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Credit Where Credit is Due

Buchi proved that WS1S was decidable.
I don’t know off hand who proved S1S decidable.



WS1S

Part I
We Define WS1S And Prove It’s Decidable



Formulas and Sentences

(This is informal since we did not specify the language.)

1. A Formula allows variables to not be quantified over. A
Formula is neither true or false. Example: (∃x)[x + y = 7].

2. A Sentence has all variables quantified over. Example:
(∀y)(∃x)[x + y = 7]. So a Sentence is either true or false.
Wrong –need to also know the domain.
(∀y)(∃x)[x + y = 7]— T if domain is Z, the integers.
(∀y)(∃x)[x + y = 7]— F if domain is N, the naturals.
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Variables and Symbols

In our lang:

1. The logical symbols ∧, ¬, (∃).
2. We use ∨ and ∀ as shorthand–can be converted to ∧ and ∃.
3. Variables x , y , z , . . . that range over N.
4. Variables X ,Y ,Z , . . . that range over finite subsets of N.
5. Symbols: <, ∈ (usual meaning), S (meaning S(x) = x + 1),

≡ (congruence usual meaning), = (used for both numbers
and sets).

6. Constants: 0,1,2,3,. . ..

7. Convention: We write x + c instead of S(S(· · · S(x)) · · · ).
NOTE + is not in our lang.

Called WS1S: Weak Second Order Theory of One Successor.
Weak second order means quantify over finite sets.
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Examples of Formulas and Sentences

Formulas
x ∈ X ∧ y + 3 /∈ X
NONE of x , y ,X are quantified over, so its a formula.

One can ask for which (x , y ,X ) it’s TRUE.

x y X T

0 0 {0} T
0 1 {0, 1} T
0 1 {0, 1, 2} T
0 1 {0, 1, 2, 3, 4} F
4 7 {4} T
4 7 {7} F
4 7 {4, 7} F
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What Does One Successor Mean?

Our basic objects are numbers. View as unary strings, elements
of 1∗. Succ is Append-1.

So 4 = (Append-1 (Append-1 (Append-1 (Append-1 0))))

What IF our basic objects were strings in {0, 1}∗? Would have 2
SUCC’s: Append-0 and Append-1.

WS1S Weak Second Order with one Successor- just one way to
add to a string. Basic objects are strings of 1’s.

WS2S Weak second order with two Successors- two ways to add
to a string. Basic objects are strings of 0’s and 1’s.

WS2S is also decidable but we will not prove this.
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Atomic Formulas

An Atomic Formula is:

1. For any c ∈ N, x = y + c is an Atomic Formula.

2. For any c ∈ N, x < y + c is an Atomic Formula.

3. For any c , d ∈ N, x ≡ y + c (mod d) is an Atomic Formula.

4. For any c ∈ N, x + c ∈ X is an Atomic Formula.

5. For any c ∈ N, X = Y + c is an Atomic Formula.
This means that X = {y + c : y ∈ Y }.
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WS1S Formulas

A WS1S Formula is:

1. Any Atomic Formula is a WS1S Formula.

2. If ϕ1, ϕ2 are WS1S Formulas then so are

2.1 ϕ1 ∧ ϕ2,
2.2 ϕ1 ∨ ϕ2

2.3 ¬ϕ1

3. If ϕ(x1, . . . , xn,X1, . . . ,Xm) is a WS1S Formula then so are

3.1 (∃xi )[ϕ(x1, . . . , xn,X1, . . . ,Xm)]
3.2 (∃Xi )[ϕ(x1, . . . , xn,X1, . . . ,Xm)]
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Prenex Normal Form

A formula is in Prenex Normal Form if it is of the form

(Q1v1)(Q2v2) · · · (Qmvm)[ϕ(v1, . . . , vn)]

where the Qi ’s are quantifiers, the vi ’s are either numbers or
finite-set variables, and ϕ has no quantifiers. (m quantifiers, n ≥ m
vars. This is a formula– could be vars that are not quantified over.)

Every formula can be put into this form using the following rules

1. (¬Qx)[ϕ(x)] is equiv to (Q ′x)[¬ϕ(x)] where Q ′ = ∃ if Q = ∀
and Q ′ = ∀ if Q = ∃.

2. (Q1x)[ϕ1(x)] ∧ (Q2y)[ϕ2(y)] is equiv to
(Q1x)(Q2y)[ϕ1(x) ∧ ϕ2(y)].

3. (Q1x)[ϕ1(x)] ∨ (Q2y)[ϕ2(y)] is equiv to
¬((¬Q1x)[ϕ1(x)] ∧ (¬Q2y)[ϕ2(y)]).
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Key Definition

Def If ϕ(x1, . . . , xn,X1, . . . ,Xm) is a WS1S Formula then
TRUE(ϕ) is the set

{(a1, . . . , an,A1, . . . ,Am) : ϕ(a1, . . . , an,A1, . . . ,Am) = T}

This is the set of (a1, . . . , an,A1, . . . ,Am) that make ϕ TRUE.



Key Definition

Def If ϕ(x1, . . . , xn,X1, . . . ,Xm) is a WS1S Formula then
TRUE(ϕ) is the set

{(a1, . . . , an,A1, . . . ,Am) : ϕ(a1, . . . , an,A1, . . . ,Am) = T}

This is the set of (a1, . . . , an,A1, . . . ,Am) that make ϕ TRUE.



Representation

We want to say that TRUE(ϕ) is regular. Need to represent
(a1, . . . , an,A1, . . . ,Am).

We just look at (x , y ,X ). Use the alphabet {0, 1}3.
Below Top line and the x , y ,X are not there- Visual Aid.
The triple (3, 4, {0, 1, 2, 4, 7}) is represented by

0 1 2 3 4 5 6 7

x 0 0 0 1 ∗ ∗ ∗ ∗
y 0 0 0 0 1 ∗ ∗ ∗
X 1 1 1 0 1 0 0 1

Note After we see 0001 for x we do not care what happens next.
The *’s can be filled in with 0’s or 1’s and the string of symbols
from {0, 1}3 above would still represent (3, 4, {0, 1, 2, 4, 7}).
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Representation–More Formal

The number n is represented by 0n1{0, 1}∗.

Finite set X is represented by a string in {0, 1}∗ which is its
bit-vector.
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The number n is represented by 0n1{0, 1}∗.

Finite set X is represented by a string in {0, 1}∗ which is its
bit-vector.



Example And Our Alphabet

Consider the set

{(x , y ,X ) : (x = y + 1) ∧ (y ∈ X )}

We want to show that it’s regular. Here is an example of how we
represent a tuple (number,number,finite set):

0 1 2 3 4 5 6 7

x 0 0 0 0 0 1 0 0
y 0 0 0 0 1 1 0 1
X 1 1 1 0 1 0 0 1

This string is IN our lang since x = 5, y = 4, and
X = {0, 1, 2, 4, 7}.

Alphabet is {000, 001, 010, 011, 100, 101, 110, 111}
though we think of it vertically rather than horizontally.



Stupid Strings

What does

0 1 2 3 4 5 6 7

x 0 0 0 0 0 0 0 0
y 0 0 0 0 1 1 0 1
X 1 1 1 0 1 0 0 1

represent?

This string is Stupid! There is no value for x . This string does not
represent anything!

Our DFA’s will have 3 kinds of states: accept, reject, and
stupid. Stupid means that the string did not represent anything
because it has a number-variable be all 0’s. (It is fine for a set var
to of all 0’s- that would be the empty set.)
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Key Theorem

Thm For all WS1S formulas ϕ the set TRUE(ϕ) is regular.

We prove this by induction on the formation of a formula. If you
prefer- induction on the length of a formula.



Theorem for Atomic Formulas

Lemma For all WS1S atomic formulas ϕ the set TRUE(ϕ) is
regular.
On the next few slides we give the DFA for some Atomic Formulas.
The ones we do not may be HW or on the Final.



For any c ∈ N, x = y + c is an Atomic Formula

On the next slide we give the DFA for x = y + 1.

The DFA for x = y + c is similar. Might be on a HW or the Final.
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x = y + 1
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For any c ∈ N, x < y + c is an Atomic Formula

On the next slide we give the DFA for x < y + 1.

The DFA for x < y + c is similar. Might be on a HW or the Final.
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For any c ∈ N, x + c ∈ X is an Atomic Formula

On the next slide we give the DFA for x + 1 ∈ X .

The DFA for x + c ∈ X is similar. Might be on a HW or the Final.
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The Remaining Atomic Formulas

We did not give DFA’s for the the following Atomic Formulas:

1. For any c , d ∈ N, x ≡ y + c (mod d).

2. For any c ∈ N, X = Y + c .

Getting DFA’s for those atomic formulas, or special cases, might
be on a HW or the Final.
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Theorem for Formulas (I)

Assume true for ϕ1, ϕ2— so TRUE(ϕ1) and TRUE(ϕ2) are reg.

1. TRUE(ϕ1 ∧ ϕ2) = TRUE(ϕ1) ∩ TRUE(ϕ2).

2. TRUE(ϕ1 ∨ ϕ2) = TRUE(ϕ1) ∪ TRUE(ϕ2).

3. TRUE(¬ϕ1) = Σ∗ − (TRUE(ϕ1) ∪ Stupid Strings).

Good News! All of the above can be shown using the Closure
properties of Regular Langs.

Caveat Must be done carefully because of the stupid states.
(Stupid is as stupid does. Name that movie reference!)

Next slides for what to do about quantifiers.
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Theorem for Formulas (II)

TRUE(ϕ(x1, . . . , xn,X1, . . . ,Xm)) is regular.
We want TRUE((∃x1)[ϕ(x1, . . . , xn,X1, . . . ,Xm)]) is regular.
Ideas?

Use nondeterminism.
Will show you in class.
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DFA Decidability Theorem

We need the following easy theorem:
Thm The following problem is decidable: given a DFA determine
if there exists a string it accepts.



DFA Decidability Theorem Proof

Thm The following problem is decidable: given a DFA determine
if there exists a string it accepts.
Might be on HW.



Decidability of WS1S

Thm WS1S is Decidable.
Proof

1. Given a sentence in WS1S put it into the form

(Q1X1) · · · (QnXn)(Qn+1x1) · · · (Qn+mxm)[ϕ(x1, . . . , xm,X1, . . . ,Xn)]

2. Assume Q1 = ∃. (If not then negate and negate answer.)

3. View as (∃X )[ϕ(X )], a formula with one free var.

4. Construct DFA M for {X : ϕ(X ) is true}.
5. Test if L(M) = ∅.
6. If L(M) ̸= ∅ then (∃X )[ϕ(X )] is TRUE.

If L(M) = ∅ then (∃X )[ϕ(X )] is FALSE.
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An Example

We will do the following together.

(∃X )(∃x)(∀y)[x ∈ X ∧ x ≥ 2 ∧ (y > x ∨ y /∈ X )].

We need DFA’s for the following:

1. {(x , y ,X ) : x ∈ X}
2. {(x , y ,X ) : x ≥ 2}
3. {(x , y ,X ) : y > x}
4. {(x , y ,X ) : y /∈ X}
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Complexity of the Decision Procedure

Given a sentence

(Q1X1) · · · (QnXn)(Qn+1x1) · · · (Qn+mxm)[ϕ(x1, . . . , xm,X1, . . . ,Xn)]

How long will the procedure above take in the worst case?:

22
···n

steps since we do n nondet to det transformations.
Vote

1. There are much better algorithms.

2. 22
···n

steps is provably the best you can do (roughly).

3. Complexity of dec of WS1S is unknown to science!

And the answer is: Can do better: 22
n3 log n

. This is provably the
best you can do (roughly).
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Anything Interesting STATABLE IN WS1S?

Are there interesting problems that can be STATED in WS1S?
VOTE:

1. YES

2. NO

Depends what you find interesting.

YES Extensions of WS1S are used in low-level verification of code
fragments. The MONA group has coded this up and used it,
though their code uses MANY tricks to speed up the program in
MOST cases.

NO There are no interesting MATH problems that can be
expressed in WS1S.
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PRESBURGER ARITHMETIC

In our lang

1. The logical symbols ∧, ∨, ¬, (∃), (∀).
2. Variables x , y , z , . . . that range over N.
3. Symbols: <, +. Constants: 0,1,2,3,. . ..

Terms and Formulas:

1. Any variable or constant is a term.

2. t1, t2 terms then t1 + t2 is term.

3. t1, t2 terms then t1 = t2, t1 < t2 are atomic formulas.

4. Other formulas in usual way: ∧, ∨, ¬, (∃), (∀).
Presb Arith is decidable by TRANSFORMING Pres Arith
Sentences into WS1S sentences.
Presb Arithmetic has been used in Code Optimization (using a
better dec procedure than reducing to WS1S).
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S1S

PART II OF THIS TALK:
WE DEFINE S1S AND PROVE IT’S DECIDABLE



What is S1S?

What’s The Same? We use the same symbols and define
formulas and sentences the same way

What’s Different? We interpret the set variables as ranging over
ANY set of naturals, including infinite ones.

The following sentence is TRUE in S1S but FALSE in WS1S

(∃X )(∀x)(∃y)[y > x ∧ y ∈ X ]

It says that there exists an infinite set.

Question Can we still use finite automata?
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Essence of WS1S Proof

1. Reg langs closed: UNION, INTER, COMP, PROJ.

2. Emptyness problem for DFA’s is decidable.

KEY We never actually RAN a DFA on any string.
Def A B-NFA is an NFA. If x ∈ Σω then x is accepted by B-NFA
M if there is a path such that M(x) hits a final state inf often.
Good News: (PROVE IN GROUPS)

1. B-reg closed: UNION, INTER, PROJ.

2. Emptyness problem for B-NFA’s is decidable.

Need B-reg closed under complementation.
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B-Reg and Mu-Reg

Def A Mu-aut M is a (Q,Σ, δ, s,F) where Q,Σ, δ, s are as usual
but F ⊆ 2Q .

That is F is a set of sets of states.

M accepts x ∈ Σω if when you run M(x) the set of states visited
inf often is in F .
Easy (IN GROUPS) Mu-reg Closed: UNION, INTER, COMP.



B-Reg and Mu-Reg

Def A Mu-aut M is a (Q,Σ, δ, s,F) where Q,Σ, δ, s are as usual
but F ⊆ 2Q .

That is F is a set of sets of states.

M accepts x ∈ Σω if when you run M(x) the set of states visited
inf often is in F .
Easy (IN GROUPS) Mu-reg Closed: UNION, INTER, COMP.



B-Reg and Mu-Reg

Def A Mu-aut M is a (Q,Σ, δ, s,F) where Q,Σ, δ, s are as usual
but F ⊆ 2Q .

That is F is a set of sets of states.

M accepts x ∈ Σω if when you run M(x) the set of states visited
inf often is in F .

Easy (IN GROUPS) Mu-reg Closed: UNION, INTER, COMP.



B-Reg and Mu-Reg

Def A Mu-aut M is a (Q,Σ, δ, s,F) where Q,Σ, δ, s are as usual
but F ⊆ 2Q .

That is F is a set of sets of states.

M accepts x ∈ Σω if when you run M(x) the set of states visited
inf often is in F .
Easy (IN GROUPS) Mu-reg Closed: UNION, INTER, COMP.



PLAN

Recap and Plan

▶ B-reg easily closed: ∪, ∩, PROJ, but COMPLEMENT hard.
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▶ How to prove? Show B-reg = Mu-reg.
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DECIDABILITY OF S1S

Thm S1S is Decidable.

Pf

1. Given a SENTENCE in S1S put it into the form

(Q1X1) · · · (QnXn)(Qn+1x1) · · · (Qn+mxm)[ϕ(x1, . . . , xm,X1, . . . ,Xn)]

2. Assume Q1 = ∃. (If not then negate and negate answer.)

3. View as (∃X )[ϕ(X )], a FORMULA with ONE free var.

4. Construct B-NFA M for {X : ϕ(X ) is true}.
5. Test if L(M) = ∅.
6. If L(M) ̸= ∅ then (∃X )[ϕ(X )] is TRUE.

If L(M) = ∅ then (∃X )[ϕ(X )] is FALSE.
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COMPLEXITY OF THE DECISION PROCEDURE

Given a sentence

(Q1X1) · · · (QnXn)(Qn+1x1) · · · (Qn+mxm)[ϕ(x1, . . . , xm,X1, . . . ,Xn)]

How long will the procedure above take in the worst case?
22

···n
steps since we do n nondet to det transformations.
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Anything Interesting STATABLE IN S1S?

Are there interesting problems that can be STATED in S1S?
YES Verification of programs that are supposed to run forever like
operating systems. Verification of security protocols.

NO There are no interesting MATH problems that can be
expressed in S1S.
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WS2S, S2S are about strings {0, 1}∗ and sets of such strings.

CAN Anything Interesting Be Stated in WS2S or S2S?

WS2S: YES for verification, no for mathematics.

S2S: YES for mathematics (finally!). Verification- probably.

I do not think S2S has ever been coded up.
Coding it up might be a good project. Or not.
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ω-Reg

Def A language L is ω-reg if there exists regular langs
U1,U2, . . . ,Un, V1,V2, . . . ,Vn such that

L =
n⋃

i=1

UiV
ω
i .

Thm B-reg = ω-reg
Work with Neighbors
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FILL OUT COURSE
EVALS for ALL YOUR

COURSES!!!

William Gasarch-U of MD


