
HW10 Solution



Image of a <-Increasing Comp Funct is Dec

f is comp fn from N to N such that (∀x , y)[x < y → f (x) < f (y)].

Show {y : (∃x)[f (x) = y ]} is computable.

Let f be computed by TM M. Here is algorithm.

1. Input y

2. Compute f (1), f (2), . . . until one of the following happens
▶ Find x with f (x) = y . Output YES and halt.
▶ Find x with f (x) < y < f (x + 1). Then output NO and halt.
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Is the image of a ≤-Increasing Comp Funct Dec?

f is comp fn from N to N such that (∀x , y)[x < y → f (x) ≤ f (y)].

Is {y : (∃x)[f (x) = y ]} is computable? VOTE

▶ For all comp ≤-increasing f , image of f is computable.

▶ ∃ comp ≤-increasing f , image of f is not computable.

▶ Unknown to Science

Answer on next page.
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The image of a ≤-Increasing Comp Funct is Dec

There are two cases.

Case 1 f (1), f (2), . . . → ∞. Solution for <-inc f works.

Case 2 f (1), f (2), . . . ̸→ ∞. image of f finite, hence dec.

Student Thats cheating!

Bill No, but the proof is non-constructive. Given a TM for f you
do not know which case you will be in. But image of f is decidable
in either case.

Student I understand it, but I don’t like it.

Bill I am absolutely okay with that.
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H10 for Polys in One Var

Input p(x) = anx
n + · · ·+ a0 ∈ Z[x ].

Problem Determine if p have a root in Z.
Say r is a root.
r(anr

n−1 + · · ·+ a1) + a0 = 0.

r(anr
n−1 + · · ·+ a1) = −a0

If a0 = 0 then output YES since 0 is a root.

If a0 ̸= 0 then r divides −a0.

Hence need only check all divisors of −a0.

Formal Alg on Next Slide.
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H10 for Polys in One Var (cont)

1. Input p(x) = anx
n + · · ·+ a0 ∈ Z[x ].

2. If a0 = 0 then output YES and halt (since 0 will be a root).

3. (If here then a0 ̸= 0) Let d1, . . . , dL be ALL divisors of −a0.
(KEY there are a finite number of them.)

4. For 1 ≤ i ≤ L

4.1 Compute p(di ).
4.2 If p(di ) = 0 then output YES and halt.

5. (If you got here then none of p(di ) = 0.) Output NO.
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DFA for WS1S Formula x = y + 1
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DFA for WS1S Formula x = y + 2
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DFA for WS1S Formula x = y + a
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Takes a+ 5 states


