HW10 Solution

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) < f(y)].$

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) < f(y)]$. Show $\{y : (\exists x)[f(x) = y]\}$ is computable.

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) < f(y)]$. Show $\{y : (\exists x)[f(x) = y]\}$ is computable. Let *f* be computed by TM *M*. Here is algorithm.

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) < f(y)]$. Show $\{y : (\exists x)[f(x) = y]\}$ is computable.

Let f be computed by TM M. Here is algorithm.

1. Input y

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) < f(y)]$. Show $\{y : (\exists x)[f(x) = y]\}$ is computable.

Let f be computed by TM M. Here is algorithm.

- 1. Input y
- 2. Compute $f(1), f(2), \ldots$ until one of the following happens

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) < f(y)]$. Show $\{y : (\exists x)[f(x) = y]\}$ is computable.

Let f be computed by TM M. Here is algorithm.

- 1. Input y
- 2. Compute $f(1), f(2), \ldots$ until one of the following happens

Find x with f(x) = y. Output YES and halt.

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) < f(y)]$. Show $\{y : (\exists x)[f(x) = y]\}$ is computable.

Let f be computed by TM M. Here is algorithm.

- 1. Input y
- 2. Compute $f(1), f(2), \ldots$ until one of the following happens
 - Find x with f(x) = y. Output YES and halt.
 - Find x with f(x) < y < f(x+1). Then output NO and halt.

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) \leq f(y)]$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) \le f(y)]$. Is $\{y : (\exists x)[f(x) = y]\}$ is computable?

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) \le f(y)]$. Is $\{y : (\exists x)[f(x) = y]\}$ is computable? **VOTE**

f is comp fn from N to N such that (∀x, y)[x < y → f(x) ≤ f(y)].
Is {y : (∃x)[f(x) = y]} is computable? VOTE
For all comp ≤-increasing f, image of f is computable.

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) \le f(y)]$. Is $\{y : (\exists x)[f(x) = y]\}$ is computable? **VOTE**

- ▶ For all comp ≤-increasing *f*, image of *f* is computable.
- ▶ \exists comp ≤-increasing f, image of f is not computable.

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) \le f(y)]$. Is $\{y : (\exists x)[f(x) = y]\}$ is computable? **VOTE**

- ▶ For all comp ≤-increasing *f*, image of *f* is computable.
- ▶ \exists comp ≤-increasing f, image of f is not computable.
- Unknown to Science

f is comp fn from \mathbb{N} to \mathbb{N} such that $(\forall x, y)[x < y \rightarrow f(x) \le f(y)]$. Is $\{y : (\exists x)[f(x) = y]\}$ is computable? **VOTE**

- ▶ For all comp ≤-increasing *f*, image of *f* is computable.
- ▶ \exists comp ≤-increasing f, image of f is not computable.
- Unknown to Science

Answer on next page.

There are two cases.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

There are two cases. **Case 1** $f(1), f(2), \ldots \rightarrow \infty$.

There are two cases. **Case 1** $f(1), f(2), \ldots \rightarrow \infty$. Solution for <-inc f works.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

There are two cases. **Case 1** $f(1), f(2), \ldots \rightarrow \infty$. Solution for <-inc f works. **Case 2** $f(1), f(2), \ldots \not\rightarrow \infty$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

There are two cases. **Case 1** $f(1), f(2), \ldots \rightarrow \infty$. Solution for <-inc f works. **Case 2** $f(1), f(2), \ldots \not\rightarrow \infty$. image of f finite, hence dec.

There are two cases. **Case 1** $f(1), f(2), \ldots \rightarrow \infty$. Solution for <-inc f works. **Case 2** $f(1), f(2), \ldots \not\rightarrow \infty$. image of f finite, hence dec. **Student** Thats cheating!

There are two cases. **Case 1** $f(1), f(2), \ldots \rightarrow \infty$. Solution for <-inc f works. **Case 2** $f(1), f(2), \ldots \not\rightarrow \infty$. image of f finite, hence dec. **Student** Thats cheating!

Bill No, but the proof is non-constructive. Given a TM for f you do not know which case you will be in. But image of f is decidable in either case.

There are two cases. **Case 1** $f(1), f(2), \ldots \rightarrow \infty$. Solution for <-inc f works. **Case 2** $f(1), f(2), \ldots \not\rightarrow \infty$. image of f finite, hence dec. **Student** Thats cheating!

Bill No, but the proof is non-constructive. Given a TM for f you do not know which case you will be in. But image of f is decidable in either case.

ション ふゆ アメリア メリア しょうくしゃ

Student I understand it, but I don't like it.

There are two cases.

Case 1 $f(1), f(2), \ldots \rightarrow \infty$. Solution for <-inc f works.

Case 2 $f(1), f(2), \ldots \not\to \infty$. image of f finite, hence dec.

Student Thats cheating!

Bill No, but the proof is non-constructive. Given a TM for f you do not know which case you will be in. But image of f is decidable in either case.

Student I understand it, but I don't like it.

Bill I am absolutely okay with that.

Input
$$p(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Input
$$p(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$
.
Problem Determine if *p* have a root in \mathbb{Z} .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Input
$$p(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$
.
Problem Determine if p have a root in \mathbb{Z} .
Say r is a root.
 $r(a_n r^{n-1} + \dots + a_1) + a_0 = 0$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Input
$$p(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$
.
Problem Determine if p have a root in \mathbb{Z} .
Say r is a root.
 $r(a_n r^{n-1} + \dots + a_1) + a_0 = 0$.
 $r(a_n r^{n-1} + \dots + a_1) = -a_0$

Input
$$p(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$
.
Problem Determine if p have a root in \mathbb{Z} .
Say r is a root.
 $r(a_n r^{n-1} + \dots + a_1) + a_0 = 0$.
 $r(a_n r^{n-1} + \dots + a_1) = -a_0$
If $a_0 = 0$ then output YES since 0 is a root.

Input
$$p(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$
.
Problem Determine if p have a root in \mathbb{Z} .
Say r is a root.
 $r(a_n r^{n-1} + \dots + a_1) + a_0 = 0$.
 $r(a_n r^{n-1} + \dots + a_1) = -a_0$
If $a_0 = 0$ then output YES since 0 is a root.
If $a_0 \neq 0$ then r divides $-a_0$.

Input
$$p(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$
.
Problem Determine if p have a root in \mathbb{Z} .
Say r is a root.
 $r(a_n r^{n-1} + \dots + a_1) + a_0 = 0$.
 $r(a_n r^{n-1} + \dots + a_1) = -a_0$
If $a_0 = 0$ then output YES since 0 is a root.
If $a_0 \neq 0$ then r divides $-a_0$.
Hence need only check all divisors of $-a_0$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Input
$$p(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$
.
Problem Determine if p have a root in \mathbb{Z} .
Say r is a root.
 $r(a_n r^{n-1} + \dots + a_1) + a_0 = 0$.
 $r(a_n r^{n-1} + \dots + a_1) = -a_0$
If $a_0 = 0$ then output YES since 0 is a root.
If $a_0 \neq 0$ then r divides $-a_0$.
Hence need only check all divisors of $-a_0$.
Formal Alg on Next Slide.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

1. Input
$$p(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$$
.

- 1. Input $p(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$.
- 2. If $a_0 = 0$ then output YES and halt (since 0 will be a root).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1. Input $p(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$.
- 2. If $a_0 = 0$ then output YES and halt (since 0 will be a root).
- 3. (If here then $a_0 \neq 0$) Let d_1, \ldots, d_L be ALL divisors of $-a_0$. (KEY there are a finite number of them.)

- 1. Input $p(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$.
- 2. If $a_0 = 0$ then output YES and halt (since 0 will be a root).
- 3. (If here then $a_0 \neq 0$) Let d_1, \ldots, d_L be ALL divisors of $-a_0$. (**KEY** there are a finite number of them.)

4. For $1 \leq i \leq L$

- 1. Input $p(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$.
- 2. If $a_0 = 0$ then output YES and halt (since 0 will be a root).
- 3. (If here then $a_0 \neq 0$) Let d_1, \ldots, d_L be ALL divisors of $-a_0$. (**KEY** there are a finite number of them.)

- 4. For $1 \leq i \leq L$
 - **4.1** Compute $p(d_i)$.

- 1. Input $p(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$.
- 2. If $a_0 = 0$ then output YES and halt (since 0 will be a root).
- 3. (If here then $a_0 \neq 0$) Let d_1, \ldots, d_L be ALL divisors of $-a_0$. (**KEY** there are a finite number of them.)

- 4. For $1 \leq i \leq L$
 - 4.1 Compute $p(d_i)$. 4.2 If $p(d_i) = 0$ then output YES and halt.

- 1. Input $p(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$.
- 2. If $a_0 = 0$ then output YES and halt (since 0 will be a root).
- 3. (If here then $a_0 \neq 0$) Let d_1, \ldots, d_L be ALL divisors of $-a_0$. (**KEY** there are a finite number of them.)

- 4. For $1 \le i \le L$
 - **4**.1 Compute $p(d_i)$.
 - **4.2** If $p(d_i) = 0$ then output YES and halt.
- 5. (If you got here then none of $p(d_i) = 0$.) Output NO.

DFA for WS1S Formula x = y + 1

DFA for WS1S Formula x = y + 2

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�?

DFA for WS1S Formula x = y + a

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Takes a + 5 states