
HW11 Solution



CFG Comp is Undecidable

1) ACCe is a CFL:

For ACCe,x we had the set of strings
w ’s prefix is NOT #x(s,#)#∗$.

For ACCe we replace x with ANY elements of Σ∗. Hence
w ’s prefix is NOT #Σ∗(s,#)#∗$.



CFG Comp is Undecidable

1) ACCe is a CFL:

For ACCe,x we had the set of strings
w ’s prefix is NOT #x(s,#)#∗$.

For ACCe we replace x with ANY elements of Σ∗. Hence
w ’s prefix is NOT #Σ∗(s,#)#∗$.



CFG Comp is Undecidable

1) ACCe is a CFL:

For ACCe,x we had the set of strings
w ’s prefix is NOT #x(s,#)#∗$.

For ACCe we replace x with ANY elements of Σ∗. Hence
w ’s prefix is NOT #Σ∗(s,#)#∗$.



CFG Comp is Undecidable (cont)

INF is {e : Me accepts an infinite number of inputs }
2) Show: If e ∈ INF then ACCe is NOT a CFL.

Omitted



CFG Comp is Undecidable (cont)

INF is {e : Me accepts an infinite number of inputs }
2) Show: If e ∈ INF then ACCe is NOT a CFL.
Omitted



CFG Comp is Undecidable (cont)

3) Show that if e /∈ INF then ACCe IS a CFL.

If e /∈ INF then ACCe is FINITE, hence a CFL.



CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

▶ Input e. Create a CFG G for ACCe .

▶ Use the algo for CFG-COMP to determine if L(G ) = ACCe is
a CFL.

▶ If L(G ) IS a CFL then e /∈ INF, so output NOT and halt.

▶ If L(G ) IS NOT a CFL then e ∈ INF, so output YES and halt.

e ∈ INF =⇒ ACCe not CFL =⇒ L(G ) = ACCe NOT CFG.
e /∈ INF =⇒ ACCe is CFL =⇒ L(G ) = ACCe is a CFG.



CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

▶ Input e. Create a CFG G for ACCe .

▶ Use the algo for CFG-COMP to determine if L(G ) = ACCe is
a CFL.

▶ If L(G ) IS a CFL then e /∈ INF, so output NOT and halt.

▶ If L(G ) IS NOT a CFL then e ∈ INF, so output YES and halt.

e ∈ INF =⇒ ACCe not CFL =⇒ L(G ) = ACCe NOT CFG.
e /∈ INF =⇒ ACCe is CFL =⇒ L(G ) = ACCe is a CFG.



CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

▶ Input e. Create a CFG G for ACCe .

▶ Use the algo for CFG-COMP to determine if L(G ) = ACCe is
a CFL.

▶ If L(G ) IS a CFL then e /∈ INF, so output NOT and halt.

▶ If L(G ) IS NOT a CFL then e ∈ INF, so output YES and halt.

e ∈ INF =⇒ ACCe not CFL =⇒ L(G ) = ACCe NOT CFG.
e /∈ INF =⇒ ACCe is CFL =⇒ L(G ) = ACCe is a CFG.



CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

▶ Input e. Create a CFG G for ACCe .

▶ Use the algo for CFG-COMP to determine if L(G ) = ACCe is
a CFL.

▶ If L(G ) IS a CFL then e /∈ INF, so output NOT and halt.

▶ If L(G ) IS NOT a CFL then e ∈ INF, so output YES and halt.

e ∈ INF =⇒ ACCe not CFL =⇒ L(G ) = ACCe NOT CFG.
e /∈ INF =⇒ ACCe is CFL =⇒ L(G ) = ACCe is a CFG.



CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

▶ Input e. Create a CFG G for ACCe .

▶ Use the algo for CFG-COMP to determine if L(G ) = ACCe is
a CFL.

▶ If L(G ) IS a CFL then e /∈ INF, so output NOT and halt.

▶ If L(G ) IS NOT a CFL then e ∈ INF, so output YES and halt.

e ∈ INF =⇒ ACCe not CFL =⇒ L(G ) = ACCe NOT CFG.
e /∈ INF =⇒ ACCe is CFL =⇒ L(G ) = ACCe is a CFG.



CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

▶ Input e. Create a CFG G for ACCe .

▶ Use the algo for CFG-COMP to determine if L(G ) = ACCe is
a CFL.

▶ If L(G ) IS a CFL then e /∈ INF, so output NOT and halt.

▶ If L(G ) IS NOT a CFL then e ∈ INF, so output YES and halt.

e ∈ INF =⇒ ACCe not CFL =⇒ L(G ) = ACCe NOT CFG.

e /∈ INF =⇒ ACCe is CFL =⇒ L(G ) = ACCe is a CFG.



CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

▶ Input e. Create a CFG G for ACCe .

▶ Use the algo for CFG-COMP to determine if L(G ) = ACCe is
a CFL.

▶ If L(G ) IS a CFL then e /∈ INF, so output NOT and halt.

▶ If L(G ) IS NOT a CFL then e ∈ INF, so output YES and halt.

e ∈ INF =⇒ ACCe not CFL =⇒ L(G ) = ACCe NOT CFG.
e /∈ INF =⇒ ACCe is CFL =⇒ L(G ) = ACCe is a CFG.



Diophantine Sets

A =

{
x :

k∧
i=1

x ≡ ai (mod mi )

}
.

x ∈ A iff

(∃y1, . . . , yk)[(
k∑

i=1

(x − ai − yimi )
2 = 0)]



Diophantine Sets

A =

{
x :

k∧
i=1

x ≡ ai (mod mi )

}
.

x ∈ A iff

(∃y1, . . . , yk)[(
k∑

i=1

(x − ai − yimi )
2 = 0)]



More Dio Sets

p1, . . . , pk are primes.

k∧
i=1

x ̸≡ 0 (mod pi ) ≡
k∧

i=1

pi−1∨
j=1

x ≡ j (mod pi )

Let pi ,j(x , yi ,j) = (x − j + yipi ).

Let pi (x , yi ,1, yi ,2, . . . , yi ,pi−1) =
∏pi−1

j=1 (x − piyi ,j + j)

The final polynomial is

k∑
i=1

pi (x , yi ,1, . . . , yi ,pi−1)
2



More Dio Sets

p1, . . . , pk are primes.

k∧
i=1

x ̸≡ 0 (mod pi ) ≡
k∧

i=1

pi−1∨
j=1

x ≡ j (mod pi )

Let pi ,j(x , yi ,j) = (x − j + yipi ).

Let pi (x , yi ,1, yi ,2, . . . , yi ,pi−1) =
∏pi−1

j=1 (x − piyi ,j + j)

The final polynomial is

k∑
i=1

pi (x , yi ,1, . . . , yi ,pi−1)
2



More Dio Sets

p1, . . . , pk are primes.

k∧
i=1

x ̸≡ 0 (mod pi ) ≡
k∧

i=1

pi−1∨
j=1

x ≡ j (mod pi )

Let pi ,j(x , yi ,j) = (x − j + yipi ).

Let pi (x , yi ,1, yi ,2, . . . , yi ,pi−1) =
∏pi−1

j=1 (x − piyi ,j + j)

The final polynomial is

k∑
i=1

pi (x , yi ,1, . . . , yi ,pi−1)
2



More Dio Sets

p1, . . . , pk are primes.

k∧
i=1

x ̸≡ 0 (mod pi ) ≡
k∧

i=1

pi−1∨
j=1

x ≡ j (mod pi )

Let pi ,j(x , yi ,j) = (x − j + yipi ).

Let pi (x , yi ,1, yi ,2, . . . , yi ,pi−1) =
∏pi−1

j=1 (x − piyi ,j + j)

The final polynomial is

k∑
i=1

pi (x , yi ,1, . . . , yi ,pi−1)
2



More Dio Sets

p1, . . . , pk are primes.

k∧
i=1

x ̸≡ 0 (mod pi ) ≡
k∧

i=1

pi−1∨
j=1

x ≡ j (mod pi )

Let pi ,j(x , yi ,j) = (x − j + yipi ).

Let pi (x , yi ,1, yi ,2, . . . , yi ,pi−1) =
∏pi−1

j=1 (x − piyi ,j + j)

The final polynomial is

k∑
i=1

pi (x , yi ,1, . . . , yi ,pi−1)
2



Horse Number Variant

For n ≥ 2. B(n): numb of ways that n horses, x1, . . . , xn, can
finish a race (equalities allowed) such that x1 < x2.



Horse Number Variant Case 1

Case 1 x1 is one of the mins. x2 CANNOT be a min. For
0 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to also be mins.

This can be done in
(n−2

i

)
ways.

Then there are n − i − 1 left which can be ordered in H(n − i − 1)
ways.

n−2∑
i=0

(
n − 2

i

)
H(n − i − 1)



Horse Number Variant Case 1

Case 1 x1 is one of the mins. x2 CANNOT be a min. For
0 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to also be mins.

This can be done in
(n−2

i

)
ways.

Then there are n − i − 1 left which can be ordered in H(n − i − 1)
ways.

n−2∑
i=0

(
n − 2

i

)
H(n − i − 1)



Horse Number Variant Case 1

Case 1 x1 is one of the mins. x2 CANNOT be a min. For
0 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to also be mins.

This can be done in
(n−2

i

)
ways.

Then there are n − i − 1 left which can be ordered in H(n − i − 1)
ways.

n−2∑
i=0

(
n − 2

i

)
H(n − i − 1)



Horse Number Variant Case 1

Case 1 x1 is one of the mins. x2 CANNOT be a min. For
0 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to also be mins.

This can be done in
(n−2

i

)
ways.

Then there are n − i − 1 left which can be ordered in H(n − i − 1)
ways.

n−2∑
i=0

(
n − 2

i

)
H(n − i − 1)



Horse Number Variant Case 2

Case 2 x1 is NOT one of the mins.

For 1 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to be mins.

This can be done in
(n−2

i

)
ways.

Then there are n− i left which can be ordered in B(n− i) ways. So

n−2∑
i=1

(
n − 2

i

)
B(n − i)

So the total is

B(n) =
n−2∑
i=0

(
n − 2

i

)
H(n − i − 1) +

n−2∑
i=1

(
n − 2

i

)
B(n − i)



Horse Number Variant Case 2

Case 2 x1 is NOT one of the mins.
For 1 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to be mins.

This can be done in
(n−2

i

)
ways.

Then there are n− i left which can be ordered in B(n− i) ways. So

n−2∑
i=1

(
n − 2

i

)
B(n − i)

So the total is

B(n) =
n−2∑
i=0

(
n − 2

i

)
H(n − i − 1) +

n−2∑
i=1

(
n − 2

i

)
B(n − i)



Horse Number Variant Case 2

Case 2 x1 is NOT one of the mins.
For 1 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to be mins.

This can be done in
(n−2

i

)
ways.

Then there are n− i left which can be ordered in B(n− i) ways. So

n−2∑
i=1

(
n − 2

i

)
B(n − i)

So the total is

B(n) =
n−2∑
i=0

(
n − 2

i

)
H(n − i − 1) +

n−2∑
i=1

(
n − 2

i

)
B(n − i)



Horse Number Variant Case 2

Case 2 x1 is NOT one of the mins.
For 1 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to be mins.

This can be done in
(n−2

i

)
ways.

Then there are n− i left which can be ordered in B(n− i) ways. So

n−2∑
i=1

(
n − 2

i

)
B(n − i)

So the total is

B(n) =
n−2∑
i=0

(
n − 2

i

)
H(n − i − 1) +

n−2∑
i=1

(
n − 2

i

)
B(n − i)



Horse Number Variant Case 2

Case 2 x1 is NOT one of the mins.
For 1 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to be mins.

This can be done in
(n−2

i

)
ways.

Then there are n− i left which can be ordered in B(n− i) ways. So

n−2∑
i=1

(
n − 2

i

)
B(n − i)

So the total is

B(n) =
n−2∑
i=0

(
n − 2

i

)
H(n − i − 1) +

n−2∑
i=1

(
n − 2

i

)
B(n − i)



CFG for Singleton Sets

G is a CFL then L(G ) is the set of strings that G generates.
Σ = {a, b}.

Show that there is a CFL G in Chomsky normal form with
L(G ) = {an} with O(log n) rules.

Omitted- did it earlier in the semester.



CFG for Singleton Sets

G is a CFL then L(G ) is the set of strings that G generates.
Σ = {a, b}.

Show that there is a CFL G in Chomsky normal form with
L(G ) = {an} with O(log n) rules.

Omitted- did it earlier in the semester.



CFG for Singleton Sets

G is a CFL then L(G ) is the set of strings that G generates.
Σ = {a, b}.

Show that there is a CFL G in Chomsky normal form with
L(G ) = {an} with O(log n) rules.

Omitted- did it earlier in the semester.



CFG for Singleton Sets

w is Kolm-rand string of length n.

Let G be a CFL in Chomsky Normal Form such that L(G ) = {w}.

Show that Then G has at least Ω(n0.9) rules.

Hint If a CFL has R rules then it has at most 3R nonterminals. In
this case each nonterminal can be represented with O(logR) bits.
Hence the size of the CFL is O(R logR) bits.



CFG for Singleton Sets

w is Kolm-rand string of length n.

Let G be a CFL in Chomsky Normal Form such that L(G ) = {w}.

Show that Then G has at least Ω(n0.9) rules.

Hint If a CFL has R rules then it has at most 3R nonterminals. In
this case each nonterminal can be represented with O(logR) bits.
Hence the size of the CFL is O(R logR) bits.



CFG for Singleton Sets

w is Kolm-rand string of length n.

Let G be a CFL in Chomsky Normal Form such that L(G ) = {w}.

Show that Then G has at least Ω(n0.9) rules.

Hint If a CFL has R rules then it has at most 3R nonterminals. In
this case each nonterminal can be represented with O(logR) bits.
Hence the size of the CFL is O(R logR) bits.



CFG for Singleton Sets

w is Kolm-rand string of length n.

Let G be a CFL in Chomsky Normal Form such that L(G ) = {w}.

Show that Then G has at least Ω(n0.9) rules.

Hint If a CFL has R rules then it has at most 3R nonterminals. In
this case each nonterminal can be represented with O(logR) bits.
Hence the size of the CFL is O(R logR) bits.



CFG for {w}

The following program outputs w .

For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .

How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The program needs to have the rules but not much else. Hence the
length of the program is O(R logR).

Since w is Kolmogorov Random of length n,

n ≤ O(R logR)

Assume, BWOC that R < O(n0.9). Then

n ≤ O(R logR) < O(n0.9 log n0.9) = O(n0.9 log n).

This is a contradiction. Hence R ≥ Ω(n0.9).



CFG for {w}

The program needs to have the rules but not much else. Hence the
length of the program is O(R logR).

Since w is Kolmogorov Random of length n,

n ≤ O(R logR)

Assume, BWOC that R < O(n0.9). Then

n ≤ O(R logR) < O(n0.9 log n0.9) = O(n0.9 log n).

This is a contradiction. Hence R ≥ Ω(n0.9).



CFG for {w}

The program needs to have the rules but not much else. Hence the
length of the program is O(R logR).

Since w is Kolmogorov Random of length n,

n ≤ O(R logR)

Assume, BWOC that R < O(n0.9). Then

n ≤ O(R logR) < O(n0.9 log n0.9) = O(n0.9 log n).

This is a contradiction. Hence R ≥ Ω(n0.9).



CFG for {w}

The program needs to have the rules but not much else. Hence the
length of the program is O(R logR).

Since w is Kolmogorov Random of length n,

n ≤ O(R logR)

Assume, BWOC that R < O(n0.9). Then

n ≤ O(R logR) < O(n0.9 log n0.9) = O(n0.9 log n).

This is a contradiction. Hence R ≥ Ω(n0.9).



CFG for {w}

The program needs to have the rules but not much else. Hence the
length of the program is O(R logR).

Since w is Kolmogorov Random of length n,

n ≤ O(R logR)

Assume, BWOC that R < O(n0.9). Then

n ≤ O(R logR) < O(n0.9 log n0.9) = O(n0.9 log n).

This is a contradiction. Hence R ≥ Ω(n0.9).



CFG for {w}

The program needs to have the rules but not much else. Hence the
length of the program is O(R logR).

Since w is Kolmogorov Random of length n,

n ≤ O(R logR)

Assume, BWOC that R < O(n0.9). Then

n ≤ O(R logR) < O(n0.9 log n0.9) = O(n0.9 log n).

This is a contradiction. Hence R ≥ Ω(n0.9).


