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Nondeterministic Finite
Automata (NFA)



An Interesting Example of a DFA

With neighbor find DFA'’s for the following. Note numb. states.
Y*a

Y *a¥

Y *ay?
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The number of states is 8.

More generally:
Y*aY' can be done with 2/*1 states.

Prove for ¥*a¥.3, with a table.

Might be on o{HW, MIDTERM, FINAL}

8 possibilities.

Is there a smaller DFA for ¥*aX/? Fewer than 2/*1 states? No.
We may prove this later.

We now use NFA's informally.
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All You Need to Know About NFA’s For Now

1. From a state g and a symbol o there may be > 2 states to go
to.

2. From a state g and no symbols there may be > 1 states to go
to. (We use e for empty string.)

3. An NFA accepts a string if there is some way to process the
string and get to a final state.
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a, b

o (T2
W,

DFA had 8 states. NFA has 4 states.

a, b



NFA for X*aX3

Recall that DFA for ¥*a¥3 used 16 states.



NFA for X*aX3

Recall that DFA for ¥*a¥3 used 16 states.
Draw an NFA for ¥*a¥3.



NFA for X*aX:3

Recall that DFA for ¥*a¥3 used 16 states.
Draw an NFA for ¥*a¥3.

How many states?



NFA for X*aX:3

Recall that DFA for ¥*a¥3 used 16 states.
Draw an NFA for ¥*a¥3.
How many states?

Make a conjecture for number of states for NFA for X*a%.".



NFA for X*aX:3

Recall that DFA for ¥*a¥3 used 16 states.

Draw an NFA for ¥*a%3.

How many states?

Make a conjecture for number of states for NFA for X*a%.".

Upshot Seems like NFA uses far fewer state than DFA for *aX".
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The DFA for this requires 12 states. Can we do this with a smaller
NFA? Vote

NO. Proof similar to that for DFA. Will come back to this after we
define NFA rigorously.

Or might be on HW-MID-FINAL.
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{a":n# 0 (mod 15)}

Prove that the NFA in the last slide works.
Need

(n#0 (mod3)Vn#0 (mod5)) = n#0 (mod 15)

Take the contrapositive

n=0 (mod15) = (n=0 (mod3)An=0 (mod}5))
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NO. Proof similar to that for DFA. Will come back to this after we
define NFA rigorously.

Or might be on HW-MID-FINAL.



NFA’s Intuitively

1. An NFA is a DFA that can guess.

2. NFAs do not really exist.

3. Good for U since can guess which one.
4. An NFA accepts iff SOME guess accepts.
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NFA Formally

Def An NFA is a tuple (Q, X, A, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. A:Q x (XU {e}) — 29 is the transition function.
4. s € S is the start state.
5. F C @ is the set of final states.

Def If M is an NFA and x € ©* then M(x) accepts if when you
run M on x some sequence of guesses end up in a final state.
Note When you run M(x) and choose a path one of three things
can happen: (1) ends in a final state, (2) ends in a non-final state,

(3) cannot process.
Def If M is an NFA then L(M) = {x : M(x) accepts }.
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Three Way to Think About NFAs

» Computational (with parallelism): Fork new computational
threads whenever there is a choice. Accept if any thread
accepts.

» Mathematical: Create tree with branches whenever there is a
choice. Accept if any leaf accepts.

» Magic: Guess at each nondeterministic step which way to go.
Machine always makes right guess if there is one.
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1. We have seen several langs where the NFA is smaller than the
DFA.

2. We have NOT seen any langs that an NFA can do but a DFA
cannot do.

SO, is every NFA-lang also a DFA-lang? Vote. Yes.
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Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf L is accepted by NFA (Q, %, A,s, F) where
A:Qx(Tu{e}l) —29

First we get rid of the e-transitions.

Notation A(q, e'ce/) means that we take state g, feed in e i
times, then feed in o, then feed in e j times. Do all possible
transitions so this will be a set of states.

Ai(g,0)= | Alg,eoe).
0<ij<n
NFA (Q, %, A1, s, F) accepts same lang as (Q, X, A, s, F).
We will work with an NFA that has NO e-transitions.
We are nowhere near done. Next slide.
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Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:Qx¥—29

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA
could have been in.

DFA (29,%,6,{s}, F"). Need to define 6 and F'.

§:29x ¥ =29

5(A,0) = | A(q.0).
geA
F'={A:ANF #£0}.

If NFA accepts on some path then in the DFA you will be in a state
which is a set-of-states, which includes a final state from the NFA.
If the DFA accepts then there was some way for the NFA to accept.
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