
Review for CMSC 452
Midterm: P and NP



Our Goals for Complexity Theory

We want to prove that

1. Some languages L have a fast program to decide them

2. (Spoiler Alert: L ∈ P.)

3. Some languages L unlikely to have a fast program to
decide them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.
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Sample Problems

How hard are the following problems:

1. SAT and its variants.

2. HAM Given a graph G does it have a Ham Cycle?
(A cycle that has every vertex exactly once.)

3. EUL Given a graph G does it have a Euler Cycle?
(A cycle that has every edge exactly once.)

4. CLIQ Given G and k , is there a set of k vertices that all know
each other?

To even ask these questions we need (1) a standard way to
describe sets and a (2) model of computation.
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Representing Elements of Sets

All elements (graphs, formulas, pairs of graphs and numbers) are
represented by binary strings.

The time it takes to determine if x ∈ A is a function of |x |, the
length of x .

We Sometimes Cheat We may take the length of a formula to be
the number of vars. We may take the length of a graph to be the
number of vertices. These notions of length are poly-related to the
actual length and hence is fine for our purposes.
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Turing Machines Def

We will not define Turing Machine until we need to (after
midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many different models of computation. They are all
equivalent to Turing machines. And better- they are all
equivalent within poly time.
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Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.
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3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T ]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.
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NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.
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If IS ∈ P then 3SAT ∈ P: Plan

We (the slides from Stanford) gave an algorithm that does the
following:

1. Input ϕ, a formula in 3-CNF form.

2. Output (G , k) such that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

3. The algorithm runs in time p(|ϕ|) (p is a poly).

4. Produces (G , k) where |(G , k)| ≤ q(|ϕ|) (q is a poly).

Call this algorithm ALG. On next slide we use ALG to show that
IS ∈ P implies 3SAT ∈ P.
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If IS ∈ P then 3SAT ∈ P: Plan

Assume IS ∈ P via program M which runs in r(|(G , k)|).

1. Input ϕ, a formula in 3-CNF form of length L.

2. Compute ALG on ϕ to get (G , k). Takes time p(|ϕ|) and
produces (G , k) where |(G , k)| ≤ q(|ϕ|).

3. Run M on (G , k) (takes time r(q(|ϕ|))). Recall that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

So just output the output of M(G , k).

This is an algorithm for 3SAT that takes time

p(|ϕ|) + r(q(|ϕ|))
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By the Cook-Levin Theorem Have the Converse

From the above we have
IS ∈ P implies 3SAT ∈ P.

By the Cook-Levin theorem (after the midterm) we will have
3SAT ∈ P implies IS ∈ P.

Hence we will have
3SAT ∈ P iff IS ∈ P.

Much More is Known The following are all in P or all NOT in P:
HAM, 3SAT, IS, 3COL, CLIQ.
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Reductions

We now generalize what we did for 3SAT and IS.

Def Let X ,Y be sets. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

(Example: Our function that took ϕ to (G , k).)
We express this by writing X ≤ Y .

Reductions are transitive.
Lemma (HW) If X ≤ Y and Y ∈ P then X ∈ P. (We use that if
f (n), g(n) are poly then f (g(n)) is poly.)

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.
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Def A set Y is NP-complete (NPC) if the following hold:
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▶ If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.
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3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.
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