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For example, let p = 557. We have 2139 ≡ 118 (mod 557), and 1182 ≡
−1 (mod 557), so we let u = 118. The Euclidean algorithm is

557 = 4 · 118 + 85

118 = 1 · 85 + 33

85 = 2 · 33 + 19

33 = 1 · 19 + 14

19 = 1 · 14 + 5

14 = 2 · 5 + 4

5 = 1 · 4 + 1

4 = 4 · 1 + 0.

The rst two remainders less than
√
557 are 19 and 14. We have 192 +

142 = 557.

This algorithm is essentially due to Charles Hermite and Joseph Serret
(independently) in 1848. Improvements were made by Henry Smith
and John Brillhart. For the proof that the algorithm works, see F. W.
Clarke, W. N. Everitt, L. L. Littlejohn, and S. J. R. Vorster, “H. J.
S. Smith and the Fermat two squares theorem,” Amer. Math. Monthly
106 (1999), no. 7, 652-665.

CHECK YOUR UNDERSTANDING:

1. Using the fact that 222 ≡ −1 (mod 97), write 97 as a sum of two
squares.

12.2 Sums of Four Squares

The amazing fact that every positive integer is a sum of four squares was
probably known to Diophantus, but the rst proof is due to Lagrange
in 1770. As in the case of sums of two squares, the key case is that of
primes.

Theorem 12.5. (Lagrange) Every positive integer is a sum of four
squares.
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Proof. To start, we prove the theorem when n = p is prime. We need
an analogue of Lemma 12.2.

Lemma 12.6. Let p be prime. Then there are integers u, v such that
u2 + v2 + 1 ≡ 0 (mod p).

Proof. The case p = 2 is trivial (let u = 1 and v = 0), so assume p
is odd. There are (p − 1)/2 nonzero squares mod p by Exercise 24 in
Chapter 5, or by Exercise 31 in Chapter 8. Since 0 is also a square,
there are 1 + (p − 1)/2 = (p + 1)/2 squares mod p. If we take each
square and subtract it from −1, we get (p+ 1)/2 numbers of the form
−1−v2 (mod p). We have two sets: the squares with (p+1)/2 elements
and the numbers −1 − v2 with (p + 1)/2 elements. There are only p
congruence classes mod p, and (p + 1)/2 + (p + 1)/2 > p. Therefore,
the two sets must overlap. This means that u2 ≡ −1− v2 (mod p) for
some u, v, which says that u2 + v2 + 1 ≡ 0 (mod p).

Example. As an example of the lemma, let p = 11. The squares mod
11 are

{0, 1, 4, 9, 5, 3}

and the numbers of the form −1− v2 are

{−1,−2,−5,−10,−6,−4} ≡ {10, 9, 6, 1, 5, 7} (mod 11).

Note that 1 is in both sets, which means that 12 ≡ −1 − 32, or 12 +
32 + 1 ≡ 0 (mod 11).

We now use a two-dimensional analogue of Thue’s Lemma.

Lemma 12.7. Let n ≥ 2 and let a, b, c, d be integers. There exist
w, x, y, z with at least one of y, z nonzero such that

0 ≤ |w| ≤
√
n, 0 ≤ |x| ≤

√
n, 0 ≤ |y| ≤

√
n, 0 ≤ |z| ≤

√
n

and

w ≡ ay + bz (mod n), x ≡ cy + dz (mod n).

Proof. Make a list of all pairs (i−ak−b`, j−ck−d`) with 0 ≤ i, j, k, ` ≤√
n. Since we are including 0, there are b

√
nc+ 1 >

√
n values of each

of i, j, k, `. Therefore, there are more than (
√
n)4 = n2 pairs. There are
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only n2 pairs of congruence classes mod n, so we must have two pairs
that are congruent mod n:

i1 − ak1 − b`1 ≡ i2 − ak2 − b`2 (mod n),

j1 − ck1 − d`1 ≡ j2 − ck2 − d`2 (mod n),

where (i1, j1, k1, `1) 6= (i2, j2, k2, `2). Let

w = i1 − i2, x = j1 − j2, y = k1 − k2, z = `1 − `2.

Then w, x, y, z satisfy the inequalities and the congruences of the
lemma. It remains to show that at least one of y, z is nonzero.

If y = z = 0, then w ≡ x ≡ 0 (mod n). Since |w|, |x| ≤
√
n, we must

have x = w = 0. But w = x = y = z = 0 implies that (i1, j1, k1, `1) =
(i2, j2, k2, `2), contrary to the choice of these 4-tuples. This completes
the proof of the lemma.

We now return to the proof of Lagrange’s theorem. We start by showing
that if p is a prime number then p is a sum of four squares. Let u, v be
as in Lemma 12.6. By Lemma 12.7, there exist w, x, y, z, with at least
one nonzero and with all less than

√
p (they cannot equal

√
p because√

p is not an integer) such that

w ≡ uy + vz (mod p), x ≡ vy − uz (mod p).

Then

w2 + x2 + y2 + z2 ≡ (uy + vz)2 + (vy − uz)2 + y2 + z2

≡ (u2 + v2 + 1)y2 + (v2 + u2 + 1)z2

≡ 0 + 0 ≡ 0 (mod p)

(the cross terms with yz cancel). Moreover,

0 < w2 + x2 + y2 + z2 < (
√
p)2 + (

√
p)2 + (

√
p)2 + (

√
p)2 = 4p.

The only multiples of p between 0 and 4p are p, 2p, and 3p, so

w2 + x2 + y2 + z2 = p, 2p, or 3p.

If w2 + x2 + y2 + z2 = p, we’re done. We need to treat the cases where
the sum equals 2p or 3p.
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Suppose that w2 + x2 + y2 + z2 = 2p. Then either all of w, x, y, z are
odd, or two of them are odd, or all are even (if one of them is odd or
three of them are odd, then w2+x2+ y2+ z2 is odd, so does not equal
2p). By rearranging the order, we can assume that

w ≡ x (mod 2), y ≡ z (mod 2).

Then (w ± x)/2 and (y ± z)/2 are integers, and



w + x

2

2

+



w − x

2

2

+



y + z

2

2

+



y − z

2

2

=
w2 + x2 + y2 + z2

2
= p

(expand it out; a lot of cross terms cancel), so we obtain p as the sum
of four squares.

Now suppose that w2 + x2 + y2 + z2 = 3p. As in the case 2p, we
want to manipulate this to get p as a sum of four squares. If p = 3,
then 3 = 12 + 12 + 12 + 02, so we know 3 is a sum of four squares.
Therefore, we assume that p 6= 3. If w ≡ x ≡ y ≡ z ≡ 0 (mod 3), then
w2 + x2 + y2 + z2 ≡ 0 (mod 9), while 3p 6≡ 0 (mod 9), contradiction.
Therefore, at least one of w, x, y, z is nonzero mod 3. Since 02 ≡ 0
(mod 3) and (±1)2 ≡ 1 (mod 3), it is easy to see that the only way
for w2 + x2 + y2 + z2 to add up to 3p is for three of w, x, y, z to be ±1
(mod 3) and one of them to be 0 (mod 3). By rearranging the order,
if necessary, we can assume that z ≡ 0 (mod 3). By changing the signs
of w, x, y, if necessary, we may assume that w ≡ x ≡ y ≡ 1 (mod 3).
Let

x1 = (w + x+ y)/3, x2 = (w − x+ z)/3,

x3 = (−w + y − z)/3, x4 = (x− y + z)/3.

Then x1, x2, x3, x4 are integers. A straightforward but lengthy calcula-
tion shows that

x21 + x22 + x23 + x24 = (w2 + x2 + y2 + z2)/3 = p.

Therefore, p is a sum of four squares in all cases.

To prove that every positive integer is a sum of four squares, we need
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to extend Equation(12.1) to four squares. Here’s the relevant identity:

(a2 + b2 + c2 + d2)(e2 + f2 + g2 + h2)

= (ae− bf − cg − dh)2 + (af + be+ ch− dg)2

+ (ag + ce+ df − bh)2 + (ah+ de+ bg − cf)2. (12.2)

If you don’t believe this, multiply it out and check it. To see how it can
be deduced using quaternions, see Exercise 4. However, this identity
was discovered before quaternions were discovered!

Every prime is a sum of four squares, and Equation (12.2) says that
products of sums of four squares are sums of four squares. Since every
integer n ≥ 2 is a product of primes, each such n is a sum of four
squares. Finally, 1 = 12+02+02+02, so 1 is also a sum of four squares.
This completes the proof.

In 1834, Carl Gustav Jacobi gave a formula for the number of ways
of writing n as a sum of four squares. Let S(n) be the sum of all the
divisors d of n that are not multiples of 4. For example, when n = 20
we have

S(20) = 1 + 2 + 5 + 10 = 18.

Then there are exactly 8S(n) ways of writing n as a sum of four squares,
where dierent orders of the summands are regarded as dierent and
the squares can be squares of positive or negative numbers. So, for
example, we can write

1 = 02 + 02 + 02 + 12

= 02 + 02 + 02 + (−1)2

= 02 + 02 + 12 + 02

= 02 + 02 + (−1)2 + 02

= 02 + 12 + 02 + 02

= 02 + (−1)2 + 02 + 02

= 12 + 02 + 02 + 02

= (−1)2 + 02 + 02 + 02.

Note that 8S(1) = 8, which is the number of ways we’ve written 1 as a
sum of four squares.


