
Review for CMSC 452
Midterm: Grammars



Context Free Languages



Examples of Context Free Grammars

S → aSb
S → e

The set of all strings Generated is

L = {anbn : n ∈ N}

Note L is context free lang that is not regular.
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Context Free Grammars

Def A Context Free Grammar is a tuple G = (N,Σ,R, S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ N × (N ∪ Σ)∗ and are called Rules.

▶ S ∈ N, the start symbol.



L(G)

If A is non-terminal then the CFG gives us gives us rules like:

▶ A→ AB

▶ A→ a

For any string of terminals and non-terminals α, A⇒ α means
that, starting from A, some combination of the rules produces α.
Examples:

▶ A⇒ a

▶ A⇒ aB

Then, if w is string of non-terminals only, we define L(G ) by:

L(G ) = {w ∈ Σ∗ | S ⇒ w}
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Number of a’s = Number of b’s

Is

L = {w | #a(w) = #b(w)}

context free?



YES

Let G be the CFG
S → aSb
S → bSa
S → SS
S → e

Thm L(G ) = {w | #a(w) = #b(w)}.
Note This Theorem is not obvious. Deserves a proof! But I
won’t give one.
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Example of a Lang that is NOT a CFL

1) {anbncn : n ∈ N} is NOT a CFL.

2) {an2 : n ∈ N} is NOT a CFL.

3) If L ⊆ a∗ and L is not regular than L is not a CFL.

One proves theorems NON CFL using the PL for CFL’s (next slide).
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Pumping Theorem for CFL’s

Pumping Lemma (PL) If L is a CFL then there exist n0 and n1
such that the following holds:

For all w ∈ L, |w | ≥ n0 there exist u, v , x , y , z such that:

1. w = uvxyz and either v ̸= e or y ̸= e.

2. |vxy | ≤ n1.

3. For all i ≥ 0, uv ixy iz ∈ L.

Proof involves looking at the Parse Tree for w and finding some
nonterminal T twice in the tree. We will not be doing the proof.
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Closure Properties and
REG⊂ CFL



L1,L2 CFL → L1 ∪ L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

CFL for L1 ∪ L2:
Just add S → S1 and S → S2 to union of grammars.
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L1,L2 CFL → L1 ∩ L2 CFL

NOT TRUE: anbnc∗ ∩ a∗bncn = anbncn.



L1,L2 CFL → L1 · L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

CFL for L1 ∪ L2:
Just add S → S1S2 to union of grammars.



L1,L2 CFL → L1 · L2 CFL

L1 is CFL via CFG (N1,Σ,R1, S1).
L2 is CFL via CFG (N2,Σ,R2, S2).

CFL for L1 ∪ L2:
Just add S → S1S2 to union of grammars.



L CFL → L CFL

FALSE.
Let
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This is a CFL. This will a HW.
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REG contained in CFL

For every regex α, L(α) is a CFL.

Prove by ind on the length of α.

We omit from this review.
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Examples of CFL’s and
Size of CFG’s



Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:

1) A→ BC where A,B,C ∈ N (nonterminals).
2) A→ σ (where A ∈ N and σ ∈ Σ).
3) S → e (where S is the start state).



Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:
1) A→ BC where A,B,C ∈ N (nonterminals).

2) A→ σ (where A ∈ N and σ ∈ Σ).
3) S → e (where S is the start state).



Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:
1) A→ BC where A,B,C ∈ N (nonterminals).
2) A→ σ (where A ∈ N and σ ∈ Σ).

3) S → e (where S is the start state).



Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the
following form:
1) A→ BC where A,B,C ∈ N (nonterminals).
2) A→ σ (where A ∈ N and σ ∈ Σ).
3) S → e (where S is the start state).



Example of Chomsky Normal Form

Chomsky Normal form CFG that generates {aaaaaaaa}
S → AA

A→ BB
B → CC
C → a
So {aaaaaaaa} has a CFG of size 4.

By the same trick ∃ a CFG for {an} of size O(log n).

▶ Any DFA or NFA that recognizes {an} has n +Ω(1) states.

▶ There is a CFG that generates {an} with O(log n) rules.
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{a,b}∗a{a,b}n

1) DFA: exactly 2n+1 size DFA. NFA: exactly n + 2 states.

2) CFG: We obtain O(log n) size.

{a, b}∗ CONCAT a{a, b}n

{a, b}∗a. Has 5-rule CFG:
a{a, b}n. A O(log n) rule CFG.
{a, b}∗ CONCAT a{a, b}n has O(log n) rule CFG.
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Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for {ambn : m > n}. We put it into Chomsky
Normal Form.
1) S → AT
2) T → aTb
3) T → e
4) A→ Aa
5) A→ a

Use nonterminals [aT ], [b], [a]. Replace T → aTb with:
T → [aT ][b]
[aT ]→ [a]T
[b]→ b.
[a]→ a
Repeat the process with the other rules.
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MISC

1) If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.

2) Recall: DFA’s are Recognizers, Regex are Generators.
CFG’s are Generators. There is a Recognizer equivalent to it:

PDA: Push Down Automata
.
They are NFAs with a stack.
The proof that PDA-recognizers and CFG-generators are
equivalent is messy so we won’t be doing it. We won’t deal with
PDA’s in this course at all.
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CNF for {aabbbab}

Example CNF for {aabbbab}

S → [A][ABBBAB]

[ABBBAB]→ [A][BBBAB]

[BBBAB]→ [B][BBAB]

[BBAB]→ [B][BAB]

[BAB]→ [B][AB]

[AB]→ [A][B]

[A]→ a

[B]→ b
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CNF for {w}

1. You can do something similar for any w .

2. If |w | = n then the CFG will be O(n) rules.

3. Question we will come back to LATER:
(∃w) such that {w} requires large CFG?



CNF for {w}

1. You can do something similar for any w .

2. If |w | = n then the CFG will be O(n) rules.

3. Question we will come back to LATER:
(∃w) such that {w} requires large CFG?



CNF for {w}

1. You can do something similar for any w .

2. If |w | = n then the CFG will be O(n) rules.

3. Question we will come back to LATER:
(∃w) such that {w} requires large CFG?



CNF for {w}

1. You can do something similar for any w .

2. If |w | = n then the CFG will be O(n) rules.

3. Question we will come back to LATER:
(∃w) such that {w} requires large CFG?



CFL ⊂P



Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

w = σ1 · · ·σn.
We want to know if w ∈ L. We assume w ̸= e.

For i ≤ j let

GEN[i , j ] = {A : A⇒ σi · · ·σj}

We will find all GEN[i , j ]. Hence we will find GEN[1, n]. Hence
we will find if S ∈ GEN[1, n].
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The Algorithm

for i = 1 to n do

for j = i to n do

GEN[i,j] ← ∅

for i = 1 to n do

for all rules A → σi do

GEN[i,i] ← GEN[i,i] with A

for s = 2 to n do

for i = 1 to n-s+1 do

j ← i+s-1 do

for k = i to j-1 do

for all rules A → BC

where B ∈ GEN[i,k] and C ∈ GEN[k+1,j] do

GEN[i,j] ← GEN[i,j] with A


