Review for CMSC 452
Midterm: Grammars

Context Free Languages

Examples of Context Free Grammars

S — aSh
S—e

The set of all strings Generated is

Examples of Context Free Grammars

S — aSh
S—e

The set of all strings Generated is

L={a"b":neN}

Examples of Context Free Grammars

S — aSh
S—e

The set of all strings Generated is
L={a"b":neN}

Note L is context free lang that is not regular.

Context Free Grammar for {a?"b" : n € N}

S — aaSh
S—e

The set of all strings Generated is

Context Free Grammar for {a?"b" : n € N}

S — aaSh
S—e

The set of all strings Generated is

L={a*b":necN}

Context Free Grammar for {a?"b" : n € N}

S — aaSh
S—e

The set of all strings Generated is
L={a*b":necN}

Note L is context free lang that is not regular.

Context Free Grammar for {a”b" : m > n}

Context Free Grammar for {a”b" : m > n}

S AT
T — aTb
T —e
A — Aa
A—a

Context Free Grammars

Def A Context Free Grammar is a tuple G = (N, X, R, S)
> N is a finite set of nonterminals.
» Y is a finite alphabet. Note Y N N = (.
» RC N x (NUZX)* and are called Rules.
> S € N, the start symbol.

L(G)

If Ais non-terminal then the CFG gives us gives us rules like:
> A— AB
> A—a

L(G)

If Ais non-terminal then the CFG gives us gives us rules like:
> A— AB
> A—a

For any string of terminals and non-terminals o, A = « means
that, starting from A, some combination of the rules produces «.

L(G)

If Ais non-terminal then the CFG gives us gives us rules like:
> A— AB
> A—a

For any string of terminals and non-terminals o, A = « means
that, starting from A, some combination of the rules produces «.
Examples:

> A= a

> A= aB

L(G)

If Ais non-terminal then the CFG gives us gives us rules like:
> A— AB
> A—a

For any string of terminals and non-terminals o, A = « means
that, starting from A, some combination of the rules produces «.
Examples:

> A= a
> A= aB
Then, if w is string of non-terminals only, we define L(G) by:

L(G)={weX*|S=w}

Number of a’'s = Number of b’s

L={w|#a(w) = #»(w)}

context free?

YES

Let G be the CFG
S — aSb

S — bSa
5§85

S—e

YES

Let G be the CFG
S — aSb

S — bSa
5§85

S—e

Thm L(G) = {w | #.(w) = #,(w)}.

YES

Let G be the CFG
S — aSb

S — bSa
5§85

S—e

Thm L(G) = {w | #a(w) = #p(w)}.
Note This Theorem is not obvious. Deserves a proof! But |
won't give one.

Example of a Lang that is NOT a CFL

1) {a"b"c" : n € N} is NOT a CFL.

Example of a Lang that is NOT a CFL

1) {a"b"c" : n € N} is NOT a CFL.
2) {a™ : ne N} is NOT a CFL.

Example of a Lang that is NOT a CFL

1) {a"b"c" : n € N} is NOT a CFL.
2) {a™ : ne N} is NOT a CFL.
3) If L C a* and L is not regular than L is not a CFL.

Example of a Lang that is NOT a CFL

1) {a"b"c" : n € N} is NOT a CFL.

2) {a” : n € N} is NOT a CFL.

3) If L C a* and L is not regular than L is not a CFL.

One proves theorems NON CFL using the PL for CFL's (next slide).

Pumping Theorem for CFL’s

Pumping Lemma (PL) If L is a CFL then there exist ny and ny
such that the following holds:

Pumping Theorem for CFL’s

Pumping Lemma (PL) If L is a CFL then there exist ny and ny
such that the following holds:
For all w € L, |w| > ng there exist u, v, x,y, z such that:

Pumping Theorem for CFL’s

Pumping Lemma (PL) If L is a CFL then there exist ny and ny
such that the following holds:
For all w € L, |w| > ng there exist u, v, x,y, z such that:

1. w = uvxyz and either v # e or y # e.

Pumping Theorem for CFL’s

Pumping Lemma (PL) If L is a CFL then there exist ny and ny
such that the following holds:
For all w € L, |w| > ng there exist u, v, x,y, z such that:

1. w = uvxyz and either v # e or y # e.

2. |vxy| < n.

Pumping Theorem for CFL’s

Pumping Lemma (PL) If L is a CFL then there exist ny and ny
such that the following holds:
For all w € L, |w| > ng there exist u, v, x,y, z such that:

1. w = uvxyz and either v # e or y # e.
2. |vxy| < n.
3. Forall i >0, uvixyiz € L.

Pumping Theorem for CFL’s

Pumping Lemma (PL) If L is a CFL then there exist ny and ny
such that the following holds:
For all w € L, |w| > ng there exist u, v, x,y, z such that:

1. w = uvxyz and either v # e or y # e.
2. |vxy| < n.
3. Forall i >0, uvixyiz € L.

Proof involves looking at the Parse Tree for w and finding some
nonterminal T twice in the tree. We will not be doing the proof.

Closure Properties and
REGC CFL

Li,L, CFL —- L UL, CFL

L1 is CFL via CFG (Nl,Z, R1,51).
L2 is CFL via CFG (NQ,Z, R2,52).

Li,L, CFL —- L UL, CFL

L1 is CFL via CFG (Nl,Z, R1,51).
L2 is CFL via CFG (NQ,Z, R2,52).

CFL for L1 U Ly:
Just add S — S; and S — S5 to union of grammars.

Li,L, CFL —- Lin L, CFL

NOT TRUE: a"b"c* N a*b"c” = a"b"c".

Ll, L2 CFL — L1 . L2 CFL

L1 is CFL via CFG (Nl,Z, R1,51).
L2 is CFL via CFG (NQ,Z, R2,52).

L1, L, CFL — L, - L, CFL

L1 is CFL via CFG (Nl,Z, R1,51).

L2 is CFL via CFG (NQ,Z, R2,52).

CFL for L3 U Ly:

Just add S — 515> to union of grammars.

L CFL — L CFL

FALSE.
Let

L={a"b"c":ne N}

L CFL — L CFL

FALSE.
Let

L={a"b"c":ne N}
This is a CFL. This will a HW.

L CFL — L* CFL

Lis CFL via CFG (N, X, R,S).

L CFL — L* CFL

L is CFL via CFG (N,%, R, S).

This one | leave to you to look up my slides on it.

REG contained in CFL

For every regex «, L(«) is a CFL.

REG contained in CFL

For every regex «, L(«) is a CFL.
Prove by ind on the length of a.

REG contained in CFL

For every regex «, L(«) is a CFL.
Prove by ind on the length of a.
We omit from this review.

Examples of CFL’s and
Size of CFG’s

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:
1) A— BC where A, B, C € N (nonterminals).

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:

1) A— BC where A, B, C € N (nonterminals).

2) A— o (where Ac Nand o € ¥).

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:

1) A— BC where A, B, C € N (nonterminals).

2) A— o (where Ac Nand o € ¥).

3) S — e (where S is the start state).

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates {aaaaaaaa}
S—AA

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates {aaaaaaaa}
S—AA
A— BB

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates {aaaaaaaa}
S—AA
A— BB
B — CC

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates {aaaaaaaa}
S—AA

A — BB
B — CC
C—a

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates {aaaaaaaa}
S—AA

A — BB
B — CC
C—a

So {aaaaaaaa} has a CFG of size 4.

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates {aaaaaaaa}
S—AA

A— BB

B — CC

C—a

So {aaaaaaaa} has a CFG of size 4.

By the same trick 3 a CFG for {a"} of size O(log n).
» Any DFA or NFA that recognizes {a"} has n+ Q(1) states.
» There is a CFG that generates {a"} with O(log n) rules.

{a,b}*a{a, b}"

1) DFA: exactly 2"+1 size DFA. NFA: exactly n + 2 states.

{a, b}*a{a, b}"

1) DFA: exactly 2"+1 size DFA. NFA: exactly n + 2 states.
2) CFG: We obtain O(log n) size.

{a, b}*a{a, b}"

1) DFA: exactly 2"+1 size DFA. NFA: exactly n + 2 states.
2) CFG: We obtain O(log n) size.
{a, b}* CONCAT a{a, b}"

{a, b}*a{a, b}"

1) DFA: exactly 2"+1 size DFA. NFA: exactly n + 2 states.
2) CFG: We obtain O(log n) size.
{a, b}* CONCAT a{a, b}"

{a, b}*a{a, b}"

1) DFA: exactly 2"+1 size DFA. NFA: exactly n + 2 states.
2) CFG: We obtain O(log n) size.

{a, b}* CONCAT a{a, b}"

{a, b}*a. Has 5-rule CFG:

{a, b}*a{a, b}"

1) DFA: exactly 2"+1 size DFA. NFA: exactly n + 2 states.
2) CFG: We obtain O(log n) size.

{a, b}* CONCAT a{a, b}"

{a, b}*a. Has 5-rule CFG:

a{a, b}". A O(log n) rule CFG.

{a, b}*a{a, b}"

1) DFA: exactly 2"+1 size DFA. NFA: exactly n + 2 states.
2) CFG: We obtain O(log n) size.

{a, b}* CONCAT a{a, b}"

{a, b}*a. Has 5-rule CFG:

a{a, b}". A O(logn) rule CFG.

{a, b}* CONCAT a{a, b}" has O(log n) rule CFG.

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {a™b" : m > n}. We put it into Chomsky
Normal Form.

1) S — AT

2) T —aTb
3) T —e
4) A — Aa
5) A—a

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {a™b" : m > n}. We put it into Chomsky
Normal Form.

1) S — AT

2) T —aTb

3) T —e

4) A — Aa

5) A—a

Use nonterminals [aT], [b], [a]. Replace T — aTb with:
T — [aT][b]

[aT] — [a] T

[b] — b.

[a] — a

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {a™b" : m > n}. We put it into Chomsky
Normal Form.

1) S — AT

2) T —aTb

3) T —e

4) A — Aa

5) A—a

Use nonterminals [aT], [b], [a]. Replace T — aTb with:
T — [aT][h]

[aT] — [a] T

[b] — b.

[a] — a

Repeat the process with the other rules.

MISC

1) If Ly is a CFL and Ly is regular then Ly N Ly is a CFL.

MISC

1) If Ly is a CFL and Ly is regular then Ly N Ly is a CFL.

2) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:
PDA: Push Down Automata

They are NFAs with a stack.

MISC

1) If Ly is a CFL and Ly is regular then Ly N Ly is a CFL.

2) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:
PDA: Push Down Automata

They are NFAs with a stack.

The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won't be doing it. We won't deal with
PDA's in this course at all.

CNF for {w}

CNF for {aabbbab}

Example CNF for {aabbbab}

CNF for {aabbbab}

Example CNF for {aabbbab}
S — [A][ABBBAB]

CNF for {aabbbab}

Example CNF for {aabbbab}
S — [A][ABBBAB]
[ABBBAB] — [A|[BBBAB]

CNF for {aabbbab}

Example CNF for {aabbbab}
S — [A][ABBBAB]
[ABBBAB] — [A|[BBBAB]
[BBBAB] — [B][BBAB]

CNF for {aabbbab}

Example CNF for {aabbbab}
S — [A][ABBBAB]
[ABBBAB] — [A|[BBBAB]
[BBBAB] — [B][BBAB]
[BBAB] — [B][BAB]

CNF for {aabbbab}

Example CNF for {aabbbab}
S — [A][ABBBAB]
[ABBBAB] — [A|[BBBAB]
[BBBAB] — [B][BBAB]
[BBAB] — [B][BAB]

[BAB]| — [B][AB]

CNF for {aabbbab}

Example CNF for {aabbbab}
S — [A][ABBBAB]
[ABBBAB] — [A|[BBBAB]
[BBBAB] — [B][BBAB]
[BBAB] — [B][BAB]

[BAB]| — [B][AB]

[AB] - [A][8]

CNF for {aabbbab}

Example CNF for {aabbbab}
S — [A][ABBBAB]
[ABBBAB] — [A|[BBBAB]
[BBBAB] — [B][BBAB]
[BBAB] — [B][BAB]

[BAB]| — [B][AB]

[AB] — [Al[B]

[A] — a

CNF for {aabbbab}

Example CNF for {aabbbab}
S — [A][ABBBAB]
[ABBBAB] — [A][BBBAB]
[BBBAB] — [B][BBAB]
[BBAB] — [B][BAB]

[BAB]| — [B][AB]

[AB] — [Al[B]

[A] — a

[B] = b

CNF for {w}

CNF for {w}

1. You can do something similar for any w.

CNF for {w}

1. You can do something similar for any w.
2. If |w| = n then the CFG will be O(n) rules.

CNF for {w}

1. You can do something similar for any w.
2. If |w| = n then the CFG will be O(n) rules.

3. Question we will come back to LATER:
(3w) such that {w} requires large CFG?

CFL CP

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

W=01"0p.

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

W =01 0p.
We want to know if w € L. We assume w # e.

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

W =01 0p.
We want to know if w € L. We assume w # e.
For i <jlet

GEN[I',j]:{AZA:>O','”-O'j}

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

W =01 0p.
We want to know if w € L. We assume w # e.

For i <jlet
GEN[I',j]:{AZA:>O','”-O'j}

We will find all GEN[i,]. Hence we will find GEN[1, n]. Hence
we will find if S € GEN[1, n].

Bottom Up View

Bottom Up View

=
01+ 0j—1 0j Oj41""

.O'n

Bottom Up View

A
=
01°:°0j-1 0 Oj41°":0p

GEN[i,i] = {A:A— o0}

Bottom Up View

A
=
01+ 0j-1 0j Ojy1°""0p

GEN[i,i] = {A: A— o0}

B C
AN
01°°0j-1 O Oj410i4+2 " 0p

Bottom Up View

A
=
01°"+0j-1 O0j Oj41° " 0p

GEN[i,i] = {A: A— o}

B C
AN
01°+0j-1"0j 0j410i42°*0Op

GEN[i,i—l-l] = {A:A—)BC AN B—o; A C—)O’,'_H_}

Bottom Up View

A
=
01+ 0j-1 0j Ojy1°""0p

GEN[i,i] = {A: A— o0}

B C
AN
01°+0j-1"0j 0j410i42°*0Op

{A:A—>BC AN B—=o; A C—)O’,'_H_}

{A:A— BC
A B e GEN[i,i] A Ce GEN[i+1,i+1]}

GEN[i,i+1] =

Recurrence

Recurrence

GEN[i,j]:{A:A:>O'i-'-O'j}

Recurrence

GEN[i,j]:{A:A:>O'i-"O'j}

B C

01°°0j-10i0j41" Ok Ok410k42 0041 - 0p

Recurrence

GEN[i,j]:{A:A:>O';-"O'j}

B C

01°°°0i-10i0j41" " Ok Ok410k+2 0041 0On

GEN[i,jl = |(J{A:A->BC AB=o;---0k N C=0441---0j}
i<k<j

Recurrence

GEN[i,j]:{A:A:>O';-"O'j}

B C

01°°°0i-10i0j41" " Ok Ok410k+2 0041 0On

GEN[i,jl = |(J{A:A->BC AB=o;---0k N C=0441---0j}
i<k<j

= |(J{A:A—BC A BeGEN[i, k| A CeGEN[k+1,j]}
i<k<j

The Algorithm

for 1 = 1 to n do
for j =1 ton do
GEN[i,j] « 0

for i =1 ton do
for all rules A — o; do
GEN[i,i] « GEN[i,i] with A

for s = 2 to n do
for i = 1 to n-s+1 do
j < i+s-1 do
for k = 1 to j-1 do
for all rules A — BC
where B € GEN[i,k] and C € GEN[k+1,j]
GEN[i,j] < GEN[i,j] with A

