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DFA for L1 = {ai : i ≡ 0 (mod 35)}

Is there a smaller DFA for L1?
VOTE

1. Bill knows a DFA for L1 with ≤ 34 states.

2. Bill can prove all DFA’s for L1 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L1 have ≥ 35 states.
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DFA for L1 = {ai : i ≡ 0 (mod 35)}

Theorem Any DFA for L1 has at least 35 states.

Proof: Assume BWOC (∃DFA M), ≤ 34 states, for L1.

Feed in the string a35.

States visited: s = q0, q1, . . . , q35 ∈ F
(Note that a word of length L visits L+ 1 states.)

We just look at q0, . . . , q34 which is 35 (not necc different)
states.
Since the DFA has ≤ 34 states
(∃0 ≤ i < j ≤ 34) such that qi = qj . Say i = 3 and j = 5.

Feed in the string a33.

States visited: s = q0, q1, q2, q3 = q5, q6, q7, . . . , q35 ∈ F .

Hence a33 is accepted. This is the contradiction.
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3. The answer is UNKNOWN TO BILL!
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Its on the next slide. Its similar to the DFA proof.
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L = {ai : i ≡ 0 (mod m)}

1. There is a DFA for L with m states.

2. If M is a DFA for L then M has ≥ m states.

3. There is an NFA for L with m states.

4. If M is an NFA for L then M has ≥ m states.
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Second Language We Consider

L2 = {ai : i ̸≡ 0 (mod 35)}



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?

VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:

Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.

Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.

Contradiction.



DFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states: swap final-final states in DFA for L1.

Is there a smaller DFA for L2?
VOTE

1. Bill knows a DFA for L2 with ≤ 34 states.

2. Bill can prove all DFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill can prove all DFA’s for L2 have ≥ 35 states:
Assume ∃DFA M for L2 with ≤ 34 states.
Swap final-final states of M to get DFA for L1: ≤ 34 states.
Contradiction.



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states, hence ∃ NFA for L2: 35 states.

Is there a smaller NFA for L2?
VOTE

1. Bill knows a NFA for L2 with ≤ 34 states.

2. Bill can prove all NFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill knows a NFA for L2 with ≤ 34 states. Next slides.



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states, hence ∃ NFA for L2: 35 states.

Is there a smaller NFA for L2?

VOTE

1. Bill knows a NFA for L2 with ≤ 34 states.

2. Bill can prove all NFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill knows a NFA for L2 with ≤ 34 states. Next slides.



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states, hence ∃ NFA for L2: 35 states.

Is there a smaller NFA for L2?
VOTE

1. Bill knows a NFA for L2 with ≤ 34 states.

2. Bill can prove all NFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill knows a NFA for L2 with ≤ 34 states. Next slides.



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states, hence ∃ NFA for L2: 35 states.

Is there a smaller NFA for L2?
VOTE

1. Bill knows a NFA for L2 with ≤ 34 states.

2. Bill can prove all NFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill knows a NFA for L2 with ≤ 34 states. Next slides.



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states, hence ∃ NFA for L2: 35 states.

Is there a smaller NFA for L2?
VOTE

1. Bill knows a NFA for L2 with ≤ 34 states.

2. Bill can prove all NFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill knows a NFA for L2 with ≤ 34 states. Next slides.



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states, hence ∃ NFA for L2: 35 states.

Is there a smaller NFA for L2?
VOTE

1. Bill knows a NFA for L2 with ≤ 34 states.

2. Bill can prove all NFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill knows a NFA for L2 with ≤ 34 states. Next slides.



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

∃ DFA for L2: 35 states, hence ∃ NFA for L2: 35 states.

Is there a smaller NFA for L2?
VOTE

1. Bill knows a NFA for L2 with ≤ 34 states.

2. Bill can prove all NFA’s for L2 have ≥ 35 states.

3. The answer is UNKNOWN TO BILL!

Bill knows a NFA for L2 with ≤ 34 states. Next slides.



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

Note

1. If i ̸≡ 0 (mod 5) then ai ∈ L2 (Since 35 ≡ 0 (mod 5).)

2. If i ̸≡ 0 (mod 7) then ai ∈ L2 (Since 35 ≡ 0 (mod 7).)



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

Note

1. If i ̸≡ 0 (mod 5) then ai ∈ L2 (Since 35 ≡ 0 (mod 5).)

2. If i ̸≡ 0 (mod 7) then ai ∈ L2 (Since 35 ≡ 0 (mod 7).)



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

Note

1. If i ̸≡ 0 (mod 5) then ai ∈ L2 (Since 35 ≡ 0 (mod 5).)

2. If i ̸≡ 0 (mod 7) then ai ∈ L2 (Since 35 ≡ 0 (mod 7).)



Two Helpful DFAs

0 1 2 3 4
a a a a

a

0 1 2 3 4 5 6
a a a a a a

a



NFA for L2 = {ai : i ̸≡ 0 (mod 35)}

0 1 2 3 4

0 1 2 3 4 5

6

e a a a a

a

e

a a a a a

a

a



L2 = {ai : i ̸≡ 0 (mod 35)}

We need the following claim:

Claim i ̸≡ 0 (mod 35) → i ̸≡ 0 (mod 5) ∨ i ̸≡ 0 (mod 7).
Pf We prove contrapositive.
Assume i ≡ 0 (mod 5) AND i ≡ 0 (mod 7).

There exists x such that i = 5x

There exists y such that i = 7y

5x = 7y . So 5 divides 7y .

Since 5,7 have no common factors 5 divides y .

There exists z , y = 5z , so i = 7y = 35z .
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1. There is a DFA for L3 that has 1000 states.
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Work in groups to see if you can do better.
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Overall Method

Two NFA’s:

NFA A:
▶ Does NOT accept a1000.
▶ Accepts all words longer than 1000.
▶ Do not care about words shorter than 1000.

NFA B:
▶ Does NOT accept a1000.
▶ Accepts all words shorter than 1000.
▶ Do not care about words longer than 1000.

Create the union of NFA’s A and B .
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Sums of 32’s and 33’s

Thm

1. For all n ≥ 992 there exists x , y ∈ N such that
n = 32x + 33y .

2. There does not exist x , y ∈ N such that 991 = 32x + 33y .

Write down this theorem! Will prove on next few slides and
you need to know what I am proving.
We will prove this by induction.
Base Case 992 = 32× 31 + 33× 0.
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(∀n ≥ 992)(∃x, y ∈ N)[n = 32x + 33y ]

Inductive Hypothesis n ≥ 993 and
(∃x ′, y ′)[n − 1 = 32x ′ + 33y ′].

Intuition Want to swap coins in and out to increase by 1. Can
swap out a 32-coin and put in a 33-coin if I HAVE a 32-coin.
Case 1 x ′ ≥ 1. Then n = 32(x ′ − 1) + 33(y ′ + 1).
Intuition What to do if x ′ = 0. Need to remove some 33’s
and add some 32’s. Use that
32× 32− 31× 33 = 1024− 1023 = 1. Can swap out 31
33-coins and put in 32 32-coinsif I HAVE 31 33-coins.
Case 2 y ′ ≥ 31. Then n = 32(x ′ + 32) + 33(y ′ − 31).
Case 3 x ′ ≤ 0 and y ′ ≤ 30. Then
n = 32x ′ + 33y ′ ≤ 33× 30 = 990 < 993, so cannot occur.
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There is no x, y ∈ N with 991 = 32x + 33y
Pf by contradiction.

Assume there exists x , y ∈ N such that

991 = 32x + 33y

Then

991 ≡ 32x + 33y (mod 32)

31 ≡ 0x + 1y (mod 32)

31 ≡ y (mod 32) So y ≥ 31

991 = 32x + 33y ≥ 32x + 33× 31 ≥ 1023 Contradiction!
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Sums of 32’s and 33’s and ONE 9
Thm
1) For all n ≥ 1001 there exists x , y ∈ N such that
n = 32x + 33y + 9.

2) There does not exist x , y ∈ N such that 1000 = 32x + 33y + 9.
Pf
1) If n ≥ 1001 then n − 9 ≥ 992 so by prior Thm

(∃x , y ∈ N)[n − 9 = 32x + 33y ]

(∃x , y ∈ N)[n = 32x + 33y + 9]

2) Assume, by way of contradiction,

(∃x , y)[1000 = 32x + 33y + 9]

(∃x , y)[992 = 32x + 33y ]

This contradicts prior Thm.
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NFA A

Idea Start state, then 8 states, then a loop of size 33 with a
shortcut at 32.
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Number of States for {ai : i ≥ 1001}

1. Start state

2. A chain of 9 states including the start state.

3. A loop of 33 states. The shortcut on 32 does not affect the
number of states.

Total number of states: 9 + 33 = 42.
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Still Need NFA B

Idea

1000 ≡ 0 (mod 2) SO want to accept {ai : i ̸≡ 0 (mod 2)}.
2-state DFA.

1000 ≡ 1 (mod 3) SO want to accept {ai : i ̸≡ 1 (mod 3)}.
3-state DFA.

1000 ≡ 0 (mod 5) SO want to accept {ai : i ̸≡ 0 (mod 5)}.
5-state DFA.

1000 ≡ 6 (mod 7) SO want to accept {ai : i ̸≡ 6 (mod 7)}.
7-state DFA.

1000 ≡ 10 (mod 11) SO want to accept {ai : i ̸≡ 10 (mod 11)}.
11-state DFA.
Could go on to 13,17, etc. But we will see we can stop here.
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NFA for {ai : i ≤ 999} AND More, but NOT a1000

Thm Let M be the NFA from the last slide.
M(a1000) is rejected. This is obvious.
For all 0 ≤ i ≤ 999, M(ai ) is accepted.
Pf We show that if M(ai ) is rejected then i ≥ 1000. Assume
M(ai ) rejected. Then

i ≡ 0 (mod 2)
i ≡ 1 (mod 3)
i ≡ 0 (mod 5)
i ≡ 6 (mod 7)
i ≡ 10 (mod 11)
Continued on next slide
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NFA for {ai : i ≤ 999} AND More, but NOT a1000

i ≡ 0 (mod 2)
i ≡ 1 (mod 3)
Hence i ≡ 4 (mod 6).

i ≡ 0 (mod 5)
i ≡ 6 (mod 7)

Hence i ≡ 20 (mod 35).

i ≡ 10 (mod 11)

So we have
i ≡ 4 (mod 6)
i ≡ 20 (mod 35)
i ≡ 10 (mod 11).
Continued on next slide
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NFA for {ai : i ≤ 999} AND More, but NOT a1000?

From:
i ≡ 4 (mod 6)
i ≡ 20 (mod 35)
i ≡ 10 (mod 11).
One can show
i ≡ 1000 (mod 6× 35× 11)

So
i ≡ 1000 (mod 2310)
Hence i ≥ 1000.
Recap If ai is rejected then i ≥ 1000.
Hence If i ≤ 999 then ai is accepted.
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How Many States for {ai : i ≤ 999} AND More, but
NOT a1000?

2 + 3 + 5 + 7 + 11 = 28 states.
Plus the start state, so 29.



NFA for {ai : i ̸= 1000}

1. We have an NFA on 42 states that accepts {ai : i ≥ 1001}
This includes the start state.

2. We have an NFA on 29 states that accepts {ai : i ≤ 999} and
other stuff, but NOT a1000. This includes the start state.

Take NFA of union using e-transitions for an NFA and do not
count start state twice, so have

42 + 29− 1 = 70 states.
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Interesting Problem, Profound Moral

1. In the Springs of 2015, 2016, 2017, 2018, 2019, 2020, and
2021, Gasarch has given this problem to the students in
CMSC 452.

2. Every year almost everyone thinks The NFA requires ∼ n
states.

3. Why is this? They did not know the trick.

4. Moral Lesson Lower bounds are hard! You have to rule out
that someone does not have a very clever trick that you just
had not thought of.
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This was NOT a lecture on Size of NFAs

You thought this was a lecture on sizes of NFAs.

It was not.

▶ This is a lecture on NP-completeness.

▶ Just because you cannot think of an algorithm for SAT in P
does not mean that there is not one.

▶ It is possible that someone will come up with a technique you
didn’t think of, or some use math you did not know.

▶ Is this just a vague possibility?
It just happened to you in a different context!
You thought {ai : i ̸= 1000} required a ∼ 1000 state NFA.
But a technique and some math got it to 70 states.

▶ Upshot Lower bounds are hard to prove since they must rule
out techniques you have not thought of.

▶ Respect the difficulty of lower bounds!
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Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i ̸= 1000}.

Is there a smaller NFA?
Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L4 has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.
There is an NFA for L4 with 59 states.
See next slide.



Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i ̸= 1000}.

Is there a smaller NFA?

Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L4 has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.
There is an NFA for L4 with 59 states.
See next slide.



Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i ̸= 1000}.

Is there a smaller NFA?
Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L4 has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.
There is an NFA for L4 with 59 states.
See next slide.



Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i ̸= 1000}.

Is there a smaller NFA?
Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L4 has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.
There is an NFA for L4 with 59 states.
See next slide.



Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i ̸= 1000}.

Is there a smaller NFA?
Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L4 has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.
There is an NFA for L4 with 59 states.
See next slide.



Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i ̸= 1000}.

Is there a smaller NFA?
Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L4 has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.
There is an NFA for L4 with 59 states.
See next slide.



Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i ̸= 1000}.

Is there a smaller NFA?
Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L4 has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.

There is an NFA for L4 with 59 states.
See next slide.



Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i ̸= 1000}.

Is there a smaller NFA?
Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L4 has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.
There is an NFA for L4 with 59 states.

See next slide.



Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i ̸= 1000}.

Is there a smaller NFA?
Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L4 has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.
There is an NFA for L4 with 59 states.
See next slide.



The 59-state NFA for L4

Figure: 59 State NFA for L4



Two Tricks Used To Get it to 59 States

1. To get {ai : i ≤ 999}, we used DFAs that picked out specific
values mod {2, 3, 5, 7, 11}.

The same proof works for any set of coprime numbers that
multiply to ≥ 1000.

Optimally, we would use {4, 5, 7, 9}, saving 3 states.

2. To get {ai : i ≥ 1001}, we calculated 32×33−32−33 = 991,
and then added 9 additional states before the loop.

However, we could have instead made the 9th state of the
loop accept, and have the shortcut go to the 9th state instead.

This would save us 8 states, because we still need a distinct
start state.
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Vote:

1. No, 59 is optimal

2. Yes, but not by much

3. Yes, substantially!

4. Unknown to science!

Answer: Unknown to science.
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Math Needed for {ai : i ̸= n} I

Frobenius Thm (aka The Chicken McNugget Thm)

Thm If x , y are relatively prime then

▶ For all z ≥ xy − x − y + 1 there exists c , d ∈ N such that
z = cx + dy .

▶ There is no c , d ∈ N such that xy − x − y = cx + dy .

We use this to get an NFA for {ai : i ≥ n+ 1} by using x , y ≈
√
n.

Want to get xy − x − y ≤ n so can use the tail to get
xy − x − y + t = n + 1.
This leads to loops and tail that are roughly ≤ 2

√
n states.
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Math Needed for {ai : i ̸= n} II

Thm Let n ∈ N. Let q1, . . . , qk be rel prime such that∏k
i=1 qi ≥ n. Then the set of all i such that

i ̸≡ n (mod q1).
...
i ̸≡ n (mod qk).
Contains {1, . . . , n − 1} and does not contain n

Number theory tells us that can find such a q1, . . . , qk with

k∑
i=1

qi ≤ (log n)2 log log n.

So can use this to get NFA for {ai : i ≤ n− 1} (and other stuff but
not an) with ≤ (log n)2 log log n states.
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From the Last Two Slides

No details, but from the last two slides you can get that
{ai : i ̸= n} has an NFA of size ≤ 2

√
n + (log n)2 log log n.

Can be improved:

Thm The language {ai : i ̸= n} has an NFA of size√
n + O

(
(log n)2/ log log n

)
.

The bound is tight:

Thm Any NFA for {ai : i ̸= n} requires at least
√
n states.

Paper by Gasarch-Metz-Xu-Shen-Zbarsky.
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