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Closure Properties



Terminology: Reg Langs

Def A lang L is reg if there exists a DFA M such that L = L(M).

Since DFA’s and NFA’s are equivalent.
Def A lang L is reg if there exists an NFA M such that L = L(M).
We use this definition of reg for this slide packet.

We prove closure properties (or say NO, not going to prove it) of
reg langs using NFA’s.

We will keep track of number-of-states.
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Reg Langs Closed Under Complementation

How do you complement a reg lang (not a joke)?

Caution Swapping the final and non-final states DOES NOT
WORK for an NFA.

See next slide.
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Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under
complementation using JUST NFA’s.
Can Use NFA-DFA equivalence:

L recognized by an n-state NFA.

Convert to a 2n-state DFA.

Take the complement.

Now you have a 2n state DFA, and hence a 2n-state NFA for L.

Is there a more efficient proof?
No. There are langs L where:

▶ there is an NFA for L is size n.

▶ any NFA for L is of size ≥∼ 2n.
See next slide for this example.
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Example of a Blowup for Complementation

Example of a language Ln such that

1. There is an NFA for L that is small.

2. Every NFA for L is large.

Let Mn be the product of the first n primes.

Ln = {ai : i ̸≡ Mn (mod Mn)}.

1. There is an NFA for Ln of size O(p1 + · · ·+ pn) = O( n2

log(n)2
).

2. Any NFA for Ln requires size Ω(p1p2 · · · pn) = Ω(en log n).
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Reg Langs Closed Under Union-Formally

Formally If L1 is reg via NFA

(Q1,Σ,∆1, s1,F1). We will take |Q1| = n1 .

and L2 is reg via NFA

(Q2,Σ,∆2, s2,F2). We will take |Q2| = n2 .

then L1 ∪ L2 is reg via NFA

({s ′} ∪ Q1 ∪ Q2,Σ,∆
′, s ′,F1 ∪ F2).

where for i = 1 or 2,
If q ∈ Qi , σ ∈ Σ ∪ {e} then ∆′(q, σ) = ∆i (q, σ).

∆′(s ′, e) = {s1, s2}.
Note The number of states in NFA for L1 ∪ L2 is n1 + n2 + 1.
Note When we did closure using DFA’s, we got n1n2.
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Reg Langs Closed Under Intersection

IF L1, L2 are reg we want to show that L1 ∩ L2 is reg.

Vote

1. Impossible or clunky to do with NFAs.

2. One CAN do this with NFAs but still gets n1n2 states.

3. One CAN do this with NFAs and we get < n1n2 states.

Answer Option 2: Can do with NFAs but gets n1n2 states.
It is a cross product construction. Next Slide.
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Reg Langs Closed Under Intersection: Proof

Let M1 = (Q1,Σ,∆1, s1,F1) be an NFA for L1
Let M2 = (Q2,Σ,∆2, s2,F2) be an NFA for L2
From M1 and M2 construct an NFA M for L1 ∩ L2.

M = (Q1 × Q2,Σ,∆, (s1, s2),F1 × F2) where

∆((q1, q2), σ) =

{(p1, p2) : p1 ∈ ∆1(q1, σ) ∧ p2 ∈ ∆2(q2, σ)}
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Reg Langs Closed Under Concat-Formally

Formally If L1 is reg via NFA

(Q1,Σ,∆1, s1,F1). We will take |Q1| = n1 .

and L2 is reg via NFA

(Q2,Σ,∆2, s2,F2). We will take |Q2| = n2 .

then L1L2 is reg via NFA

(Q1 ∪ Q2,Σ,∆
′, s1,F2)

If q ∈ Q1 − F1, σ ∈ Σ ∪ {e} then ∆′(q, σ) = ∆1(q, σ).

If q ∈ F1, σ ∈ Σ then ∆′(q, σ) = ∆1(q, σ).

If q ∈ F1, ∆
′(q, e) = ∆1(q, e) ∪ {s2}.

If q ∈ Q2, σ ∈ Σ ∪ {e} then ∆′(q, σ) = ∆2(q, σ).

Number of states: n1 + n2.
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Reg Langs Closed Under Concat-Formally

Formally If L1 is reg via NFA
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Reg Langs Closed Under ∗?-Intuition-1st Try

Have an e-transition from final states of M to start state of M.

Next slide has a generic picture of this approach.

Spoiler Alert This will not work.
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What Goes Wrong with 1st Try?

What goes wrong?

We want e to be accepted.

Next slide has an NFA where this does not work.
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Reg Langs Closed Under ∗?-Intuition-2nd Try

Have an e-transition from final states of M to start state of M
AND make s a final state.

Next slide has a generic picture of this approach.

Spoiler Alert This will not work.
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What Goes Wrong with 2nd Try

What goes wrong?

Might accept too much.

Next slide has an NFA where this does not work.
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Reg Langs Closed Under ∗?-Intuition-3rd Try

Have an e-transition from final states of M to a NEW start state
of M. That NEW start state is a final state and has an e-trans to
old start state.

Next slide has a generic picture of this approach.

Spoiler Alert This will work.
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Reg Langs Closed Under ∗?-Formally

Might be a HW or exam question.



Summary of Closure Properties and Proofs

X means can’t prove easily
n1 + n2 (and similar) is number of states in new machine if Li reg
via ni -state machine.

Closure Property DFA NFA

L1 ∪ L2 n1n2 n1 + n2 + 1
L1 ∩ L2 n1n2 n1n2
L1 · L2 X n1 + n2

L n X
L∗ X n + 1



BILL AND NATHAN STOP RECORDING
LECTURE!!!!

BILL AND NATHAN STOP RECORDING LECTURE!!!


