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Odd number of a’s followed by an even number of b’s, but at
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Transition Table:
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Trick for Mod 11. All ≡ are Mod 11

Is there a trick for mod 11?

We derive it together!
100 ≡ 1
101 ≡ 10 ≡ −1
102 ≡ 10 ≡ 10 ≡ −1×−1 ≡ 1.
103 ≡ 102 × 10 ≡ 1×−1 ≡ −1.
Pattern is 1,−1, 1,−1, . . ..

Thm dn · · · d0 ≡ d0 − d1 + d2 − · · · ± dn.

Proof may be on HW or Midterm or Final or some
combination.
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DFA for Mod 11

Need to keep track of both the running weighted sum mod 11
and if you are reading an even or odd place.

Q = {0, . . . , 10} × {0, 1}
s = (0, 0).

Final state: Not going to have these, this is DFA-classifier.

δ((i , j), σ)

{
(i + σ (mod 11), j + 1 (mod 2)) if j = 0

(i − σ (mod 11), j + 1 (mod 2)) if j = 1

(1)

We keep track of a running weighted sum mod 11 and position
of the symbol mod 2.

22 states.

Classifier If end in (i , 0) or (i , 1) then number is ≡ i .
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Nondeterministic Finite
Automata (NFA)



NFA’s Intuitively

1. An NFA is a DFA that can guess.

2. NFAs do not really exist.

3. Good for ∪ since can guess which one.

4. An NFA accepts iff SOME guess accepts.



Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf Sketch L is accepted by NFA (Q,Σ,∆, s,F ) where

1. Get rid of e-transitions using reachability.

2. Get rid of non-determinism by using power sets. Possibly 2n

blowup.



Regular Expressions



Examples

1. b∗(ab∗ab∗)∗ab∗

2. b∗(ab∗ab∗ab∗)∗

3. (b∗(ab∗ab∗)∗ab∗) ∪ (b∗(ab∗ab∗ab∗)∗)



Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

We skip rest of the proof.



Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.

Base Cases |α| = 1. Then α = e or α = σ.

σ

We skip rest of the proof.



Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

We skip rest of the proof.



Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

We skip rest of the proof.



Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

We skip rest of the proof.



Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

We skip rest of the proof.



DFA ⊆ REGEX

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.
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Inductive Step R(i , j , k) as a Picture
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Complete Proof on One Slide

For all 1 ≤ i , j ≤ n:

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i ̸= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

All R(i , j , 0) are Regex.

For all 1 ≤ i , j ≤ n and all 0 ≤ k ≤ n

R(i , j , k) = R(i , j , k−1)
⋃

R(i , k , k−1)R(k , k , k−1)∗R(k , j , k−1)

If ALL R(i , j , k − 1) are Regex, then ALL R(i , j , k) are Regex.
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Textbook Regular Expressions

We allow numbers as exponents. For example the following is
not a regex but is a trex:

{a, b}∗a{a, b}n.

Often the trex is shorter than the regex.



Textbook Regular Expressions

We allow numbers as exponents. For example the following is
not a regex but is a trex:

{a, b}∗a{a, b}n.

Often the trex is shorter than the regex.



Closure Properties



Summary of Proofs of Closure Properties

Prod means product construction where you use Q1 × Q2

Def means by Definition, e.g., L1 ∩ L2 for regex.

Swap means swapping final and non-final states.

e-trans means by using e-transitions, e.g., L1 · · · l2 for NFAs.

X means hard to prove, e.g., L for NFA.

Property DFA NFA regex
L1 ∪ L2 Prod e-trans Def
L1 ∩ L2 Prod Prod X

L Swap X X
L1 · L2 X e-trans Def
L∗ X e-trans Def
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Summary of Blowup for Closure Properties

X means Can’t Prove Easily

n1, n2 are number of states in a DFA or NFA.

ℓ,ℓ2 are length of regex.

Closure Property DFA NFA Regex

L1 ∪ L2 n1n2 n1 + n2 ℓ1 + ℓ2
L1 ∩ L2 n1n2 n1n2 X
L1 · L2 X n1 + n2 + 1 ℓ1 + ℓ2

L n X X
L∗ X n + 1 ℓ+ 1
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n1, n2 are number of states in a DFA or NFA.

ℓ,ℓ2 are length of regex.

Closure Property DFA NFA Regex

L1 ∪ L2 n1n2 n1 + n2 ℓ1 + ℓ2
L1 ∩ L2 n1n2 n1n2 X
L1 · L2 X n1 + n2 + 1 ℓ1 + ℓ2

L n X X
L∗ X n + 1 ℓ+ 1



Number of States for
DFAs and NFAs



Minimal DFA for L1 = {ai : i ≡ 0 (mod 35)}

0 1 2 . . . 34
a a a a

a



Min DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.
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Small NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

Need these two NFA’s.

0 1 2 3 4
a a a a

a

0 1 2 3 4 5 6
a a a a a a

a



Small NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

0 1 2 3 4

0 1 2 3 4 5

6

e a a a a

a

e

a a a a a

a

a



L2 = {ai : i ̸≡ 0 (mod 35)}

DFA for L2 requires 35 states.

NFA for L2 can be done with 1 + 5 + 7 = 13 states.
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DFA for L4 = {ai : i ̸= 1000}

1. There is a DFA for L4 that has 1000 states.

2. Any DFA for L3 has ≥ 1000 states.



DFA for L4 = {ai : i ̸= 1000}

1. There is a DFA for L4 that has 1000 states.

2. Any DFA for L3 has ≥ 1000 states.



Small NFA for L4 = {an : n ̸= 1000}

Two NFA’s:

NFA A:
▶ Does NOT accept a1000.
▶ Accepts all words longer than 1000.
▶ Do not care about words shorter than 1000.

NFA B:
▶ Does NOT accept a1000.
▶ Accepts all words shorter than 1000.
▶ Do not care about words longer than 1000.

Create the union of NFA’s A and B .
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Sums of 32’s and 33’s

Thm
1) (∀n ≥ 1001)(∃x , y ∈ N)[n = 32x + 33y + 9].

2) (¬∃x , y ∈ N)[1000 = 32x + 33y + 9].
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NFA A

Idea Start state, then 8 states, then a loop of size 33 with a
shortcut at 32.
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Why Works for {ai : i ≥ 1001} and More

By the loop Theorem for 32, 33, the NFA

1. Accepts {ai : i ≥ 1001}.
2. Might accept more.

3. DOES NOT accept a1000.



Number of States for {ai : i ≥ 1001}

1. Start state

2. A chain of 9 states including the start state.

3. A loop of 33 states. The shortcut on 32 does not affect the
number of states.

Total number of states: 9 + 33 = 42.
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Still Need NFA B

Idea

1000 ≡ 0 (mod 2) 2-state DFA for {ai : i ̸≡ 0 (mod 2)}.
1000 ≡ 1 (mod 3) 3-state DFA for {ai : i ̸≡ 1 (mod 3)}.
1000 ≡ 0 (mod 5) 5-state DFA for {ai : i ̸≡ 0 (mod 5)}.
1000 ≡ 6 (mod 7) 7-state DFA for {ai : i ̸≡ 6 (mod 7)}.
1000 ≡ 10 (mod 11) 11-state DFA for {ai : i ̸≡ 10 (mod 11)}.
Could go on to 13,17, etc. But we will see we can stop here.
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Machine B
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NFA for {ai : i ≤ 999} AND More, but NOT a1000

Thm Let M be the NFA from the last slide with the Mods.
M(a1000) is rejected. This is obvious.

We omit the proof that it works but note that we use that the
product of the mods

2× 3× 5× 7× 11 = 2310 > 1000.
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Thm Let M be the NFA from the last slide with the Mods.
M(a1000) is rejected. This is obvious.

We omit the proof that it works but note that we use that the
product of the mods

2× 3× 5× 7× 11 = 2310 > 1000.



How Many States for {ai : i ≤ 999} AND More, but
NOT a1000?

2 + 3 + 5 + 7 + 11 = 28 states.
Plus the start state, so 29.



NFA for {ai : i ̸= 1000}

1. We have an NFA on 42 states that accepts {ai : i ≥ 1001}
This includes the start state.

2. We have an NFA on 29 states that accepts {ai : i ≤ 999} and
other stuff, but NOT a1000. This includes the start state.

Take NFA of union using e-transitions for an NFA and do not
count start state twice, so have

42 + 29− 1 = 70 states.
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NFA for {ai : i ̸= 1000}

1. We have an NFA on 42 states that accepts {ai : i ≥ 1001}
This includes the start state.

2. We have an NFA on 29 states that accepts {ai : i ≤ 999} and
other stuff, but NOT a1000. This includes the start state.

Take NFA of union using e-transitions for an NFA and do not
count start state twice, so have
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Can We Do Better than 70 States?

YES–59 states:

Figure: 59 State NFA for L4



Math Needed for {ai : i ̸= n} I

Frobenius Thm (aka The Chicken McNugget Thm)

Thm If x , y are relatively prime then

▶ For all z ≥ xy − x − y + 1 there exists c , d ∈ N such that
z = cx + dy .

▶ There is no c , d ∈ N such that xy − x − y = cx + dy .

We use this to get an NFA for {ai : i ≥ n+ 1} by using x , y ≈
√
n.

Want to get xy − x − y ≤ n so can use the tail to get
xy − x − y + t = n + 1.
This leads to loops and tail that are roughly ≤ 2

√
n states.
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Math Needed for {ai : i ̸= n} II

Thm Let n ∈ N. Let q1, . . . , qk be rel prime such that∏k
i=1 qi ≥ n. Then the set of all i such that

i ̸≡ n (mod q1).
...
i ̸≡ n (mod qk).
Contains {1, . . . , n − 1} and does not contain n

Number theory tells us that can find such a q1, . . . , qk with

k∑
i=1

qi ≤ (log n)2 log log n.

So can use this to get NFA for {ai : i ≤ n− 1} (and other stuff but
not an) with ≤ (log n)2 log log n states.
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Proving That a Language
Is Not Regular



Pumping Lemma (PL)



L1 = {anbn : n ≥ 0} is Not Regular

Proof Assume L1 is regular via DFA M with m states.
Run M on ambm.
States encountered processing am:

q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.
So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.
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General Technique

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | ≤ n1 (or can take |yz | ≤ n1 but not both.)

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x
y

z

σ σ

· · ·

σ
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How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y ̸= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.
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REDO: L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :
1. y ̸= e.

2. |xy | is short.
3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.
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L3 = {w : #a(w) ̸= #b(w)} is Not Regular

PL Does Not Help. When you increase the number of y ’s
there is no way to control it so carefully to make the number
of a’s EQUAL the number of b’s.

So what do to?

If L3 is regular then L2 = L3 is regular. But we know that L2 is
not regular. DONE!
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L4 = {an2
: n ∈ N} is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a
word in the language.

Proof
By PL for long enough an

2 ∈ L4 there exist x = aj , y = ak ,
z = aℓ with xyz = an

2
. Also aj(ak)iaℓ ∈ L4. (Note k ≥ 1.)

(∀i ≥ 0)[j + ik + ℓ = n2 + ik is a square].

So n2, n2 + k , n2 + 2k , . . . are all squares. Omit the rest.
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L5 = {ap : p is prime} is Not Regular

By PL, for large p, ap ∈ L5 ∃ x = aj , y = ak , z = aℓ such that

aj(ak)iaℓ ∈ L5

(∀i ≥ 0)[j + ik + ℓ is prime].

So, p, p + k , p + 2k , . . . , p + pk are all prime.
But p + pk = p(k + 1). Contradiction.
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L6 = {#a(w) > #b(w)} is Not Regular

We will be brief here.

Take w = bnan+1, long enough so the y -part is in the b’s.
Pump the y to get more b’s than a’s.
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L7 = {anbm : n > m} is Not Regular

We will be brief here.

Use PL with bound on |yz |.
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L8 = {an1bmcn2 : n1,n2 > m} is Not Regular

Problematic Neither pumping on the left or on the right
works. So choose string carefully.

w = anbn−1cn.

x = aj , y = ak , z = an−j−kbn−1cn.

For all i ≥ 0, xy iz ∈ L8. xy
iz = aj+ik+(n−j−k)bn−1cn

Key We are used to thinking of i large.
But we can also take i = 0. Cut out that part of the word.

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy
0z) < n ≤ n− 1 = #b(xy

0z).
Hence xy 0z /∈ L8. Contradiction.
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But we can also take i = 0. Cut out that part of the word.

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy
0z) < n ≤ n− 1 = #b(xy

0z).
Hence xy 0z /∈ L8. Contradiction.
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i = 0 Case as a Picture
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· · ·
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