
Review for CMSC 452
Midterm: P and NP

Our Goals for Complexity Theory

We want to prove that

1. Some languages L have a fast program to decide them

2. (Spoiler Alert: L ∈ P.)

3. Some languages L unlikely to have a fast program to
decide them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.

Our Goals for Complexity Theory

We want to prove that

1. Some languages L have a fast program to decide them

2. (Spoiler Alert: L ∈ P.)

3. Some languages L unlikely to have a fast program to
decide them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.

Our Goals for Complexity Theory

We want to prove that

1. Some languages L have a fast program to decide them

2. (Spoiler Alert: L ∈ P.)

3. Some languages L unlikely to have a fast program to
decide them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.

Our Goals for Complexity Theory

We want to prove that

1. Some languages L have a fast program to decide them

2. (Spoiler Alert: L ∈ P.)

3. Some languages L unlikely to have a fast program to
decide them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.

Our Goals for Complexity Theory

We want to prove that

1. Some languages L have a fast program to decide them

2. (Spoiler Alert: L ∈ P.)

3. Some languages L unlikely to have a fast program to
decide them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.

Our Goals for Complexity Theory

We want to prove that

1. Some languages L have a fast program to decide them

2. (Spoiler Alert: L ∈ P.)

3. Some languages L unlikely to have a fast program to
decide them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.

Sample Problems

How hard are the following problems:

1. SAT and its variants.

2. HAM Given a graph G does it have a Ham Cycle?
(A cycle that has every vertex exactly once.)

3. EUL Given a graph G does it have a Euler Cycle?
(A cycle that has every edge exactly once.)

4. CLIQ Given G and k , is there a set of k vertices that all know
each other?

To even ask these questions we need (1) a standard way to
describe sets and a (2) model of computation.

Sample Problems

How hard are the following problems:

1. SAT and its variants.

2. HAM Given a graph G does it have a Ham Cycle?
(A cycle that has every vertex exactly once.)

3. EUL Given a graph G does it have a Euler Cycle?
(A cycle that has every edge exactly once.)

4. CLIQ Given G and k , is there a set of k vertices that all know
each other?

To even ask these questions we need (1) a standard way to
describe sets and a (2) model of computation.

Sample Problems

How hard are the following problems:

1. SAT and its variants.

2. HAM Given a graph G does it have a Ham Cycle?
(A cycle that has every vertex exactly once.)

3. EUL Given a graph G does it have a Euler Cycle?
(A cycle that has every edge exactly once.)

4. CLIQ Given G and k , is there a set of k vertices that all know
each other?

To even ask these questions we need (1) a standard way to
describe sets and a (2) model of computation.

Sample Problems

How hard are the following problems:

1. SAT and its variants.

2. HAM Given a graph G does it have a Ham Cycle?
(A cycle that has every vertex exactly once.)

3. EUL Given a graph G does it have a Euler Cycle?
(A cycle that has every edge exactly once.)

4. CLIQ Given G and k , is there a set of k vertices that all know
each other?

To even ask these questions we need (1) a standard way to
describe sets and a (2) model of computation.

Sample Problems

How hard are the following problems:

1. SAT and its variants.

2. HAM Given a graph G does it have a Ham Cycle?
(A cycle that has every vertex exactly once.)

3. EUL Given a graph G does it have a Euler Cycle?
(A cycle that has every edge exactly once.)

4. CLIQ Given G and k , is there a set of k vertices that all know
each other?

To even ask these questions we need (1) a standard way to
describe sets and a (2) model of computation.

Sample Problems

How hard are the following problems:

1. SAT and its variants.

2. HAM Given a graph G does it have a Ham Cycle?
(A cycle that has every vertex exactly once.)

3. EUL Given a graph G does it have a Euler Cycle?
(A cycle that has every edge exactly once.)

4. CLIQ Given G and k , is there a set of k vertices that all know
each other?

To even ask these questions we need (1) a standard way to
describe sets and a (2) model of computation.

Representing Elements of Sets

All elements (graphs, formulas, pairs of graphs and numbers) are
represented by binary strings.

The time it takes to determine if x ∈ A is a function of |x |, the
length of x .

We Sometimes Cheat We may take the length of a formula to be
the number of vars. We may take the length of a graph to be the
number of vertices. These notions of length are poly-related to the
actual length and hence is fine for our purposes.

Representing Elements of Sets

All elements (graphs, formulas, pairs of graphs and numbers) are
represented by binary strings.

The time it takes to determine if x ∈ A is a function of |x |, the
length of x .

We Sometimes Cheat We may take the length of a formula to be
the number of vars. We may take the length of a graph to be the
number of vertices. These notions of length are poly-related to the
actual length and hence is fine for our purposes.

Representing Elements of Sets

All elements (graphs, formulas, pairs of graphs and numbers) are
represented by binary strings.

The time it takes to determine if x ∈ A is a function of |x |, the
length of x .

We Sometimes Cheat We may take the length of a formula to be
the number of vars. We may take the length of a graph to be the
number of vertices. These notions of length are poly-related to the
actual length and hence is fine for our purposes.

Turing Machines Def

We will not define Turing Machine until we need to (after
midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many different models of computation. They are all
equivalent to Turing machines. And better- they are all
equivalent within poly time.

Turing Machines Def

We will not define Turing Machine until we need to (after
midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many different models of computation. They are all
equivalent to Turing machines. And better- they are all
equivalent within poly time.

Turing Machines Def

We will not define Turing Machine until we need to (after
midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many different models of computation. They are all
equivalent to Turing machines. And better- they are all
equivalent within poly time.

Turing Machines Def

We will not define Turing Machine until we need to (after
midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many different models of computation. They are all
equivalent to Turing machines. And better- they are all
equivalent within poly time.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

Our Plan for NP

3SAT, HAM, EUL, CLIQ are all in NP.

So is

IS = {(G , k) : G has an Ind Set of size k }.

Our Plan for NP

3SAT, HAM, EUL, CLIQ are all in NP.

So is

IS = {(G , k) : G has an Ind Set of size k }.

If IS ∈ P then 3SAT ∈ P: Plan

We (the slides from Stanford) gave an algorithm that does the
following:

1. Input ϕ, a formula in 3-CNF form.

2. Output (G , k) such that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

3. The algorithm runs in time p(|ϕ|) (p is a poly).

4. Produces (G , k) where |(G , k)| ≤ q(|ϕ|) (q is a poly).

Call this algorithm ALG. On next slide we use ALG to show that
IS ∈ P implies 3SAT ∈ P.

If IS ∈ P then 3SAT ∈ P: Plan

We (the slides from Stanford) gave an algorithm that does the
following:

1. Input ϕ, a formula in 3-CNF form.

2. Output (G , k) such that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

3. The algorithm runs in time p(|ϕ|) (p is a poly).

4. Produces (G , k) where |(G , k)| ≤ q(|ϕ|) (q is a poly).

Call this algorithm ALG. On next slide we use ALG to show that
IS ∈ P implies 3SAT ∈ P.

If IS ∈ P then 3SAT ∈ P: Plan

We (the slides from Stanford) gave an algorithm that does the
following:

1. Input ϕ, a formula in 3-CNF form.

2. Output (G , k) such that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

3. The algorithm runs in time p(|ϕ|) (p is a poly).

4. Produces (G , k) where |(G , k)| ≤ q(|ϕ|) (q is a poly).

Call this algorithm ALG. On next slide we use ALG to show that
IS ∈ P implies 3SAT ∈ P.

If IS ∈ P then 3SAT ∈ P: Plan

We (the slides from Stanford) gave an algorithm that does the
following:

1. Input ϕ, a formula in 3-CNF form.

2. Output (G , k) such that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

3. The algorithm runs in time p(|ϕ|) (p is a poly).

4. Produces (G , k) where |(G , k)| ≤ q(|ϕ|) (q is a poly).

Call this algorithm ALG. On next slide we use ALG to show that
IS ∈ P implies 3SAT ∈ P.

If IS ∈ P then 3SAT ∈ P: Plan

We (the slides from Stanford) gave an algorithm that does the
following:

1. Input ϕ, a formula in 3-CNF form.

2. Output (G , k) such that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

3. The algorithm runs in time p(|ϕ|) (p is a poly).

4. Produces (G , k) where |(G , k)| ≤ q(|ϕ|) (q is a poly).

Call this algorithm ALG. On next slide we use ALG to show that
IS ∈ P implies 3SAT ∈ P.

If IS ∈ P then 3SAT ∈ P: Plan

We (the slides from Stanford) gave an algorithm that does the
following:

1. Input ϕ, a formula in 3-CNF form.

2. Output (G , k) such that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

3. The algorithm runs in time p(|ϕ|) (p is a poly).

4. Produces (G , k) where |(G , k)| ≤ q(|ϕ|) (q is a poly).

Call this algorithm ALG. On next slide we use ALG to show that
IS ∈ P implies 3SAT ∈ P.

If IS ∈ P then 3SAT ∈ P: Plan

Assume IS ∈ P via program M which runs in r(|(G , k)|).

1. Input ϕ, a formula in 3-CNF form of length L.

2. Compute ALG on ϕ to get (G , k). Takes time p(|ϕ|) and
produces (G , k) where |(G , k)| ≤ q(|ϕ|).

3. Run M on (G , k) (takes time r(q(|ϕ|))). Recall that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

So just output the output of M(G , k).

This is an algorithm for 3SAT that takes time

p(|ϕ|) + r(q(|ϕ|))

If IS ∈ P then 3SAT ∈ P: Plan

Assume IS ∈ P via program M which runs in r(|(G , k)|).
1. Input ϕ, a formula in 3-CNF form of length L.

2. Compute ALG on ϕ to get (G , k). Takes time p(|ϕ|) and
produces (G , k) where |(G , k)| ≤ q(|ϕ|).

3. Run M on (G , k) (takes time r(q(|ϕ|))). Recall that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

So just output the output of M(G , k).

This is an algorithm for 3SAT that takes time

p(|ϕ|) + r(q(|ϕ|))

If IS ∈ P then 3SAT ∈ P: Plan

Assume IS ∈ P via program M which runs in r(|(G , k)|).
1. Input ϕ, a formula in 3-CNF form of length L.

2. Compute ALG on ϕ to get (G , k). Takes time p(|ϕ|) and
produces (G , k) where |(G , k)| ≤ q(|ϕ|).

3. Run M on (G , k) (takes time r(q(|ϕ|))). Recall that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

So just output the output of M(G , k).

This is an algorithm for 3SAT that takes time

p(|ϕ|) + r(q(|ϕ|))

If IS ∈ P then 3SAT ∈ P: Plan

Assume IS ∈ P via program M which runs in r(|(G , k)|).
1. Input ϕ, a formula in 3-CNF form of length L.

2. Compute ALG on ϕ to get (G , k). Takes time p(|ϕ|) and
produces (G , k) where |(G , k)| ≤ q(|ϕ|).

3. Run M on (G , k) (takes time r(q(|ϕ|))). Recall that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

So just output the output of M(G , k).

This is an algorithm for 3SAT that takes time

p(|ϕ|) + r(q(|ϕ|))

If IS ∈ P then 3SAT ∈ P: Plan

Assume IS ∈ P via program M which runs in r(|(G , k)|).
1. Input ϕ, a formula in 3-CNF form of length L.

2. Compute ALG on ϕ to get (G , k). Takes time p(|ϕ|) and
produces (G , k) where |(G , k)| ≤ q(|ϕ|).

3. Run M on (G , k) (takes time r(q(|ϕ|))). Recall that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

So just output the output of M(G , k).

This is an algorithm for 3SAT that takes time

p(|ϕ|) + r(q(|ϕ|))

If IS ∈ P then 3SAT ∈ P: Plan

Assume IS ∈ P via program M which runs in r(|(G , k)|).
1. Input ϕ, a formula in 3-CNF form of length L.

2. Compute ALG on ϕ to get (G , k). Takes time p(|ϕ|) and
produces (G , k) where |(G , k)| ≤ q(|ϕ|).

3. Run M on (G , k) (takes time r(q(|ϕ|))). Recall that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

So just output the output of M(G , k).

This is an algorithm for 3SAT that takes time

p(|ϕ|) + r(q(|ϕ|))

By the Cook-Levin Theorem Have the Converse

From the above we have
IS ∈ P implies 3SAT ∈ P.

By the Cook-Levin theorem (after the midterm) we will have
3SAT ∈ P implies IS ∈ P.

Hence we will have
3SAT ∈ P iff IS ∈ P.

Much More is Known The following are all in P or all NOT in P:
HAM, 3SAT, IS, 3COL, CLIQ.

By the Cook-Levin Theorem Have the Converse

From the above we have
IS ∈ P implies 3SAT ∈ P.

By the Cook-Levin theorem (after the midterm) we will have
3SAT ∈ P implies IS ∈ P.

Hence we will have
3SAT ∈ P iff IS ∈ P.

Much More is Known The following are all in P or all NOT in P:
HAM, 3SAT, IS, 3COL, CLIQ.

By the Cook-Levin Theorem Have the Converse

From the above we have
IS ∈ P implies 3SAT ∈ P.

By the Cook-Levin theorem (after the midterm) we will have
3SAT ∈ P implies IS ∈ P.

Hence we will have
3SAT ∈ P iff IS ∈ P.

Much More is Known The following are all in P or all NOT in P:
HAM, 3SAT, IS, 3COL, CLIQ.

By the Cook-Levin Theorem Have the Converse

From the above we have
IS ∈ P implies 3SAT ∈ P.

By the Cook-Levin theorem (after the midterm) we will have
3SAT ∈ P implies IS ∈ P.

Hence we will have
3SAT ∈ P iff IS ∈ P.

Much More is Known The following are all in P or all NOT in P:
HAM, 3SAT, IS, 3COL, CLIQ.

Reductions

We now generalize what we did for 3SAT and IS.

Def Let X ,Y be sets. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

(Example: Our function that took ϕ to (G , k).)
We express this by writing X ≤ Y .

Reductions are transitive.
Lemma (HW) If X ≤ Y and Y ∈ P then X ∈ P. (We use that if
f (n), g(n) are poly then f (g(n)) is poly.)

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.

Reductions

We now generalize what we did for 3SAT and IS.
Def Let X ,Y be sets. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

(Example: Our function that took ϕ to (G , k).)
We express this by writing X ≤ Y .

Reductions are transitive.
Lemma (HW) If X ≤ Y and Y ∈ P then X ∈ P. (We use that if
f (n), g(n) are poly then f (g(n)) is poly.)

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.

Reductions

We now generalize what we did for 3SAT and IS.
Def Let X ,Y be sets. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

(Example: Our function that took ϕ to (G , k).)

We express this by writing X ≤ Y .

Reductions are transitive.
Lemma (HW) If X ≤ Y and Y ∈ P then X ∈ P. (We use that if
f (n), g(n) are poly then f (g(n)) is poly.)

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.

Reductions

We now generalize what we did for 3SAT and IS.
Def Let X ,Y be sets. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

(Example: Our function that took ϕ to (G , k).)
We express this by writing X ≤ Y .

Reductions are transitive.
Lemma (HW) If X ≤ Y and Y ∈ P then X ∈ P. (We use that if
f (n), g(n) are poly then f (g(n)) is poly.)

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.

Reductions

We now generalize what we did for 3SAT and IS.
Def Let X ,Y be sets. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

(Example: Our function that took ϕ to (G , k).)
We express this by writing X ≤ Y .

Reductions are transitive.
Lemma (HW) If X ≤ Y and Y ∈ P then X ∈ P. (We use that if
f (n), g(n) are poly then f (g(n)) is poly.)

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.

Reductions

We now generalize what we did for 3SAT and IS.
Def Let X ,Y be sets. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

(Example: Our function that took ϕ to (G , k).)
We express this by writing X ≤ Y .

Reductions are transitive.
Lemma (HW) If X ≤ Y and Y ∈ P then X ∈ P. (We use that if
f (n), g(n) are poly then f (g(n)) is poly.)

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.

Def of NP-Complete

Def A set Y is NP-complete (NPC) if the following hold:

▶ Y ∈ NP

▶ If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

Def of NP-Complete

Def A set Y is NP-complete (NPC) if the following hold:

▶ Y ∈ NP

▶ If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

Def of NP-Complete

Def A set Y is NP-complete (NPC) if the following hold:

▶ Y ∈ NP

▶ If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

Def of NP-Complete

Def A set Y is NP-complete (NPC) if the following hold:

▶ Y ∈ NP

▶ If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

