A DECIDABLE THEORY：$(\mathbb{Q},<)$

Variables and Symbols for $(\mathbb{Q},<)$

Consider the following language.

Variables and Symbols for $(\mathbb{Q},<)$

Consider the following language.

1. The logical symbols $\wedge, \neg,(\exists)$.

Variables and Symbols for $(\mathbb{Q},<)$

Consider the following language.

1. The logical symbols $\wedge, \neg,(\exists)$.
2. Variables x, y, z, \ldots that range over \mathbb{Q}.

Variables and Symbols for $(\mathbb{Q},<)$

Consider the following language.

1. The logical symbols $\wedge, \neg,(\exists)$.
2. Variables x, y, z, \ldots that range over \mathbb{Q}.
3. Constants: all elements of \mathbb{Q}.

Variables and Symbols for $(\mathbb{Q},<)$

Consider the following language.

1. The logical symbols $\wedge, \neg,(\exists)$.
2. Variables x, y, z, \ldots that range over \mathbb{Q}.
3. Constants: all elements of \mathbb{Q}.
4. The symbols $<$ and $=$. Note We do not have + or \times.

Atomic Formulas

An Atomic Formula is:

Atomic Formulas

An Atomic Formula is:

1. For any variables x, y,

Atomic Formulas

An Atomic Formula is:

1. For any variables x, y,

$$
x<y
$$

Atomic Formulas

An Atomic Formula is:

1. For any variables x, y,

$$
x<y
$$

and

Atomic Formulas

An Atomic Formula is:

1. For any variables x, y,

$$
x<y
$$

and

$$
x=y
$$

Atomic Formulas

An Atomic Formula is:

1. For any variables x, y,

$$
x<y
$$

and

$$
x=y
$$

are Atomic Formulas.

QL Formulas

A $(\mathbb{Q},<)$ Formula is:

QL Formulas

A $(\mathbb{Q},<)$ Formula is:

1. Any Atomic Formula is a $(\mathbb{Q},<)$ Formula.

QL Formulas

A $(\mathbb{Q},<)$ Formula is:

1. Any Atomic Formula is a $(\mathbb{Q},<)$ Formula.
2. If ϕ_{1}, ϕ_{2} are $(\mathbb{Q},<)$ Formulas then so are

QL Formulas

A $(\mathbb{Q},<)$ Formula is:

1. Any Atomic Formula is a $(\mathbb{Q},<)$ Formula.
2. If ϕ_{1}, ϕ_{2} are $(\mathbb{Q},<)$ Formulas then so are
$2.1 \phi_{1} \wedge \phi_{2}$,

QL Formulas

A $(\mathbb{Q},<)$ Formula is:

1. Any Atomic Formula is a $(\mathbb{Q},<)$ Formula.
2. If ϕ_{1}, ϕ_{2} are $(\mathbb{Q},<)$ Formulas then so are
$2.1 \phi_{1} \wedge \phi_{2}$,
$2.2 \phi_{1} \vee \phi_{2}$

QL Formulas

A $(\mathbb{Q},<)$ Formula is:

1. Any Atomic Formula is a $(\mathbb{Q},<)$ Formula.
2. If ϕ_{1}, ϕ_{2} are $(\mathbb{Q},<)$ Formulas then so are
$2.1 \phi_{1} \wedge \phi_{2}$,
$2.2 \phi_{1} \vee \phi_{2}$
$2.3 \neg \phi_{1}$

QL Formulas

A $(\mathbb{Q},<)$ Formula is:

1. Any Atomic Formula is a $(\mathbb{Q},<)$ Formula.
2. If ϕ_{1}, ϕ_{2} are $(\mathbb{Q},<)$ Formulas then so are
$2.1 \phi_{1} \wedge \phi_{2}$,
$2.2 \phi_{1} \vee \phi_{2}$
$2.3 \neg \phi_{1}$
3. If $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a QL Formula then so is $\left(\exists x_{i}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]$

The Theory of $(\mathbb{Q},<)$

The following problem is decidable.

The Theory of $(\mathbb{Q},<)$

The following problem is decidable.

- Input ϕ, a sentence in $(\mathbb{Q},<)$.

The Theory of $(\mathbb{Q},<)$

The following problem is decidable.

- Input ϕ, a sentence in $(\mathbb{Q},<)$.
- Determine if ϕ is TRUE.

An Example of Quantifier Elimination

Example of Procedure

An Example of Quantifier Elimination

Example of Procedure

$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$

An Example of Quantifier Elimination

Example of Procedure
$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$
Question What orderings on x, y, z are consistent with $w<x \wedge w<y$? Note that $=$ is allowed.

An Example of Quantifier Elimination

Example of Procedure

$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$
Question What orderings on x, y, z are consistent with $w<x \wedge w<y$? Note that $=$ is allowed.
$w<y<x$

An Example of Quantifier Elimination

Example of Procedure

$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$
Question What orderings on x, y, z are consistent with $w<x \wedge w<y$? Note that $=$ is allowed.
$w<y<x$
$w<x<y$

An Example of Quantifier Elimination

Example of Procedure

$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$
Question What orderings on x, y, z are consistent with $w<x \wedge w<y$? Note that $=$ is allowed.
$w<y<x$
$w<x<y$
$w<x=y$

An Example of Quantifier Elimination

Example of Procedure
$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$
Question What orderings on x, y, z are consistent with $w<x \wedge w<y$? Note that $=$ is allowed.
$w<y<x$
$w<x<y$
$w<x=y$
Hence $(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$ is equiv to

An Example of Quantifier Elimination

Example of Procedure
$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$
Question What orderings on x, y, z are consistent with $w<x \wedge w<y$? Note that $=$ is allowed.
$w<y<x$
$w<x<y$
$w<x=y$
Hence $(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$ is equiv to

$$
(\exists w)(\forall x)(\exists y)[(w<x<y) \vee(w<y<x) \vee(w<y=x)]
$$

An Example of Quantifier Elimination

Example of Procedure
$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$
Question What orderings on x, y, z are consistent with $w<x \wedge w<y$? Note that $=$ is allowed.
$w<y<x$
$w<x<y$
$w<x=y$
Hence $(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$ is equiv to

$$
(\exists w)(\forall x)(\exists y)[(w<x<y) \vee(w<y<x) \vee(w<y=x)]
$$

which is equiv to

An Example of Quantifier Elimination

Example of Procedure
$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$
Question What orderings on x, y, z are consistent with $w<x \wedge w<y$? Note that $=$ is allowed.
$w<y<x$
$w<x<y$
$w<x=y$
Hence $(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$ is equiv to

$$
(\exists w)(\forall x)(\exists y)[(w<x<y) \vee(w<y<x) \vee(w<y=x)]
$$

which is equiv to
$(\exists w)(\forall x[(\exists y)[w<x<y] \vee(\exists y)[w<y<x] \vee(\exists y)[w<y=x]]$

An Example of Quantifier Elimination

Example of Procedure
$(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$
Question What orderings on x, y, z are consistent with $w<x \wedge w<y$? Note that $=$ is allowed.
$w<y<x$
$w<x<y$
$w<x=y$
Hence $(\exists w)(\forall x)(\exists y)[(w<x) \wedge(w<y)]$ is equiv to

$$
(\exists w)(\forall x)(\exists y)[(w<x<y) \vee(w<y<x) \vee(w<y=x)]
$$

which is equiv to

$$
(\exists w)(\forall x[(\exists y)[w<x<y] \vee(\exists y)[w<y<x] \vee(\exists y)[w<y=x]]
$$

Can then look at each piece separately.

An Example of Quantifier Elimination (cont)

An Example of Quantifier Elimination (cont)

($\exists y$) $[w<x<y]$ is TRUE iff $w<x$ is TRUE. So can ELIM y.

An Example of Quantifier Elimination (cont)

($\exists y$) $[w<x<y]$ is TRUE iff $w<x$ is TRUE. So can ELIM y. ($\exists y$) $[w<y<x]$ is TRUE iff $w<x$ is TRUE. So can ELIM y.

An Example of Quantifier Elimination (cont)

$(\exists y)[w<x<y]$ is TRUE iff $w<x$ is TRUE. So can ELIM y. $(\exists y)[w<y<x]$ is TRUE iff $w<x$ is TRUE. So can ELIM y. $(\exists w, x, y)[w<y=x]$ is TRUE iff $w<x$ is TRUE. So ELIM y.

An Example of Quantifier Elimination (cont)

$(\exists y)[w<x<y]$ is TRUE iff $w<x$ is TRUE. So can ELIM y. $(\exists y)[w<y<x]$ is TRUE iff $w<x$ is TRUE. So can ELIM y. $(\exists w, x, y)[w<y=x]$ is TRUE iff $w<x$ is TRUE. So ELIM y. So
$(\exists w)(\forall x)[(\exists y)[w<x<y] \vee(\exists y)[w<y<x] \vee(\exists y)[w<y=x]] \equiv$

An Example of Quantifier Elimination (cont)

($\exists y$) $[w<x<y]$ is TRUE iff $w<x$ is TRUE. So can ELIM y. ($\exists y$) $[w<y<x]$ is TRUE iff $w<x$ is TRUE. So can ELIM y. $(\exists w, x, y)[w<y=x]$ is TRUE iff $w<x$ is TRUE. So ELIM y. So
$(\exists w)(\forall x)[(\exists y)[w<x<y] \vee(\exists y)[w<y<x] \vee(\exists y)[w<y=x]] \equiv$

$$
(\exists w)(\forall x)[(\exists y)[w<x] \vee(\exists y)[w<x] \vee(\exists y)[w<x]] \equiv
$$

An Example of Quantifier Elimination (cont)

($\exists y$) $[w<x<y]$ is TRUE iff $w<x$ is TRUE. So can ELIM y. ($\exists y$) $[w<y<x]$ is TRUE iff $w<x$ is TRUE. So can ELIM y. $(\exists w, x, y)[w<y=x]$ is TRUE iff $w<x$ is TRUE. So ELIM y. So

$$
(\exists w)(\forall x)[(\exists y)[w<x<y] \vee(\exists y)[w<y<x] \vee(\exists y)[w<y=x]] \equiv
$$

$$
(\exists w)(\forall x)[(\exists y)[w<x] \vee(\exists y)[w<x] \vee(\exists y)[w<x]] \equiv
$$

$$
(\exists w)(\forall x)[(w<x) \vee(w<x) \vee(w<x))] \equiv(\exists w)(\forall x)[w<x]
$$

Key We elim a $\exists y$! That elim clauses is incidental.

An Example of Quantifier Elimination (cont)

$$
(\exists w)(\forall x)[w<x]
$$

An Example of Quantifier Elimination (cont)

$$
(\exists w)(\forall x)[w<x]
$$

We can ELIM a \exists quantifier. Yeah

An Example of Quantifier Elimination (cont)

$$
(\exists w)(\forall x)[w<x]
$$

We can ELIM a \exists quantifier. Yeah
But we have a \forall quantifier. Boo

An Example of Quantifier Elimination (cont)

$$
(\exists w)(\forall x)[w<x]
$$

We can ELIM a \exists quantifier. Yeah
But we have a \forall quantifier. Boo
But recall that $\forall \equiv \neg \exists \neg$. Yeah

An Example of Quantifier Elimination (cont)

$$
(\exists w)(\forall x)[w<x]
$$

We can ELIM a \exists quantifier. Yeah
But we have a \forall quantifier. Boo
But recall that $\forall \equiv \neg \exists \neg$. Yeah

$$
(\exists w) \neg(\exists x) \neg[w<x] \equiv
$$

An Example of Quantifier Elimination (cont)

$$
(\exists w)(\forall x)[w<x]
$$

We can ELIM a \exists quantifier. Yeah
But we have a \forall quantifier. Boo
But recall that $\forall \equiv \neg \exists \neg$. Yeah

$$
\begin{gathered}
(\exists w) \neg(\exists x) \neg[w<x] \equiv \\
(\exists w) \neg(\exists x)[x \leq w]
\end{gathered}
$$

Look at the inner part:

An Example of Quantifier Elimination (cont)

$$
(\exists w)(\forall x)[w<x]
$$

We can ELIM a \exists quantifier. Yeah
But we have a \forall quantifier. Boo
But recall that $\forall \equiv \neg \exists \neg$. Yeah

$$
\begin{gathered}
(\exists w) \neg(\exists x) \neg[w<x] \equiv \\
(\exists w) \neg(\exists x)[x \leq w]
\end{gathered}
$$

Look at the inner part:

$$
(\exists x)[x \leq w] \equiv \text { TRUE }
$$

An Example of Quantifier Elimination (cont)

$$
(\exists w) \neg(\exists x)[x \leq w]
$$

An Example of Quantifier Elimination (cont)

$$
(\exists w) \neg(\exists x)[x \leq w]
$$

Look at the inner part:

An Example of Quantifier Elimination (cont)

$$
(\exists w) \neg(\exists x)[x \leq w]
$$

Look at the inner part:

$$
\begin{gathered}
(\exists w) \neg(\exists x)[x \leq w] \equiv(\exists w)[\neg \mathrm{TRUE}] \equiv \\
(\exists w)[\mathrm{FALSE}] \equiv \text { FALSE }
\end{gathered}
$$

An Example of Quantifier Elimination (cont)

$$
(\exists w) \neg(\exists x)[x \leq w]
$$

Look at the inner part:

$$
\begin{gathered}
(\exists w) \neg(\exists x)[x \leq w] \equiv(\exists w)[\neg \mathrm{TRUE}] \equiv \\
(\exists w)[\mathrm{FALSE}] \equiv \mathrm{FALSE}
\end{gathered}
$$

So the original statement is FALSE.

Lemma on Quantifier Elimination

Lemma \exists an algorithm that will, given a sentence of the form

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{n-1} x_{n-1}\right)\left(\exists x_{n}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]
$$

(where the Q_{i} are quantifiers) return a sentence of the form

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{n-1} x_{n-1}\right)\left[\phi^{\prime}\left(x_{1}, \ldots, x_{n-1}\right)\right]
$$

Lemma on Quantifier Elimination

Lemma \exists an algorithm that will, given a sentence of the form

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{n-1} x_{n-1}\right)\left(\exists x_{n}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]
$$

(where the Q_{i} are quantifiers) return a sentence of the form

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{n-1} x_{n-1}\right)\left[\phi^{\prime}\left(x_{1}, \ldots, x_{n-1}\right)\right]
$$

Replace $\phi\left(x_{1}, \ldots, x_{n}\right)$ with an OR of all poss. orderings of x_{1}, \ldots, x_{n}.

Lemma on Quantifier Elimination

Lemma \exists an algorithm that will, given a sentence of the form

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{n-1} x_{n-1}\right)\left(\exists x_{n}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]
$$

(where the Q_{i} are quantifiers) return a sentence of the form

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{n-1} x_{n-1}\right)\left[\phi^{\prime}\left(x_{1}, \ldots, x_{n-1}\right)\right]
$$

Replace $\phi\left(x_{1}, \ldots, x_{n}\right)$ with an OR of all poss. orderings of x_{1}, \ldots, x_{n}.
Then replace
$\left(\exists x_{n}\right)\left[L_{1}\left(x_{1}, \ldots, x_{n}\right) \vee \cdots \vee L_{m}\left(x_{1}, \ldots, x_{n}\right)\right]$ with $\left(\exists x_{n}\right)\left[L_{1}\left(x_{1}, \ldots, x_{n}\right)\right] \vee \cdots \vee\left(\exists x_{n}\right)\left[L_{m}\left(x_{1}, \ldots, x_{n}\right)\right]$.

Lemma on Quantifier Elimination

Lemma \exists an algorithm that will, given a sentence of the form

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{n-1} x_{n-1}\right)\left(\exists x_{n}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]
$$

(where the Q_{i} are quantifiers) return a sentence of the form

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{n-1} x_{n-1}\right)\left[\phi^{\prime}\left(x_{1}, \ldots, x_{n-1}\right)\right]
$$

Replace $\phi\left(x_{1}, \ldots, x_{n}\right)$ with an OR of all poss. orderings of x_{1}, \ldots, x_{n}.
Then replace
$\left(\exists x_{n}\right)\left[L_{1}\left(x_{1}, \ldots, x_{n}\right) \vee \cdots \vee L_{m}\left(x_{1}, \ldots, x_{n}\right)\right]$ with $\left(\exists x_{n}\right)\left[L_{1}\left(x_{1}, \ldots, x_{n}\right)\right] \vee \cdots \vee\left(\exists x_{n}\right)\left[L_{m}\left(x_{1}, \ldots, x_{n}\right)\right]$.
Each part is either \equiv to the part with x_{n} removed ORT or F.

$(\mathbb{Q},<)$ is Decidable: The Algorithm

$(\mathbb{Q},<)$ is Decidable: The Algorithm

Algorithm

$(\mathbb{Q},<)$ is Decidable: The Algorithm

Algorithm

1. $\left(Q_{1} x_{1}\right) \cdots\left(Q_{n} x_{n}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]$. Replace \forall with $\neg \exists \neg$.

$(\mathbb{Q},<)$ is Decidable: The Algorithm

Algorithm

1. $\left(Q_{1} x_{1}\right) \cdots\left(Q_{n} x_{n}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]$. Replace \forall with $\neg \exists \neg$.
2. Apply the Quant Elim Lemma over and over again until either you end up with a TRUE or a FALSE or a sentence with one variable whose truth will be easily discerned (see next slide for more on that).

One Variable Sentences

We allow constants in the language, which are rationals.

One Variable Sentences

We allow constants in the language, which are rationals.
We list all possible sentences with one variable. Let $q \in \mathbb{Q}$.

One Variable Sentences

We allow constants in the language, which are rationals.
We list all possible sentences with one variable. Let $q \in \mathbb{Q}$.

1. $(\exists x)[x=q],(\exists x)[x<q],(\exists x)[x>q]$. These are all TRUE.

One Variable Sentences

We allow constants in the language, which are rationals.
We list all possible sentences with one variable. Let $q \in \mathbb{Q}$.

1. $(\exists x)[x=q],(\exists x)[x<q],(\exists x)[x>q]$. These are all TRUE.
2. $(\forall x)[x=q],(\exists x)[x<q],(\exists x)[x>q]$. These are all FALSE.

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!
Two problems with this

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!
Two problems with this

1. The procedure to decide $(\mathbb{Q},<)$ is slow. This might not be so bad- there are better algorithms, and we have fast machines.

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!
Two problems with this

1. The procedure to decide $(\mathbb{Q},<)$ is slow. This might not be so bad- there are better algorithms, and we have fast machines.
2. There are no interesting open questions about $(\mathbb{Q},<)$. Thats a bigger problem.

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!
Two problems with this

1. The procedure to decide $(\mathbb{Q},<)$ is slow. This might not be so bad- there are better algorithms, and we have fast machines.
2. There are no interesting open questions about $(\mathbb{Q},<)$. Thats a bigger problem.
A contrast to H 10 :

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!
Two problems with this

1. The procedure to decide $(\mathbb{Q},<)$ is slow. This might not be so bad- there are better algorithms, and we have fast machines.
2. There are no interesting open questions about $(\mathbb{Q},<)$. Thats a bigger problem.
A contrast to H 10 :
3. H 10 is undec. \because since interesting math can be stated.

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!
Two problems with this

1. The procedure to decide $(\mathbb{Q},<)$ is slow. This might not be so bad- there are better algorithms, and we have fast machines.
2. There are no interesting open questions about $(\mathbb{Q},<)$. Thats a bigger problem.
A contrast to H 10 :
3. H10 is undec.
4. $(\mathbb{Q},<)$ is dec.
\because since interesting math can be stated.
\because but no math of interest can be stated \because.

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!
Two problems with this

1. The procedure to decide $(\mathbb{Q},<)$ is slow. This might not be so bad- there are better algorithms, and we have fast machines.
2. There are no interesting open questions about $(\mathbb{Q},<)$. Thats a bigger problem.
A contrast to H 10 :
3. H10 is undec. \because since interesting math can be stated.
4. $(\mathbb{Q},<)$ is dec. \because but no math of interest can be stated \because.

Are there any dec theories where you can state interesting math?

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!
Two problems with this

1. The procedure to decide $(\mathbb{Q},<)$ is slow. This might not be so bad- there are better algorithms, and we have fast machines.
2. There are no interesting open questions about $(\mathbb{Q},<)$. Thats a bigger problem.
A contrast to H 10 :
3. H10 is undec. \because since interesting math can be stated.
4. $(\mathbb{Q},<)$ is dec. \because but no math of interest can be stated \because.

Are there any dec theories where you can state interesting math? Can such theories be used to solve interesting open problems?

Is the Decidability Result Interesting?

$(\mathbb{Q},<)$ is decidable! Great! We can take all of the open questions about $(\mathbb{Q},<)$ and use the decision procedure to solve them!
Two problems with this

1. The procedure to decide $(\mathbb{Q},<)$ is slow. This might not be so bad- there are better algorithms, and we have fast machines.
2. There are no interesting open questions about $(\mathbb{Q},<)$. Thats a bigger problem.
A contrast to H 10 :
3. H10 is undec. \because since interesting math can be stated.
4. $(\mathbb{Q},<)$ is dec. \because but no math of interest can be stated \bigodot.

Are there any dec theories where you can state interesting math? Can such theories be used to solve interesting open problems? No.

Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for $(\mathbb{Q},<)$.

Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for ($\mathbb{Q},<$).

1. How many ways you order x_{1}, \ldots, x_{n}.

Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for ($\mathbb{Q},<$).

1. How many ways you order x_{1}, \ldots, x_{n}. We all know this is n !.

Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for ($\mathbb{Q},<$).

1. How many ways you order x_{1}, \ldots, x_{n}. We all know this is n !.
2. How many ways you order x_{1}, \ldots, x_{n} if you allow $=$? Next slide for examples and the first few numbers.

The Horse Numbers and $\boldsymbol{H}(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.

The Horse Numbers and $\boldsymbol{H}(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
There are 3 where x_{1} is unique least.

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
There are 3 where x_{1} is unique least.
There are 3 where x_{2} is unique least.

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
There are 3 where x_{1} is unique least.
There are 3 where x_{2} is unique least.
There are 3 where x_{3} is unique least.

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
There are 3 where x_{1} is unique least.
There are 3 where x_{2} is unique least.
There are 3 where x_{3} is unique least.
If $x_{1}=x_{2}$ is least: $x_{1}=x_{2}<x_{3}$. There is 1 .

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
There are 3 where x_{1} is unique least.
There are 3 where x_{2} is unique least.
There are 3 where x_{3} is unique least.
If $x_{1}=x_{2}$ is least: $x_{1}=x_{2}<x_{3}$. There is 1 .
If $x_{1}=x_{3}$ is least: $x_{1}=x_{3}<x_{2}$. There is 1 .

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
There are 3 where x_{1} is unique least.
There are 3 where x_{2} is unique least.
There are 3 where x_{3} is unique least.
If $x_{1}=x_{2}$ is least: $x_{1}=x_{2}<x_{3}$. There is 1 .
If $x_{1}=x_{3}$ is least: $x_{1}=x_{3}<x_{2}$. There is 1 .
If $x_{2}=x_{3}$ is least: $x_{2}=x_{3}<x_{1}$. There is 1 .

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
There are 3 where x_{1} is unique least.
There are 3 where x_{2} is unique least.
There are 3 where x_{3} is unique least.
If $x_{1}=x_{2}$ is least: $x_{1}=x_{2}<x_{3}$. There is 1 .
If $x_{1}=x_{3}$ is least: $x_{1}=x_{3}<x_{2}$. There is 1 .
If $x_{2}=x_{3}$ is least: $x_{2}=x_{3}<x_{1}$. There is 1 .
If $x_{1}=x_{2}=x_{3}$ there is 1 .

The Horse Numbers and $H(3)$

$H(n)$ is the number of ways that n horses can finish a race. Note that some could be tied.
$H(2)=3: x_{1}<x_{2}, x_{2}<x_{1}, x_{1}=x_{2}$.
$H(3)$ we will derive. If x_{1} is unique least:
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
There are 3 where x_{1} is unique least.
There are 3 where x_{2} is unique least.
There are 3 where x_{3} is unique least.
If $x_{1}=x_{2}$ is least: $x_{1}=x_{2}<x_{3}$. There is 1 .
If $x_{1}=x_{3}$ is least: $x_{1}=x_{3}<x_{2}$. There is 1 .
If $x_{2}=x_{3}$ is least: $x_{2}=x_{3}<x_{1}$. There is 1 .
If $x_{1}=x_{2}=x_{3}$ there is 1 .
Total $H(3)=3+3+3+1+1+1+1=13$.

The Horse Numbers: $\boldsymbol{H (4)}$

$$
H(1)=1 \quad H(2)=3 \quad H(3)=13 .
$$

The Horse Numbers: $\boldsymbol{H (4)}$

$H(1)=1 \quad H(2)=3 \quad H(3)=13$.
Work with your neighbor to try to derive $H(4)$.
Hint: You use $H(2)$ and $H(3)$.

The Horse Numbers: $H(4)$

$$
H(0)=1 \quad H(1)=1 \quad H(2)=3 \quad H(3)=13 .
$$

The Horse Numbers: $\boldsymbol{H (4)}$

$$
H(0)=1 \quad H(1)=1 \quad H(2)=3 \quad H(3)=13 .
$$

1. There is ONE min. $\binom{4}{1} \times H(3)$.

The Horse Numbers: $\boldsymbol{H (4)}$

$$
H(0)=1 \quad H(1)=1 \quad H(2)=3 \quad H(3)=13 .
$$

1. There is ONE min. $\binom{4}{1} \times H(3)$.
2. There are TWO mins. $\binom{4}{2} \times H(2)$.

The Horse Numbers: $\boldsymbol{H (4)}$

$$
H(0)=1 \quad H(1)=1 \quad H(2)=3 \quad H(3)=13 .
$$

1. There is ONE min. $\binom{4}{1} \times H(3)$.
2. There are TWO mins. $\binom{4}{2} \times H(2)$.
3. There are THREE mins. $\binom{4}{3} \times H(1)$.

The Horse Numbers: $\boldsymbol{H (4)}$

$H(0)=1 \quad H(1)=1 \quad H(2)=3 \quad H(3)=13$.

1. There is ONE min. $\binom{4}{1} \times H(3)$.
2. There are TWO mins. $\binom{4}{2} \times H(2)$.
3. There are THREE mins. $\binom{4}{3} \times H(1)$.
4. There are FOUR mins. $\binom{4}{4} \times H(0)$.

The Horse Numbers: $\boldsymbol{H (4)}$

$H(0)=1 \quad H(1)=1 \quad H(2)=3 \quad H(3)=13$.

1. There is ONE min. $\binom{4}{1} \times H(3)$.
2. There are TWO mins. $\binom{4}{2} \times H(2)$.
3. There are THREE mins. $\binom{4}{3} \times H(1)$.
4. There are FOUR mins. $\binom{4}{4} \times H(0)$.

Total

$$
H(4)=\binom{4}{1} \times H(3)+\binom{4}{2} \times H(2)+\binom{4}{3} \times H(1)+\binom{4}{0} \times H(0)=75 .
$$

The Horse Numbers: Recurrence

$H(n)$:

The Horse Numbers: Recurrence

$H(n)$:

1) There is ONE min. $\binom{n}{1} \times H(n-1)$.

The Horse Numbers: Recurrence

$H(n)$:

1) There is ONE min. $\binom{n}{1} \times H(n-1)$.
2) There are TWO mins. $\binom{n}{2} \times H(n-2)$.

The Horse Numbers: Recurrence

$H(n)$:

1) There is ONE min. $\binom{n}{1} \times H(n-1)$.
2) There are TWO mins. $\binom{n}{2} \times H(n-2)$.

The Horse Numbers: Recurrence

$H(n)$:

1) There is ONE min. $\binom{n}{1} \times H(n-1)$.
2) There are TWO mins. $\binom{n}{2} \times H(n-2)$.
:)
$n-1)$ There are $n-1$ mins. $\binom{n}{n-1} \times H(1)$.

The Horse Numbers: Recurrence

$H(n)$:

1) There is ONE min. $\binom{n}{1} \times H(n-1)$.
2) There are TWO mins. $\binom{n}{2} \times H(n-2)$.
©)
$n-1)$ There are $n-1$ mins. $\binom{n}{n-1} \times H(1)$.
n) There are n mins. $\binom{n}{n} \times H(0)$.

$$
H(n)=\binom{n}{1} H(n-1)+\cdots+\binom{n}{n} H(0) .
$$

The Bill Numbers

$B(n)$ is the number of ways n horses can finish GIVEN that $x_{1}<x_{2}$.

The Bill Numbers

$B(n)$ is the number of ways n horses can finish GIVEN that $x_{1}<x_{2}$.
$B(2)=1$

The Bill Numbers

$B(n)$ is the number of ways n horses can finish GIVEN that $x_{1}<x_{2}$.
$B(2)=1$
$B(3)=5$.
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
$x_{1}=x_{3}<x_{2}$
$x_{3}<x_{1}<x_{2}$

The Bill Numbers

$B(n)$ is the number of ways n horses can finish GIVEN that $x_{1}<x_{2}$.
$B(2)=1$
$B(3)=5$.
$x_{1}<x_{2}<x_{3}$
$x_{1}<x_{2}=x_{3}$
$x_{1}<x_{3}<x_{2}$
$x_{1}=x_{3}<x_{2}$
$x_{3}<x_{1}<x_{2}$
There may be a HW where you find $B(4)$ and get a recurrence for $B(n)$. (The recurrence will also use the H numbers.)

