BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



Nondeterministic Finite
Automata (NFA)



An Interesting Example of a DFA

With neighbor find DFA'’s for the following. Note numb. states.
Y*a

Y *a¥

Y *ay?



>*aX?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/
notes/dfa3. JPG


https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

>*aX?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/
notes/dfa3.JPG
The number of states is 8.


https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

>*aX?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/
notes/dfa3. JPG

The number of states is 8.

More generally:
Y*aY' can be done with 2/*1 states.


https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

>*aX?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/
notes/dfa3. JPG

The number of states is 8.

More generally:
Y*aY' can be done with 2/*1 states.

Prove for ¥*a¥.3, with a table.


https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

>*aX?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/
notes/dfa3. JPG

The number of states is 8.
More generally:
Y*aY' can be done with 2/*1 states.

Prove for ¥*a¥3, with a table.
Might be on 2{HW, MIDTERM, FINAL}_


https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

>*aX?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/
notes/dfa3. JPG

The number of states is 8.

More generally:
Y*aY' can be done with 2/*1 states.

Prove for ¥*a¥3, with a table.
Might be on 2{HW, MIDTERM, FINAL}_

8 possibilities.


https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

>*aX?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/
notes/dfa3. JPG

The number of states is 8.

More generally:
Y*aY' can be done with 2/*1 states.

Prove for ¥*a¥.3, with a table.

Might be on »{HW, MIDTERM, FINAL}

8 possibilities.

Is there a smaller DFA for ¥*aX/? Fewer than 2/11 states?


https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

>*aX?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/
notes/dfa3.JPG
The number of states is 8.

More generally:
Y*aY' can be done with 2/*1 states.

Prove for ¥*a¥3, with a table.
Might be on 2{HW, MIDTERM, FINAL}_
8 possibilities.

Is there a smaller DFA for ¥*aX/? Fewer than 2/*1 states? No.
We may prove this later.


https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

>*aX?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/
notes/dfa3.JPG
The number of states is 8.

More generally:
Y*aY' can be done with 2/*1 states.

Prove for ¥*a¥.3, with a table.

Might be on o{HW, MIDTERM, FINAL}

8 possibilities.

Is there a smaller DFA for ¥*aX/? Fewer than 2/*1 states? No.
We may prove this later.

We now use NFA's informally.


https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

All You Need to Know About NFA’s For Now



All You Need to Know About NFA’s For Now

1. From a state g and a symbol o there may be > 2 states to go
to.



All You Need to Know About NFA’s For Now

1. From a state g and a symbol o there may be > 2 states to go
to.

2. From a state g and no symbols there may be > 1 states to go
to. (We use e for empty string.)



All You Need to Know About NFA’s For Now

1. From a state g and a symbol o there may be > 2 states to go
to.

2. From a state g and no symbols there may be > 1 states to go
to. (We use e for empty string.)

3. An NFA accepts a string if there is some way to process the
string and get to a final state.



NFA for X*aX:?

a, b



NFA for X*aX:?

a, b

o (T2
W,

DFA had 8 states. NFA has 4 states.

a, b



NFA for X*aX3

Recall that DFA for ¥*a¥3 used 16 states.



NFA for X*aX3

Recall that DFA for ¥*a¥3 used 16 states.
Draw an NFA for ¥*a¥3.



NFA for X*aX:3

Recall that DFA for ¥*a¥3 used 16 states.
Draw an NFA for ¥*a¥3.

How many states?



NFA for X*aX:3

Recall that DFA for ¥*a¥3 used 16 states.
Draw an NFA for ¥*a¥3.
How many states?

Make a conjecture for number of states for NFA for X*a%.".



NFA for X*aX:3

Recall that DFA for ¥*a¥3 used 16 states.

Draw an NFA for ¥*a%3.

How many states?

Make a conjecture for number of states for NFA for X*a%.".

Upshot Seems like NFA uses far fewer state than DFA for *aX".



{w:#,(w) =0 (mod 3) V #p(w) =0 (mod 4)}

The DFA for this requires 12 states. Can we do this with a smaller
NFA?



{w:#,(w) =0 (mod 3) V #p(w) =0 (mod 4)}

The DFA for this requires 12 states. Can we do this with a smaller
NFA? Vote



{w:#,(w) =0 (mod 3) V #p(w) =0 (mod 4)}

The DFA for this requires 12 states. Can we do this with a smaller
NFA? Vote

YES - next slide.



{w:#,(w) =0 (mod 3) V #p(w) =0 (mod 4)}




{w:#,(w) =0 (mod 3) A #p(w) =0 (mod 4)}

The DFA for this requires 12 states. Can we do this with a smaller
NFA?



{w:#,(w) =0 (mod 3) A #p(w) =0 (mod 4)}

The DFA for this requires 12 states. Can we do this with a smaller
NFA? Vote



{w:#,(w) =0 (mod 3) A #p(w) =0 (mod 4)}

The DFA for this requires 12 states. Can we do this with a smaller
NFA? Vote

NO. Proof similar to that for DFA. Will come back to this after we
define NFA rigorously.



{w:#.,(w) =0 (mod 3) A #p(w) =0 (mod 4)}

The DFA for this requires 12 states. Can we do this with a smaller
NFA? Vote

NO. Proof similar to that for DFA. Will come back to this after we
define NFA rigorously.

Or might be on HW-MID-FINAL.



{a":n#0 (mod 15)}

Note A DFA for this requires 15 states. Can a smaller NFA
recognize it? Vote



{a":n#0 (mod 15)}

Note A DFA for this requires 15 states. Can a smaller NFA
recognize it? Vote
YES - next slide



{a":n# 0 (mod 15)}




{a":n# 0 (mod 15)}

Prove that the NFA in the last slide works.
Need

(n#0 (mod3)Vn#0 (mod5)) = n#0 (mod 15)

Take the contrapositive

n=0 (mod15) = (n=0 (mod3)An=0 (mod}5))



{a":n=0 (mod 15)}

Note A DFA for this requires 15 states. Can a smaller NFA
recognize it? Vote



{a":n=0 (mod 15)}

Note A DFA for this requires 15 states. Can a smaller NFA
recognize it? Vote

NO. Proof similar to that for DFA. Will come back to this after we
define NFA rigorously.



{a":n=0 (mod 15)}

Note A DFA for this requires 15 states. Can a smaller NFA
recognize it? Vote

NO. Proof similar to that for DFA. Will come back to this after we
define NFA rigorously.

Or might be on HW-MID-FINAL.



NFA’s Intuitively

1. An NFA is a DFA that can guess.

2. NFAs do not really exist.

3. Good for U since can guess which one.
4. An NFA accepts iff SOME guess accepts.



NFA Formally

Def An NFA is a tuple (Q, X, A, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. A:Q x (XU {e}) — 29 is the transition function.
4. s € S is the start state.
5. F C @ is the set of final states.



NFA Formally

Def An NFA is a tuple (Q, X, A, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. A:Q x (XU {e}) — 29 is the transition function.
4. s € S is the start state.
5. F C @ is the set of final states.

Def If M is an NFA and x € ©* then M(x) accepts if when you
run M on x some sequence of guesses end up in a final state.



NFA Formally

Def An NFA is a tuple (Q, X, A, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. A:Q x (XU {e}) — 29 is the transition function.
4. s € S is the start state.
5. F C @ is the set of final states.

Def If M is an NFA and x € ©* then M(x) accepts if when you
run M on x some sequence of guesses end up in a final state.
Note When you run M(x) and choose a path one of three things
can happen: (1) ends in a final state, (2) ends in a non-final state,
(3) cannot process.



NFA Formally

Def An NFA is a tuple (Q, X, A, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. A:Q x (XU {e}) — 29 is the transition function.
4. s € S is the start state.
5. F C @ is the set of final states.

Def If M is an NFA and x € ©* then M(x) accepts if when you
run M on x some sequence of guesses end up in a final state.
Note When you run M(x) and choose a path one of three things
can happen: (1) ends in a final state, (2) ends in a non-final state,

(3) cannot process.
Def If M is an NFA then L(M) = {x : M(x) accepts }.



Three Way to Think About NFAs



Three Way to Think About NFAs

» Computational (with parallelism): Fork new computational
threads whenever there is a choice. Accept if any thread
accepts.



Three Way to Think About NFAs

» Computational (with parallelism): Fork new computational
threads whenever there is a choice. Accept if any thread
accepts.

> Mathematical: Create tree with branches whenever there is a
choice. Accept if any leaf accepts.



Three Way to Think About NFAs

» Computational (with parallelism): Fork new computational
threads whenever there is a choice. Accept if any thread
accepts.

» Mathematical: Create tree with branches whenever there is a
choice. Accept if any leaf accepts.

» Magic: Guess at each nondeterministic step which way to go.
Machine always makes right guess if there is one.



Is Every NFA-lang a DFA-lang?



Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the
DFA.



Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the
DFA.

2. We have NOT seen any langs that an NFA can do but a DFA
cannot do.



Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the
DFA.

2. We have NOT seen any langs that an NFA can do but a DFA
cannot do.

SO, is every NFA-lang also a DFA-lang?



Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the
DFA.

2. We have NOT seen any langs that an NFA can do but a DFA
cannot do.

SO, is every NFA-lang also a DFA-lang? Vote.



Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the
DFA.

2. We have NOT seen any langs that an NFA can do but a DFA
cannot do.

SO, is every NFA-lang also a DFA-lang? Vote. Yes.



Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf L is accepted by NFA (Q, %, A,s, F) where
A:Qx(Tu{e}l) —29



Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf L is accepted by NFA (Q, %, A,s, F) where
A:Qx(Tu{e}l) —29

First we get rid of the e-transitions.



Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf L is accepted by NFA (Q, %, A,s, F) where
A:Qx(Tu{e}l) —29

First we get rid of the e-transitions.

Notation A(q, e'ce/) means that we take state g, feed in e i
times, then feed in o, then feed in e j times. Do all possible
transitions so this will be a set of states.



Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf L is accepted by NFA (Q, %, A,s, F) where
A:Qx(Tu{e}l) —29

First we get rid of the e-transitions.

Notation A(q, e'ce/) means that we take state g, feed in e i
times, then feed in o, then feed in e j times. Do all possible
transitions so this will be a set of states.

Ay(g.0)= | ] Alg,eoe).

0<ij<n



Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf L is accepted by NFA (Q, %, A,s, F) where
A:Qx(Tu{e}l) —29

First we get rid of the e-transitions.

Notation A(q, e'ce/) means that we take state g, feed in e i
times, then feed in o, then feed in e j times. Do all possible
transitions so this will be a set of states.

Ay(g.0)= | ] Alg,eoe).

0<ij<n

NFA (Q, %, A1, s, F) accepts same lang as (Q, X, A, s, F).



Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf L is accepted by NFA (Q, %, A,s, F) where
A:Qx(Tu{e}l) —29

First we get rid of the e-transitions.

Notation A(q, e'ce/) means that we take state g, feed in e i
times, then feed in o, then feed in e j times. Do all possible
transitions so this will be a set of states.

Ay(g.0)= | ] Alg,eoe).

0<ij<n

NFA (Q, %, A1, s, F) accepts same lang as (Q, X, A, s, F).
We will work with an NFA that has NO e-transitions.



Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.
Pf L is accepted by NFA (Q, %, A,s, F) where
A:Qx(Tu{e}l) —29

First we get rid of the e-transitions.

Notation A(q, e'ce/) means that we take state g, feed in e i
times, then feed in o, then feed in e j times. Do all possible
transitions so this will be a set of states.

Ai(g,0)= | Alg,eoe).
0<ij<n
NFA (Q, %, A1, s, F) accepts same lang as (Q, X, A, s, F).
We will work with an NFA that has NO e-transitions.
We are nowhere near done. Next slide.



Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:QxX¥—29



Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:Qx¥—29

We define a DFA that recognizes the same language as M.



Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:Qx¥—29

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA
could have been in.



Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:Qx¥—29

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA
could have been in.

DFA (29,%,6,{s}, F"). Need to define 6 and F'.



Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:Qx¥—29

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA
could have been in.

DFA (29,%,6,{s}, F"). Need to define 6 and F'.

§:29x ¥ =29



Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:Qx¥—29

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA
could have been in.

DFA (29,%,6,{s}, F"). Need to define 6 and F'.

§:29x ¥ =29

5(A,0) = Ag,0).

geA



Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:Qx¥—29

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA
could have been in.

DFA (29,%,6,{s}, F"). Need to define 6 and F'.

§:29x ¥ =29

5(A,0) = Ag,0).

geA

F'={A:ANF #0}.



Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:Qx¥—29

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA
could have been in.

DFA (29,%,6,{s}, F"). Need to define 6 and F'.

§:29x ¥ =29

5(A,0) = | A(q.0).
geA
F'={A:ANF #£0}.

If NFA accepts on some path then in the DFA you will be in a state
which is a set-of-states, which includes a final state from the NFA.



Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with < 27 states.

Pf L is accepted by NFA M = (Q, X, A, s, F) where
A:Qx¥—29

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA
could have been in.

DFA (29,%,6,{s}, F"). Need to define 6 and F'.

§:29x ¥ =29

5(A,0) = | A(q.0).
geA
F'={A:ANF #£0}.

If NFA accepts on some path then in the DFA you will be in a state
which is a set-of-states, which includes a final state from the NFA.
If the DFA accepts then there was some way for the NFA to accept.



BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!



