VC. Remove them to form G ′. Now want VC of G ′ of
size ≤ k ′. If G ′ has a VC of size ≤ k ′ then G ′ has ≤ kk ′ ≤ k2

vertices. Do Brute Force on G ′.

VC1000 in Time n1000: We Can Do Better!

Bill will show you some way to do VC1000 in time O(n3) and give
his Fire and Brimstone Sermon about Lower Bounds.

1. The Graph Minor Theorem implies VC1000 is in O(n3) time.
The GMT took 20 hard papers to prove.

2. A very clever algorithm enables you to solve VCk in time
O(kn + 2kk2k+2). Note k is not in the exponent of the poly
in n.

Algorithm Sketch Given G , all vertices of degree ≥ k + 1 are
in the VC. Remove them to form G ′. Now want VC of G ′ of
size ≤ k ′. If G ′ has a VC of size ≤ k ′ then G ′ has ≤ kk ′ ≤ k2

vertices. Do Brute Force on G ′.

Hard Math AND a Clever Algorithm

Bill has said:

To show that, say, SAT /∈ P, you need to show that neither of the
following will happen:

1. Some very hard math is the key to an algorithm for SAT ∈ P.
The reason it was not found earlier is that it required
specialized and new knowledge.

2. Some very clever algorithm is the key to an algorithm for
SAT ∈ P. The reason it was not found earlier is that we just
missed it.

The VCk problem was solved both ways.

Bill’s Point Bill still thinks P ̸= NP; however, to prove that some
hard math won’t do it, or a clever algorithm won’t do it, is a rather
daunting task.

Respect how difficult it will be to prove lower bounds!

Abbreviated to Respect Lower Bounds!

Hard Math AND a Clever Algorithm

Bill has said:
To show that, say, SAT /∈ P, you need to show that neither of the
following will happen:

1. Some very hard math is the key to an algorithm for SAT ∈ P.
The reason it was not found earlier is that it required
specialized and new knowledge.

2. Some very clever algorithm is the key to an algorithm for
SAT ∈ P. The reason it was not found earlier is that we just
missed it.

The VCk problem was solved both ways.

Bill’s Point Bill still thinks P ̸= NP; however, to prove that some
hard math won’t do it, or a clever algorithm won’t do it, is a rather
daunting task.

Respect how difficult it will be to prove lower bounds!

Abbreviated to Respect Lower Bounds!

Hard Math AND a Clever Algorithm

Bill has said:
To show that, say, SAT /∈ P, you need to show that neither of the
following will happen:

1. Some very hard math is the key to an algorithm for SAT ∈ P.
The reason it was not found earlier is that it required
specialized and new knowledge.

2. Some very clever algorithm is the key to an algorithm for
SAT ∈ P. The reason it was not found earlier is that we just
missed it.

The VCk problem was solved both ways.

Bill’s Point Bill still thinks P ̸= NP; however, to prove that some
hard math won’t do it, or a clever algorithm won’t do it, is a rather
daunting task.

Respect how difficult it will be to prove lower bounds!

Abbreviated to Respect Lower Bounds!

Hard Math AND a Clever Algorithm

Bill has said:
To show that, say, SAT /∈ P, you need to show that neither of the
following will happen:

1. Some very hard math is the key to an algorithm for SAT ∈ P.
The reason it was not found earlier is that it required
specialized and new knowledge.

2. Some very clever algorithm is the key to an algorithm for
SAT ∈ P. The reason it was not found earlier is that we just
missed it.

The VCk problem was solved both ways.

Bill’s Point Bill still thinks P ̸= NP; however, to prove that some
hard math won’t do it, or a clever algorithm won’t do it, is a rather
daunting task.

Respect how difficult it will be to prove lower bounds!

Abbreviated to Respect Lower Bounds!

Hard Math AND a Clever Algorithm

Bill has said:
To show that, say, SAT /∈ P, you need to show that neither of the
following will happen:

1. Some very hard math is the key to an algorithm for SAT ∈ P.
The reason it was not found earlier is that it required
specialized and new knowledge.

2. Some very clever algorithm is the key to an algorithm for
SAT ∈ P. The reason it was not found earlier is that we just
missed it.

The VCk problem was solved both ways.

Bill’s Point Bill still thinks P ̸= NP; however, to prove that some
hard math won’t do it, or a clever algorithm won’t do it, is a rather
daunting task.

Respect how difficult it will be to prove lower bounds!

Abbreviated to Respect Lower Bounds!

Hard Math AND a Clever Algorithm

Bill has said:
To show that, say, SAT /∈ P, you need to show that neither of the
following will happen:

1. Some very hard math is the key to an algorithm for SAT ∈ P.
The reason it was not found earlier is that it required
specialized and new knowledge.

2. Some very clever algorithm is the key to an algorithm for
SAT ∈ P. The reason it was not found earlier is that we just
missed it.

The VCk problem was solved both ways.

Bill’s Point Bill still thinks P ̸= NP; however, to prove that some
hard math won’t do it, or a clever algorithm won’t do it, is a rather
daunting task.

Respect how difficult it will be to prove lower bounds!

Abbreviated to Respect Lower Bounds!

Hard Math AND a Clever Algorithm

Bill has said:
To show that, say, SAT /∈ P, you need to show that neither of the
following will happen:

1. Some very hard math is the key to an algorithm for SAT ∈ P.
The reason it was not found earlier is that it required
specialized and new knowledge.

2. Some very clever algorithm is the key to an algorithm for
SAT ∈ P. The reason it was not found earlier is that we just
missed it.

The VCk problem was solved both ways.

Bill’s Point Bill still thinks P ̸= NP; however, to prove that some
hard math won’t do it, or a clever algorithm won’t do it, is a rather
daunting task.

Respect how difficult it will be to prove lower bounds!

Abbreviated to Respect Lower Bounds!

Hard Math AND a Clever Algorithm

Bill has said:
To show that, say, SAT /∈ P, you need to show that neither of the
following will happen:

1. Some very hard math is the key to an algorithm for SAT ∈ P.
The reason it was not found earlier is that it required
specialized and new knowledge.

2. Some very clever algorithm is the key to an algorithm for
SAT ∈ P. The reason it was not found earlier is that we just
missed it.

The VCk problem was solved both ways.

Bill’s Point Bill still thinks P ̸= NP; however, to prove that some
hard math won’t do it, or a clever algorithm won’t do it, is a rather
daunting task.

Respect how difficult it will be to prove lower bounds!

Abbreviated to Respect Lower Bounds!

Dominating Set

Def Let G = (V ,E) be a graph. A dominating set for G of size
k is a set U ⊆ V such that

▶ |U| = k, and

▶ For every v ∈ V either v ∈ U or a neighbor of v is in U.

DS = {(G , k) : G has a Dom Set of size k}.
(It is known that DS is NP-complete.)

DS1000 = {G : G has a Dom Set of size 1000}.
Show that DS1000 is in P.

Dominating Set

Def Let G = (V ,E) be a graph. A dominating set for G of size
k is a set U ⊆ V such that

▶ |U| = k, and

▶ For every v ∈ V either v ∈ U or a neighbor of v is in U.

DS = {(G , k) : G has a Dom Set of size k}.
(It is known that DS is NP-complete.)

DS1000 = {G : G has a Dom Set of size 1000}.
Show that DS1000 is in P.

Dominating Set

Def Let G = (V ,E) be a graph. A dominating set for G of size
k is a set U ⊆ V such that

▶ |U| = k, and

▶ For every v ∈ V either v ∈ U or a neighbor of v is in U.

DS = {(G , k) : G has a Dom Set of size k}.
(It is known that DS is NP-complete.)

DS1000 = {G : G has a Dom Set of size 1000}.
Show that DS1000 is in P.

Dominating Set

Def Let G = (V ,E) be a graph. A dominating set for G of size
k is a set U ⊆ V such that

▶ |U| = k, and

▶ For every v ∈ V either v ∈ U or a neighbor of v is in U.

DS = {(G , k) : G has a Dom Set of size k}.
(It is known that DS is NP-complete.)

DS1000 = {G : G has a Dom Set of size 1000}.
Show that DS1000 is in P.

Dominating Set

Def Let G = (V ,E) be a graph. A dominating set for G of size
k is a set U ⊆ V such that

▶ |U| = k, and

▶ For every v ∈ V either v ∈ U or a neighbor of v is in U.

DS = {(G , k) : G has a Dom Set of size k}.

(It is known that DS is NP-complete.)

DS1000 = {G : G has a Dom Set of size 1000}.
Show that DS1000 is in P.

Dominating Set

Def Let G = (V ,E) be a graph. A dominating set for G of size
k is a set U ⊆ V such that

▶ |U| = k, and

▶ For every v ∈ V either v ∈ U or a neighbor of v is in U.

DS = {(G , k) : G has a Dom Set of size k}.
(It is known that DS is NP-complete.)

DS1000 = {G : G has a Dom Set of size 1000}.
Show that DS1000 is in P.

Dominating Set

Def Let G = (V ,E) be a graph. A dominating set for G of size
k is a set U ⊆ V such that

▶ |U| = k, and

▶ For every v ∈ V either v ∈ U or a neighbor of v is in U.

DS = {(G , k) : G has a Dom Set of size k}.
(It is known that DS is NP-complete.)

DS1000 = {G : G has a Dom Set of size 1000}.
Show that DS1000 is in P.

DS1000 in P

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a Dom Set.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

DS1000 in P

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a Dom Set.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

DS1000 in P

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)

2.1 test if U is a Dom Set.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

DS1000 in P

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a Dom Set.

2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

DS1000 in P

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a Dom Set.
2.2 If YES then output YES and STOP.

2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

DS1000 in P

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a Dom Set.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

DS1000 in P

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a Dom Set.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

DS1000 in P

1. Input G = (V ,E). |V | = n.

2. For all U ∈
(V
1000

)
2.1 test if U is a Dom Set.
2.2 If YES then output YES and STOP.
2.3 If NO then go back to for loop

3. If you got here output NO.

Time: Roughly n1000.

DS1000 in Time n1000: Can We Do Better?

Vote

1. Bill will show you some way to do DS1000 in time O(n3) and
give his Fire and Brimstone Sermon about Lower Bounds.

2. Bill will tell you about some kind of complexity theory to show
that it is likely DS1000 requires Ω(n1000) time.

3. Bill will tell you that the the theory community has no
consensus on whether DS1000 can be done in n<1000.

DS1000 in Time n1000: Can We Do Better?

Vote

1. Bill will show you some way to do DS1000 in time O(n3) and
give his Fire and Brimstone Sermon about Lower Bounds.

2. Bill will tell you about some kind of complexity theory to show
that it is likely DS1000 requires Ω(n1000) time.

3. Bill will tell you that the the theory community has no
consensus on whether DS1000 can be done in n<1000.

DS1000 in Time n1000: Can We Do Better?

Vote

1. Bill will show you some way to do DS1000 in time O(n3) and
give his Fire and Brimstone Sermon about Lower Bounds.

2. Bill will tell you about some kind of complexity theory to show
that it is likely DS1000 requires Ω(n1000) time.

3. Bill will tell you that the the theory community has no
consensus on whether DS1000 can be done in n<1000.

DS1000 in Time n1000: Can We Do Better?

Vote

1. Bill will show you some way to do DS1000 in time O(n3) and
give his Fire and Brimstone Sermon about Lower Bounds.

2. Bill will tell you about some kind of complexity theory to show
that it is likely DS1000 requires Ω(n1000) time.

3. Bill will tell you that the the theory community has no
consensus on whether DS1000 can be done in n<1000.

DS1000 in Time n1000: We Prob Can’t Do Better!

Bill will tell you about some kind of complexity theory to show that
it is likely the problem requires Ω(n1000) time.

1. A problem is Fixed Parameter Tractable (FPT) if when you
hold a parameter k constant there is a poly time algorithm
where the run time does not have k in the exponent.
Example VCk is FPT with parameter k .

2. There are problems that are thought to NOT be FPT.
Example SATk : Satisfiable with ≤ k vars are set T.

3. There is notion of reduction ≤FPT such that
Y ∈ FPT and X ≤FPT Y implies X ∈ FPT.

4. Known that SATk ≤FPT DSk .

5. Hence we think DSk /∈ FPT.

DS1000 in Time n1000: We Prob Can’t Do Better!

Bill will tell you about some kind of complexity theory to show that
it is likely the problem requires Ω(n1000) time.

1. A problem is Fixed Parameter Tractable (FPT) if when you
hold a parameter k constant there is a poly time algorithm
where the run time does not have k in the exponent.
Example VCk is FPT with parameter k .

2. There are problems that are thought to NOT be FPT.
Example SATk : Satisfiable with ≤ k vars are set T.

3. There is notion of reduction ≤FPT such that
Y ∈ FPT and X ≤FPT Y implies X ∈ FPT.

4. Known that SATk ≤FPT DSk .

5. Hence we think DSk /∈ FPT.

DS1000 in Time n1000: We Prob Can’t Do Better!

Bill will tell you about some kind of complexity theory to show that
it is likely the problem requires Ω(n1000) time.

1. A problem is Fixed Parameter Tractable (FPT) if when you
hold a parameter k constant there is a poly time algorithm
where the run time does not have k in the exponent.

Example VCk is FPT with parameter k .

2. There are problems that are thought to NOT be FPT.
Example SATk : Satisfiable with ≤ k vars are set T.

3. There is notion of reduction ≤FPT such that
Y ∈ FPT and X ≤FPT Y implies X ∈ FPT.

4. Known that SATk ≤FPT DSk .

5. Hence we think DSk /∈ FPT.

DS1000 in Time n1000: We Prob Can’t Do Better!

Bill will tell you about some kind of complexity theory to show that
it is likely the problem requires Ω(n1000) time.

1. A problem is Fixed Parameter Tractable (FPT) if when you
hold a parameter k constant there is a poly time algorithm
where the run time does not have k in the exponent.
Example VCk is FPT with parameter k .

2. There are problems that are thought to NOT be FPT.
Example SATk : Satisfiable with ≤ k vars are set T.

3. There is notion of reduction ≤FPT such that
Y ∈ FPT and X ≤FPT Y implies X ∈ FPT.

4. Known that SATk ≤FPT DSk .

5. Hence we think DSk /∈ FPT.

DS1000 in Time n1000: We Prob Can’t Do Better!

Bill will tell you about some kind of complexity theory to show that
it is likely the problem requires Ω(n1000) time.

1. A problem is Fixed Parameter Tractable (FPT) if when you
hold a parameter k constant there is a poly time algorithm
where the run time does not have k in the exponent.
Example VCk is FPT with parameter k .

2. There are problems that are thought to NOT be FPT.
Example SATk : Satisfiable with ≤ k vars are set T.

3. There is notion of reduction ≤FPT such that
Y ∈ FPT and X ≤FPT Y implies X ∈ FPT.

4. Known that SATk ≤FPT DSk .

5. Hence we think DSk /∈ FPT.

DS1000 in Time n1000: We Prob Can’t Do Better!

Bill will tell you about some kind of complexity theory to show that
it is likely the problem requires Ω(n1000) time.

1. A problem is Fixed Parameter Tractable (FPT) if when you
hold a parameter k constant there is a poly time algorithm
where the run time does not have k in the exponent.
Example VCk is FPT with parameter k .

2. There are problems that are thought to NOT be FPT.
Example SATk : Satisfiable with ≤ k vars are set T.

3. There is notion of reduction ≤FPT such that
Y ∈ FPT and X ≤FPT Y implies X ∈ FPT.

4. Known that SATk ≤FPT DSk .

5. Hence we think DSk /∈ FPT.

DS1000 in Time n1000: We Prob Can’t Do Better!

Bill will tell you about some kind of complexity theory to show that
it is likely the problem requires Ω(n1000) time.

1. A problem is Fixed Parameter Tractable (FPT) if when you
hold a parameter k constant there is a poly time algorithm
where the run time does not have k in the exponent.
Example VCk is FPT with parameter k .

2. There are problems that are thought to NOT be FPT.
Example SATk : Satisfiable with ≤ k vars are set T.

3. There is notion of reduction ≤FPT such that
Y ∈ FPT and X ≤FPT Y implies X ∈ FPT.

4. Known that SATk ≤FPT DSk .

5. Hence we think DSk /∈ FPT.

DS1000 in Time n1000: We Prob Can’t Do Better!

Bill will tell you about some kind of complexity theory to show that
it is likely the problem requires Ω(n1000) time.

1. A problem is Fixed Parameter Tractable (FPT) if when you
hold a parameter k constant there is a poly time algorithm
where the run time does not have k in the exponent.
Example VCk is FPT with parameter k .

2. There are problems that are thought to NOT be FPT.
Example SATk : Satisfiable with ≤ k vars are set T.

3. There is notion of reduction ≤FPT such that
Y ∈ FPT and X ≤FPT Y implies X ∈ FPT.

4. Known that SATk ≤FPT DSk .

5. Hence we think DSk /∈ FPT.

3-Col and 4-col

3COL = {G : G is 3-colorable }.
4COL = {G : G is 4-colorable }.
Show that 3COL ≤ 4COL.

1. Input G

2. Create G ′ which is G with one more vertex v which has an
edge to all vertices of G .

G ∈ 3COL implies G ′ ∈ 4COL: Color the vertices of G with 3
colors. Then color the vertex v with a fourth color.

G ′ ∈ 4COL implies G ∈ 3COL: If G ′ ∈ 4COL then coloring must
use a coloring of v that is not used on any other vertex. Remove
vertex v and you have a 3-coloring of G .
Thus, G ∈ 3COL iff G ′ ∈ 4COL.

3-Col and 4-col

3COL = {G : G is 3-colorable }.

4COL = {G : G is 4-colorable }.
Show that 3COL ≤ 4COL.

1. Input G

2. Create G ′ which is G with one more vertex v which has an
edge to all vertices of G .

G ∈ 3COL implies G ′ ∈ 4COL: Color the vertices of G with 3
colors. Then color the vertex v with a fourth color.

G ′ ∈ 4COL implies G ∈ 3COL: If G ′ ∈ 4COL then coloring must
use a coloring of v that is not used on any other vertex. Remove
vertex v and you have a 3-coloring of G .
Thus, G ∈ 3COL iff G ′ ∈ 4COL.

3-Col and 4-col

3COL = {G : G is 3-colorable }.
4COL = {G : G is 4-colorable }.

Show that 3COL ≤ 4COL.

1. Input G

2. Create G ′ which is G with one more vertex v which has an
edge to all vertices of G .

G ∈ 3COL implies G ′ ∈ 4COL: Color the vertices of G with 3
colors. Then color the vertex v with a fourth color.

G ′ ∈ 4COL implies G ∈ 3COL: If G ′ ∈ 4COL then coloring must
use a coloring of v that is not used on any other vertex. Remove
vertex v and you have a 3-coloring of G .
Thus, G ∈ 3COL iff G ′ ∈ 4COL.

3-Col and 4-col

3COL = {G : G is 3-colorable }.
4COL = {G : G is 4-colorable }.
Show that 3COL ≤ 4COL.

1. Input G

2. Create G ′ which is G with one more vertex v which has an
edge to all vertices of G .

G ∈ 3COL implies G ′ ∈ 4COL: Color the vertices of G with 3
colors. Then color the vertex v with a fourth color.

G ′ ∈ 4COL implies G ∈ 3COL: If G ′ ∈ 4COL then coloring must
use a coloring of v that is not used on any other vertex. Remove
vertex v and you have a 3-coloring of G .
Thus, G ∈ 3COL iff G ′ ∈ 4COL.

3-Col and 4-col

3COL = {G : G is 3-colorable }.
4COL = {G : G is 4-colorable }.
Show that 3COL ≤ 4COL.

1. Input G

2. Create G ′ which is G with one more vertex v which has an
edge to all vertices of G .

G ∈ 3COL implies G ′ ∈ 4COL: Color the vertices of G with 3
colors. Then color the vertex v with a fourth color.

G ′ ∈ 4COL implies G ∈ 3COL: If G ′ ∈ 4COL then coloring must
use a coloring of v that is not used on any other vertex. Remove
vertex v and you have a 3-coloring of G .
Thus, G ∈ 3COL iff G ′ ∈ 4COL.

3-Col and 4-col

3COL = {G : G is 3-colorable }.
4COL = {G : G is 4-colorable }.
Show that 3COL ≤ 4COL.

1. Input G

2. Create G ′ which is G with one more vertex v which has an
edge to all vertices of G .

G ∈ 3COL implies G ′ ∈ 4COL: Color the vertices of G with 3
colors. Then color the vertex v with a fourth color.

G ′ ∈ 4COL implies G ∈ 3COL: If G ′ ∈ 4COL then coloring must
use a coloring of v that is not used on any other vertex. Remove
vertex v and you have a 3-coloring of G .
Thus, G ∈ 3COL iff G ′ ∈ 4COL.

3-Col and 4-col

3COL = {G : G is 3-colorable }.
4COL = {G : G is 4-colorable }.
Show that 3COL ≤ 4COL.

1. Input G

2. Create G ′ which is G with one more vertex v which has an
edge to all vertices of G .

G ∈ 3COL implies G ′ ∈ 4COL: Color the vertices of G with 3
colors. Then color the vertex v with a fourth color.

G ′ ∈ 4COL implies G ∈ 3COL: If G ′ ∈ 4COL then coloring must
use a coloring of v that is not used on any other vertex. Remove
vertex v and you have a 3-coloring of G .
Thus, G ∈ 3COL iff G ′ ∈ 4COL.

3-Col and 4-col

3COL = {G : G is 3-colorable }.
4COL = {G : G is 4-colorable }.
Show that 3COL ≤ 4COL.

1. Input G

2. Create G ′ which is G with one more vertex v which has an
edge to all vertices of G .

G ∈ 3COL implies G ′ ∈ 4COL: Color the vertices of G with 3
colors. Then color the vertex v with a fourth color.

G ′ ∈ 4COL implies G ∈ 3COL: If G ′ ∈ 4COL then coloring must
use a coloring of v that is not used on any other vertex. Remove
vertex v and you have a 3-coloring of G .

Thus, G ∈ 3COL iff G ′ ∈ 4COL.

3-Col and 4-col

3COL = {G : G is 3-colorable }.
4COL = {G : G is 4-colorable }.
Show that 3COL ≤ 4COL.

1. Input G

2. Create G ′ which is G with one more vertex v which has an
edge to all vertices of G .

G ∈ 3COL implies G ′ ∈ 4COL: Color the vertices of G with 3
colors. Then color the vertex v with a fourth color.

G ′ ∈ 4COL implies G ∈ 3COL: If G ′ ∈ 4COL then coloring must
use a coloring of v that is not used on any other vertex. Remove
vertex v and you have a 3-coloring of G .
Thus, G ∈ 3COL iff G ′ ∈ 4COL.

3-Col and 4-col

Think About Is the following true:

4COL ≤ 3COL

Vote

1. Yes, 4COL ≤ 3COL but the reduction is insane.

2. Yes, 4COL ≤ 3COL and the reduction is reasonable.

3. If 4COL ≤ 3COL then P = NP.

4. The question of whether 4COL ≤ 3COL is Unknown to Bill

3-Col and 4-col

Think About Is the following true:

4COL ≤ 3COL

Vote

1. Yes, 4COL ≤ 3COL but the reduction is insane.

2. Yes, 4COL ≤ 3COL and the reduction is reasonable.

3. If 4COL ≤ 3COL then P = NP.

4. The question of whether 4COL ≤ 3COL is Unknown to Bill

3-Col and 4-col

Think About Is the following true:

4COL ≤ 3COL

Vote

1. Yes, 4COL ≤ 3COL but the reduction is insane.

2. Yes, 4COL ≤ 3COL and the reduction is reasonable.

3. If 4COL ≤ 3COL then P = NP.

4. The question of whether 4COL ≤ 3COL is Unknown to Bill

3-Col and 4-col

Think About Is the following true:

4COL ≤ 3COL

Vote

1. Yes, 4COL ≤ 3COL but the reduction is insane.

2. Yes, 4COL ≤ 3COL and the reduction is reasonable.

3. If 4COL ≤ 3COL then P = NP.

4. The question of whether 4COL ≤ 3COL is Unknown to Bill

3-Col and 4-col

Think About Is the following true:

4COL ≤ 3COL

Vote

1. Yes, 4COL ≤ 3COL but the reduction is insane.

2. Yes, 4COL ≤ 3COL and the reduction is reasonable.

3. If 4COL ≤ 3COL then P = NP.

4. The question of whether 4COL ≤ 3COL is Unknown to Bill

3-Col and 4-col

Think About Is the following true:

4COL ≤ 3COL

Vote

1. Yes, 4COL ≤ 3COL but the reduction is insane.

2. Yes, 4COL ≤ 3COL and the reduction is reasonable.

3. If 4COL ≤ 3COL then P = NP.

4. The question of whether 4COL ≤ 3COL is Unknown to Bill

An Insane Reduction

We show that

4COL ≤ 3COL by an insane reduction.

Cook-Levin: SAT is NP-complete: (∀A ∈ NP)[A ≤ SAT]:

4COL ≤ SAT.

We proved in class that

SAT ≤ 3COL.

Hence by transitivity of reductions

4COL ≤ SAT ≤ 3COL.

I call this reduction insane since it goes from a graph to a formula
(using Turing Machines) and then back to a graph.

An Insane Reduction

We show that

4COL ≤ 3COL by an insane reduction.

Cook-Levin: SAT is NP-complete: (∀A ∈ NP)[A ≤ SAT]:

4COL ≤ SAT.

We proved in class that

SAT ≤ 3COL.

Hence by transitivity of reductions

4COL ≤ SAT ≤ 3COL.

I call this reduction insane since it goes from a graph to a formula
(using Turing Machines) and then back to a graph.

An Insane Reduction

We show that

4COL ≤ 3COL by an insane reduction.

Cook-Levin: SAT is NP-complete: (∀A ∈ NP)[A ≤ SAT]:

4COL ≤ SAT.

We proved in class that

SAT ≤ 3COL.

Hence by transitivity of reductions

4COL ≤ SAT ≤ 3COL.

I call this reduction insane since it goes from a graph to a formula
(using Turing Machines) and then back to a graph.

An Insane Reduction

We show that

4COL ≤ 3COL by an insane reduction.

Cook-Levin: SAT is NP-complete: (∀A ∈ NP)[A ≤ SAT]:

4COL ≤ SAT.

We proved in class that

SAT ≤ 3COL.

Hence by transitivity of reductions

4COL ≤ SAT ≤ 3COL.

I call this reduction insane since it goes from a graph to a formula
(using Turing Machines) and then back to a graph.

An Insane Reduction

We show that

4COL ≤ 3COL by an insane reduction.

Cook-Levin: SAT is NP-complete: (∀A ∈ NP)[A ≤ SAT]:

4COL ≤ SAT.

We proved in class that

SAT ≤ 3COL.

Hence by transitivity of reductions

4COL ≤ SAT ≤ 3COL.

I call this reduction insane since it goes from a graph to a formula
(using Turing Machines) and then back to a graph.

Is there a Sane Reduction?

In 2014 my students one of my students was depressed at how
insane the reduction was. SO I came up with a sane reduction. Its
on arXiv here: https://arxiv.org/pdf/1407.5128.pdf

https://arxiv.org/pdf/1407.5128.pdf

Is there a Sane Reduction?

In 2014 my students one of my students was depressed at how
insane the reduction was. SO I came up with a sane reduction. Its
on arXiv here: https://arxiv.org/pdf/1407.5128.pdf

https://arxiv.org/pdf/1407.5128.pdf

What if Graph is Planar?
Def A graph is planar if it can be drawn in the plane without
crossing.

K1, K2, K3, K4 are planar. (∀n ≥ 5) Kn is not planar.

It is known that testing if a graph is planar is in P.

What if Graph is Planar?
Def A graph is planar if it can be drawn in the plane without
crossing.

K1, K2, K3, K4 are planar. (∀n ≥ 5) Kn is not planar.

It is known that testing if a graph is planar is in P.

What if Graph is Planar?
Def A graph is planar if it can be drawn in the plane without
crossing.

K1, K2, K3, K4 are planar.

(∀n ≥ 5) Kn is not planar.

It is known that testing if a graph is planar is in P.

What if Graph is Planar?
Def A graph is planar if it can be drawn in the plane without
crossing.

K1, K2, K3, K4 are planar. (∀n ≥ 5) Kn is not planar.

It is known that testing if a graph is planar is in P.

What if Graph is Planar?
Def A graph is planar if it can be drawn in the plane without
crossing.

K1, K2, K3, K4 are planar. (∀n ≥ 5) Kn is not planar.

It is known that testing if a graph is planar is in P.

What if Graph is Planar? (cont)

In the proof that SAT ≤ 3COL we used the following gadget:

Note that the gadget is not planar.

What if Graph is Planar? (cont)
In the proof that SAT ≤ 3COL we used the following gadget:

Note that the gadget is not planar.

What if Graph is Planar? (cont)
In the proof that SAT ≤ 3COL we used the following gadget:

Note that the gadget is not planar.

What if Graph is Planar? (cont)
In the proof that SAT ≤ 3COL we used the following gadget:

Note that the gadget is not planar.

Vote on if Planar 3COL is NP-complete

PL3COL = {G : G is Planar and G ∈ 3COL}.

Vote

1. PL3COL is NP-complete.

2. PL3COL is in Polynomial Time.
Fire and Brimstone Speech on lower bounds to follow.

Vote on if Planar 3COL is NP-complete

PL3COL = {G : G is Planar and G ∈ 3COL}.

Vote

1. PL3COL is NP-complete.

2. PL3COL is in Polynomial Time.
Fire and Brimstone Speech on lower bounds to follow.

Vote on if Planar 3COL is NP-complete

PL3COL = {G : G is Planar and G ∈ 3COL}.

Vote

1. PL3COL is NP-complete.

2. PL3COL is in Polynomial Time.
Fire and Brimstone Speech on lower bounds to follow.

Vote on if Planar 3COL is NP-complete

PL3COL = {G : G is Planar and G ∈ 3COL}.

Vote

1. PL3COL is NP-complete.

2. PL3COL is in Polynomial Time.
Fire and Brimstone Speech on lower bounds to follow.

Planar 3COL is NP-complete

3COL ≤ PL3COL

Replace all crossings with this gadget:

Planar 3COL is NP-complete

3COL ≤ PL3COL

Replace all crossings with this gadget:

Planar 3COL is NP-complete

3COL ≤ PL3COL

Replace all crossings with this gadget:

What About Planar 4COL?

What about 4-coloring?

PL4COL = {G : G is Planar and G ∈ 4COL}.

Vote

1. PL4COL is NP-complete.

2. Fire and Brimstone Speech on lower bounds to follow.

What About Planar 4COL?

What about 4-coloring?

PL4COL = {G : G is Planar and G ∈ 4COL}.

Vote

1. PL4COL is NP-complete.

2. Fire and Brimstone Speech on lower bounds to follow.

What About Planar 4COL?

What about 4-coloring?

PL4COL = {G : G is Planar and G ∈ 4COL}.

Vote

1. PL4COL is NP-complete.

2. Fire and Brimstone Speech on lower bounds to follow.

What About Planar 4COL?

What about 4-coloring?

PL4COL = {G : G is Planar and G ∈ 4COL}.

Vote

1. PL4COL is NP-complete.

2. Fire and Brimstone Speech on lower bounds to follow.

What About Planar 4COL?

What about 4-coloring?

PL4COL = {G : G is Planar and G ∈ 4COL}.

Vote

1. PL4COL is NP-complete.

2. Fire and Brimstone Speech on lower bounds to follow.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.
Fire and Brimstone Speech on next slides.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.
Fire and Brimstone Speech on next slides.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.
Fire and Brimstone Speech on next slides.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.
Fire and Brimstone Speech on next slides.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.
Fire and Brimstone Speech on next slides.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.
Fire and Brimstone Speech on next slides.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.
Fire and Brimstone Speech on next slides.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.
Fire and Brimstone Speech on next slides.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.

Fire and Brimstone Speech on next slides.

Planar 4COL is in P

1. In 1852 Francis Guthrie asked is every map 4-colorable. This
is equivalent to is every planar graph 4-colorable.

2. Guthrie told DeMorgan who told Hamilton about the problem.
So it got some attention.

3. Many people worked on the problem, no progress.

4. 1976: Appel-Haken-Koch solved it. Used a comp. search.

5. 1996 Robertson-Sanders-Seymour-Thomas. Simpler but a
comp. search.

Since every planar graph is 4-colorable

{G : G is Planar and G ∈ 4COL} = {G : G is Planar}

and hence is in P.
Fire and Brimstone Speech on next slides.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.
2. {w : #ab(w) = #ba(w)}. Clever.
3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.
4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.

2. {w : #ab(w) = #ba(w)}. Clever.
3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.
4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.
2. {w : #ab(w) = #ba(w)}. Clever.

3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.
4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.
2. {w : #ab(w) = #ba(w)}. Clever.
3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.

4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.
2. {w : #ab(w) = #ba(w)}. Clever.
3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.
4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.
2. {w : #ab(w) = #ba(w)}. Clever.
3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.
4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.
2. {w : #ab(w) = #ba(w)}. Clever.
3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.
4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.
2. {w : #ab(w) = #ba(w)}. Clever.
3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.
4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.
2. {w : #ab(w) = #ba(w)}. Clever.
3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.
4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

A New Variant of Fire and Brimstone

My past Fire and Brimstone sermons:

1. Small NFA for {an | n ̸= 1000}. Clever.
2. {w : #ab(w) = #ba(w)}. Clever.
3. Small CFG for {w : |w | = n ∧#a(w) = n/2}. Clever.
4. VCk via Graph Minor Theorem. Hard Math or Clever.

PL4COL ∈ P is something new.

Comp. prog. to prove all planar graphs are 4-colorable.

The proof used some math but not that hard.

The proof used some cleverness but no that clever.

The bulk of the proof was the program.

Fire and Brimstone

To prove SAT /∈ P we have to rule out that any of the following,
or a combination of them, will be used to get an poly time
algorithm for SAT:

1. Cleverness

2. Hard Math

3. A Computer Program (perhaps to find some parameters).

So proving SAT /∈ P is going to be hard.

It is my hope that Adam-Isaac-Sam show SAT /∈ P before the final
and hence prove me a fool.
If they do then

1. The don’t have to grade the final.

2. They owe me 1000,000 free lunches.

Fire and Brimstone

To prove SAT /∈ P we have to rule out that any of the following,
or a combination of them, will be used to get an poly time
algorithm for SAT:

1. Cleverness

2. Hard Math

3. A Computer Program (perhaps to find some parameters).

So proving SAT /∈ P is going to be hard.

It is my hope that Adam-Isaac-Sam show SAT /∈ P before the final
and hence prove me a fool.
If they do then

1. The don’t have to grade the final.

2. They owe me 1000,000 free lunches.

Fire and Brimstone

To prove SAT /∈ P we have to rule out that any of the following,
or a combination of them, will be used to get an poly time
algorithm for SAT:

1. Cleverness

2. Hard Math

3. A Computer Program (perhaps to find some parameters).

So proving SAT /∈ P is going to be hard.

It is my hope that Adam-Isaac-Sam show SAT /∈ P before the final
and hence prove me a fool.
If they do then

1. The don’t have to grade the final.

2. They owe me 1000,000 free lunches.

Fire and Brimstone

To prove SAT /∈ P we have to rule out that any of the following,
or a combination of them, will be used to get an poly time
algorithm for SAT:

1. Cleverness

2. Hard Math

3. A Computer Program (perhaps to find some parameters).

So proving SAT /∈ P is going to be hard.

It is my hope that Adam-Isaac-Sam show SAT /∈ P before the final
and hence prove me a fool.
If they do then

1. The don’t have to grade the final.

2. They owe me 1000,000 free lunches.

Fire and Brimstone

To prove SAT /∈ P we have to rule out that any of the following,
or a combination of them, will be used to get an poly time
algorithm for SAT:

1. Cleverness

2. Hard Math

3. A Computer Program (perhaps to find some parameters).

So proving SAT /∈ P is going to be hard.

It is my hope that Adam-Isaac-Sam show SAT /∈ P before the final
and hence prove me a fool.
If they do then

1. The don’t have to grade the final.

2. They owe me 1000,000 free lunches.

Fire and Brimstone

To prove SAT /∈ P we have to rule out that any of the following,
or a combination of them, will be used to get an poly time
algorithm for SAT:

1. Cleverness

2. Hard Math

3. A Computer Program (perhaps to find some parameters).

So proving SAT /∈ P is going to be hard.

It is my hope that Adam-Isaac-Sam show SAT /∈ P before the final
and hence prove me a fool.

If they do then

1. The don’t have to grade the final.

2. They owe me 1000,000 free lunches.

Fire and Brimstone

To prove SAT /∈ P we have to rule out that any of the following,
or a combination of them, will be used to get an poly time
algorithm for SAT:

1. Cleverness

2. Hard Math

3. A Computer Program (perhaps to find some parameters).

So proving SAT /∈ P is going to be hard.

It is my hope that Adam-Isaac-Sam show SAT /∈ P before the final
and hence prove me a fool.
If they do then

1. The don’t have to grade the final.

2. They owe me 1000,000 free lunches.

Fire and Brimstone

To prove SAT /∈ P we have to rule out that any of the following,
or a combination of them, will be used to get an poly time
algorithm for SAT:

1. Cleverness

2. Hard Math

3. A Computer Program (perhaps to find some parameters).

So proving SAT /∈ P is going to be hard.

It is my hope that Adam-Isaac-Sam show SAT /∈ P before the final
and hence prove me a fool.
If they do then

1. The don’t have to grade the final.

2. They owe me 1000,000 free lunches.

Fire and Brimstone

To prove SAT /∈ P we have to rule out that any of the following,
or a combination of them, will be used to get an poly time
algorithm for SAT:

1. Cleverness

2. Hard Math

3. A Computer Program (perhaps to find some parameters).

So proving SAT /∈ P is going to be hard.

It is my hope that Adam-Isaac-Sam show SAT /∈ P before the final
and hence prove me a fool.
If they do then

1. The don’t have to grade the final.

2. They owe me 1000,000 free lunches.

