HW10 Solution

$$
4 \square>4 \text { 甸 } 1 \text { 引 }
$$

Image of a <-Increasing Comp Funct is Dec

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x)<f(y)]$.

Image of a <-Increasing Comp Funct is Dec

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x)<f(y)]$. Show $\{y:(\exists x)[f(x)=y]\}$ is computable.

Image of a <-Increasing Comp Funct is Dec

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x)<f(y)]$. Show $\{y:(\exists x)[f(x)=y]\}$ is computable.
Let f be computed by TM M. Here is algorithm.

Image of a <-Increasing Comp Funct is Dec

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x)<f(y)]$. Show $\{y:(\exists x)[f(x)=y]\}$ is computable.
Let f be computed by TM M. Here is algorithm.

1. Input y

Image of a <-Increasing Comp Funct is Dec

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x)<f(y)]$. Show $\{y:(\exists x)[f(x)=y]\}$ is computable.
Let f be computed by TM M. Here is algorithm.

1. Input y
2. Compute $f(1), f(2), \ldots$ until one of the following happens

Image of a <-Increasing Comp Funct is Dec

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x)<f(y)]$. Show $\{y:(\exists x)[f(x)=y]\}$ is computable.
Let f be computed by TM M. Here is algorithm.

1. Input y
2. Compute $f(1), f(2), \ldots$ until one of the following happens

- Find x with $f(x)=y$. Output YES and halt.

Image of a <-Increasing Comp Funct is Dec

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x)<f(y)]$. Show $\{y:(\exists x)[f(x)=y]\}$ is computable.
Let f be computed by TM M. Here is algorithm.

1. Input y
2. Compute $f(1), f(2), \ldots$ until one of the following happens

- Find x with $f(x)=y$. Output YES and halt.
- Find x with $f(x)<y<f(x+1)$. Then output NO and halt.

Is the image of a \leq-Increasing Comp Funct Dec?

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x) \leq f(y)]$.

Is the image of a \leq-Increasing Comp Funct Dec?

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x) \leq f(y)]$. Is $\{y:(\exists x)[f(x)=y]\}$ is computable?

Is the image of a \leq-Increasing Comp Funct Dec?

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x) \leq f(y)]$. Is $\{y:(\exists x)[f(x)=y]\}$ is computable? VOTE

Is the image of a \leq-Increasing Comp Funct Dec?

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x) \leq f(y)]$. Is $\{y:(\exists x)[f(x)=y]\}$ is computable? VOTE

- For all comp \leq-increasing f, image of f is computable.

Is the image of a \leq-Increasing Comp Funct Dec?

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x) \leq f(y)]$. Is $\{y:(\exists x)[f(x)=y]\}$ is computable? VOTE

- For all comp \leq-increasing f, image of f is computable.
- \exists comp \leq-increasing f, image of f is not computable.

Is the image of a \leq-Increasing Comp Funct Dec?

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x) \leq f(y)]$. Is $\{y:(\exists x)[f(x)=y]\}$ is computable? VOTE

- For all comp \leq-increasing f, image of f is computable.
- \exists comp \leq-increasing f, image of f is not computable.
- Unknown to Science

Is the image of a \leq-Increasing Comp Funct Dec?

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x<y \rightarrow f(x) \leq f(y)]$. Is $\{y:(\exists x)[f(x)=y]\}$ is computable? VOTE

- For all comp \leq-increasing f, image of f is computable.
- \exists comp \leq-increasing f, image of f is not computable.
- Unknown to Science

Answer on next page.

The image of a \leq-Increasing Comp Funct is Dec

There are two cases.

The image of a \leq-Increasing Comp Funct is Dec

There are two cases.
Case $1 f(1), f(2), \ldots \rightarrow \infty$.

The image of a \leq-Increasing Comp Funct is Dec

There are two cases.
Case $1 f(1), f(2), \ldots \rightarrow \infty$. Solution for $<-\operatorname{inc} f$ works.

The image of a \leq-Increasing Comp Funct is Dec

There are two cases.
Case $1 f(1), f(2), \ldots \rightarrow \infty$. Solution for $<-\operatorname{inc} f$ works.
Case $2 f(1), f(2), \ldots \nrightarrow \infty$.

The image of a \leq-Increasing Comp Funct is Dec

There are two cases.
Case $1 f(1), f(2), \ldots \rightarrow \infty$. Solution for <-inc f works.
Case $2 f(1), f(2), \ldots \nrightarrow \infty$. image of f finite, hence dec.

The image of a \leq-Increasing Comp Funct is Dec

There are two cases.
Case $1 f(1), f(2), \ldots \rightarrow \infty$. Solution for <-inc f works.
Case $2 f(1), f(2), \ldots \nrightarrow \infty$. image of f finite, hence dec.
Student Thats cheating!

The image of a \leq-Increasing Comp Funct is Dec

There are two cases.
Case $1 f(1), f(2), \ldots \rightarrow \infty$. Solution for $<-\operatorname{inc} f$ works.
Case $2 f(1), f(2), \ldots \nrightarrow \infty$. image of f finite, hence dec.
Student Thats cheating!
Bill No, but the proof is non-constructive. Given a TM for f you do not know which case you will be in. But image of f is decidable in either case.

The image of a \leq-Increasing Comp Funct is Dec

There are two cases.
Case $1 f(1), f(2), \ldots \rightarrow \infty$. Solution for $<-\operatorname{inc} f$ works.
Case $2 f(1), f(2), \ldots \nrightarrow \infty$. image of f finite, hence dec.
Student Thats cheating!
Bill No, but the proof is non-constructive. Given a TM for f you do not know which case you will be in. But image of f is decidable in either case.
Student I understand it, but I don't like it.

The image of a \leq-Increasing Comp Funct is Dec

There are two cases.
Case $1 f(1), f(2), \ldots \rightarrow \infty$. Solution for $<-\operatorname{inc} f$ works.
Case $2 f(1), f(2), \ldots \nrightarrow \infty$. image of f finite, hence dec.
Student Thats cheating!
Bill No, but the proof is non-constructive. Given a TM for f you do not know which case you will be in. But image of f is decidable in either case.
Student I understand it, but I don't like it.
Bill I am absolutely okay with that.

H10 for Polys in One Var

Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.

H10 for Polys in One Var

Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
Problem Determine if p have a root in \mathbb{Z}.

H10 for Polys in One Var

Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
Problem Determine if p have a root in \mathbb{Z}.
Say r is a root.
$r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)+a_{0}=0$.

H10 for Polys in One Var

Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
Problem Determine if p have a root in \mathbb{Z}.
Say r is a root.

$$
\begin{aligned}
& r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)+a_{0}=0 \\
& r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)=-a_{0}
\end{aligned}
$$

H10 for Polys in One Var

Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
Problem Determine if p have a root in \mathbb{Z}.
Say r is a root.

$$
\begin{aligned}
& r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)+a_{0}=0 \\
& r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)=-a_{0}
\end{aligned}
$$

If $a_{0}=0$ then output YES since 0 is a root.

H10 for Polys in One Var

Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
Problem Determine if p have a root in \mathbb{Z}.
Say r is a root.
$r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)+a_{0}=0$.
$r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)=-a_{0}$
If $a_{0}=0$ then output YES since 0 is a root.
If $a_{0} \neq 0$ then r divides $-a_{0}$.

H10 for Polys in One Var

Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
Problem Determine if p have a root in \mathbb{Z}.
Say r is a root.
$r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)+a_{0}=0$.
$r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)=-a_{0}$
If $a_{0}=0$ then output YES since 0 is a root.
If $a_{0} \neq 0$ then r divides $-a_{0}$.
Hence need only check all divisors of $-a_{0}$.

H10 for Polys in One Var

Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
Problem Determine if p have a root in \mathbb{Z}.
Say r is a root.
$r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)+a_{0}=0$.
$r\left(a_{n} r^{n-1}+\cdots+a_{1}\right)=-a_{0}$
If $a_{0}=0$ then output YES since 0 is a root.
If $a_{0} \neq 0$ then r divides $-a_{0}$.
Hence need only check all divisors of $-a_{0}$.
Formal Alg on Next Slide.

H10 for Polys in One Var (cont)

H10 for Polys in One Var (cont)

1. Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.

H10 for Polys in One Var (cont)

1. Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
2. If $a_{0}=0$ then output YES and halt (since 0 will be a root).

H10 for Polys in One Var (cont)

1. Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
2. If $a_{0}=0$ then output YES and halt (since 0 will be a root).
3. (If here then $a_{0} \neq 0$) Let d_{1}, \ldots, d_{L} be ALL divisors of $-a_{0}$. (KEY there are a finite number of them.)

H10 for Polys in One Var (cont)

1. Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
2. If $a_{0}=0$ then output YES and halt (since 0 will be a root).
3. (If here then $a_{0} \neq 0$) Let d_{1}, \ldots, d_{L} be ALL divisors of $-a_{0}$. (KEY there are a finite number of them.)
4. For $1 \leq i \leq L$

H10 for Polys in One Var (cont)

1. Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
2. If $a_{0}=0$ then output YES and halt (since 0 will be a root).
3. (If here then $a_{0} \neq 0$) Let d_{1}, \ldots, d_{L} be ALL divisors of $-a_{0}$. (KEY there are a finite number of them.)
4. For $1 \leq i \leq L$
4.1 Compute $p\left(d_{i}\right)$.

H10 for Polys in One Var (cont)

1. Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
2. If $a_{0}=0$ then output YES and halt (since 0 will be a root).
3. (If here then $a_{0} \neq 0$) Let d_{1}, \ldots, d_{L} be ALL divisors of $-a_{0}$. (KEY there are a finite number of them.)
4. For $1 \leq i \leq L$
4.1 Compute $p\left(d_{i}\right)$.
4.2 If $p\left(d_{i}\right)=0$ then output YES and halt.

H10 for Polys in One Var (cont)

1. Input $p(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$.
2. If $a_{0}=0$ then output YES and halt (since 0 will be a root).
3. (If here then $a_{0} \neq 0$) Let d_{1}, \ldots, d_{L} be ALL divisors of $-a_{0}$. (KEY there are a finite number of them.)
4. For $1 \leq i \leq L$
4.1 Compute $p\left(d_{i}\right)$.
4.2 If $p\left(d_{i}\right)=0$ then output YES and halt.
5. (If you got here then none of $p\left(d_{i}\right)=0$.) Output NO.

DFA for WS1S Formula $x=y+1$

DFA for WS1S Formula $x=y+2$

DFA for WS1S Formula $x=y+a$

Takes $a+5$ states

