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Image of a <-Increasing Comp Funct is Dec

f is comp fn from N to N such that (Vx,y)[x <y — f(x) < f(y)].
Show {y : (3x)[f(x) = y]} is computable.
Let f be computed by TM M. Here is algorithm.

1. Input y

2. Compute f(1),1(2),...

)
> Find x with f(x)
> Find x with f(x)

until one of the following happens

= y. Output YES and halt.
< < f(x+1). Then output NO and halt.
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f is comp fn from N to N such that (Vx, y)[x <y — f(x) < f(y)].
Is {y : (3x)[f(x) = y]} is computable? VOTE

» For all comp <-increasing f, image of f is computable.

» J comp <-increasing f, image of f is not computable.

» Unknown to Science

Answer on next page.
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The image of a <-Increasing Comp Funct is Dec

There are two cases.
Case 1 f(1),f(2),... = oo. Solution for <-inc f works.

Case 2 f(1),f(2),... / oo. image of f finite, hence dec.
Student Thats cheating!

Bill No, but the proof is non-constructive. Given a TM for f you
do not know which case you will be in. But image of f is decidable
in either case.

Student | understand it, but | don't like it.
Bill | am absolutely okay with that.
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Input p(x) = apx” + -+ + ap € Z[x].
Problem Determine if p have a root in Z.
Say r is a root.

r(anr"™t+---4a1)+ag =0.

r(anr" Y+ 4a1) = —ap

If a9 = 0 then output YES since 0 is a root.
If ag # 0 then r divides —ap.

Hence need only check all divisors of —ag.
Formal Alg on Next Slide.
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H10 for Polys in One Var (cont)

1. Input p(x) = apx" +--- + ap € Z[x].
2. If ag = 0 then output YES and halt (since 0 will be a root).
3. (If here then ap # 0) Let di,...,d; be ALL divisors of —ag.
(KEY there are a finite number of them.)
4. For1 <i<L
4.1 Compute p(d;).
4.2 If p(d;) = 0 then output YES and halt.

5. (If you got here then none of p(d;) =0.) Output NO.
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DFA for WS1S Formula x =y + a

Takes a + 5 states



