Something ELSE Wrong With All Ciphers So Far

September 16, 2019

ション ふゆ アメビア メロア しょうくしゃ

How can Bob be Sure it Came from Eve?

- 1. Eve knows that Alice is going to send Bob a number that is < 999 which indicates how much money Bob should give Eve.
- 2. They will send the message in binary using use one-time pad.
- 3. Alice sends the message 100110101001010101.
- 4. Eve intercepts and tampers with msg before Bob gets it.
- 5. Can Eve tamper with it in a way that matters? Discuss

Yes: Eve Knows the 10th bit of real message is 0 since she gets 999 < 1024 dollars. Let *b* be the 10th bit that is sent. Eve Flips 10th Bit in ciphertext to flip 10th bit in numbers Original Message: 1001101010101010101

Original Message: 100110101010101010

Eve Tampers: 100110100001010110

Eve just got 1024 more dollars!

Even if not, Eve can mess with the message to make it meaningless.

Lesson Learned/Our Goal

Security: Eve cannot learn message

Integrity: Bob can be sure the message came from Alice

Lesson Learned: One-time-pad is Secure but lacks integrity. Security does not imply integrity.

Question: Does Integrity imply Security. Discuss

Lesson Learned/Our Goal

Security: Eve cannot learn message

Integrity: Bob can be sure the message came from Alice

Lesson Learned: One-time-pad is Secure but lacks integrity. Security does not imply integrity.

Question: Does Integrity imply Security. Discuss

No. Will discuss later.

Goal for now: Make Shift Cipher not forgeable. Discuss

Integrity-Shift

Integrity-Shift: Key is a shift s and a function $g : S \to S$. 1. To send message (m_1, \ldots, m_L) (each m_i is a char) send

$$(m_1 + s, g(m_1)), \ldots, (m_L + s, g(m_L)).$$

2. To decode message $((c_1, d_1), \ldots, (c_L, d_L))$ just

$$(c_1-s,\ldots,c_L-s).$$

To Authenticate Once Bob has m₁,..., m_L he computes g(m₁),..., g(m_L) and checks that, for all i, g(m_i) = d_i.
 Idea: Bob can make sure that the message he gets is the one Alice sent.

HW 01 Review and NEW material Inspired by it

September 16, 2019

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Problem 2

Klingons use an alphabet of 29 letters. Vulcans use an alphabet of 30 letters. Spock notes that Klingons have an easier time using the affine cipher than Vulcans. He is correct.

Why is it easier for Klingons to use the affine cipher than Vulcans?

Problem 2

Klingons use an alphabet of 29 letters. Vulcans use an alphabet of 30 letters. Spock notes that Klingons have an easier time using the affine cipher than Vulcans. He is correct.

Why is it easier for Klingons to use the affine cipher than Vulcans? ANSWER: Since all $a \in \{1, ..., 28\}$ are relatively prime to 29, Klingons can use any *a* they want. Vulcans need to be careful to make sure that *a* is rel prime to 30. Some students said there were more numbers rel primes to 29 then to 30. True but a odd since ALL numbers work. Mundane Issue: We gave full credit but WILL NOT in the future.

Problem 2

Klingons use an alphabet of 29 letters. Vulcans use an alphabet of 30 letters. Spock notes that Klingons have an easier time using the affine cipher than Vulcans. He is correct.

Why is it easier for Klingons to use the affine cipher than Vulcans? ANSWER: Since all $a \in \{1, ..., 28\}$ are relatively prime to 29, Klingons can use any a they want. Vulcans need to be careful to make sure that a is rel prime to 30. Some students said there were more numbers rel primes to 29 then to 30. True but a odd since ALL numbers work. Mundane Issue: We gave full credit but WILL NOT in the future. Raises Interesting Question: Which composite numbers n are such that many numbers in $\{1, ..., n\}$ are rel prime to n? Will consider this on the next slide.

Let $\phi(n)$ be the number of numbers in $\{1, \ldots, n\}$ that are rel prime to n. $\phi(2) =$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\phi(n)$ be the number of numbers in $\{1, \ldots, n\}$ that are rel prime to n. $\phi(2) = 1$. Just $\{1\}$ $\phi(3) =$

Let $\phi(n)$ be the number of numbers in $\{1, \ldots, n\}$ that are rel prime to n. $\phi(2) = 1$. Just $\{1\}$ $\phi(3) = 2$. Just $\{1, 2\}$. AH-HA: if p prime, $\phi(p) = p - 1$. $\phi(4) =$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let $\phi(n)$ be the number of numbers in $\{1, \ldots, n\}$ that are rel prime to n.

 $\phi(2) = 1.$ Just {1} $\phi(3) = 2.$ Just {1,2}. AH-HA: if *p* prime, $\phi(p) = p - 1.$ $\phi(4) = 2.$ Just {1,3}. $\phi(5) =$

Let $\phi(n)$ be the number of numbers in $\{1, \ldots, n\}$ that are rel prime to n.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\phi(2) = 1.$$
 Just {1}
 $\phi(3) = 2.$ Just {1,2}. AH-HA: if *p* prime, $\phi(p) = p - 1.$
 $\phi(4) = 2.$ Just {1,3}.
 $\phi(5) = 4.$ Just {1,2,3,4}.
 $\phi(6) =$

Let $\phi(n)$ be the number of numbers in $\{1, \ldots, n\}$ that are rel prime to n.

$$\phi(2) = 1. \text{ Just } \{1\}$$

 $\phi(3) = 2. \text{ Just } \{1, 2\}. \text{ AH-HA: if } p \text{ prime, } \phi(p) = p - 1.$
 $\phi(4) = 2. \text{ Just } \{1, 3\}.$
 $\phi(5) = 4. \text{ Just } \{1, 2, 3, 4\}.$
 $\phi(6) = 2. \text{ Just } \{1, 5\}.$

(ロト (個) (E) (E) (E) (E) のへの

Let $\phi(n)$ be the number of numbers in $\{1, \ldots, n\}$ that are rel prime to n.

$$\begin{aligned} \phi(2) &= 1. \text{ Just } \{1\} \\ \phi(3) &= 2. \text{ Just } \{1,2\}. \text{ AH-HA: if } p \text{ prime, } \phi(p) &= p-1. \\ \phi(4) &= 2. \text{ Just } \{1,3\}. \\ \phi(5) &= 4. \text{ Just } \{1,2,3,4\}. \\ \phi(6) &= 2. \text{ Just } \{1,5\}. \\ \phi(7) &= 6. \text{ Just } \{1,2,3,4,5,6\}. \\ \phi(8) &= \end{aligned}$$

(ロト (個) (E) (E) (E) (E) のへの

Let $\phi(n)$ be the number of numbers in $\{1, \ldots, n\}$ that are rel prime to n.

 $\begin{array}{l} \phi(2)=1. \ {\rm Just} \ \{1\} \\ \phi(3)=2. \ {\rm Just} \ \{1,2\}. \ {\rm AH-HA: \ if \ } p \ {\rm prime, \ } \phi(p)=p-1. \\ \phi(4)=2. \ {\rm Just} \ \{1,2\}. \\ \phi(5)=4. \ {\rm Just} \ \{1,2,3,4\}. \\ \phi(6)=2. \ {\rm Just} \ \{1,2,3,4\}. \\ \phi(7)=6. \ {\rm Just} \ \{1,2,3,4,5,6\}. \\ \phi(8)=4. \ {\rm Just} \ \{1,3,5,7\}. \\ {\rm Can \ we \ be \ more \ systematic?} \end{array}$

ション ふぼう メリン メリン しょうくしゃ

If p is prime then $\phi(p) = p - 1$. If q is prime then $\phi(q) = q - 1$. We assume $p \neq q$. What is $\phi(pq)$? Set of numbers in $\{1, \ldots, pq - 1\}$ that p divides:

 $\{p, 2p, 3p, \ldots, (q-1)p\}$ OH, there are q-1 of them

Set of numbers in $\{1, \ldots, pq - 1\}$ that q divides:

 $\{q,2q,3q,\ldots,(p-1)q\}$ OH, there are p-1 of them

NO overlap in these sets. So the number of numbers in $\{1, \ldots, pq - 1\}$ that are not in either of these sets is

$$(pq-1) - (p-1) - (q-1) = pq - p - q + 1 = (p-1)(q-1).$$

Why did I write it that way?

If p is prime then $\phi(p) = p - 1$. If q is prime then $\phi(q) = q - 1$. We assume $p \neq q$. What is $\phi(pq)$? Set of numbers in $\{1, \ldots, pq - 1\}$ that p divides:

 $\{p, 2p, 3p, \ldots, (q-1)p\}$ OH, there are q-1 of them

Set of numbers in $\{1, \ldots, pq - 1\}$ that q divides:

 $\{q,2q,3q,\ldots,(p-1)q\}$ OH, there are p-1 of them

NO overlap in these sets. So the number of numbers in $\{1, \ldots, pq - 1\}$ that are not in either of these sets is

$$(pq-1) - (p-1) - (q-1) = pq - p - q + 1 = (p-1)(q-1).$$

Why did I write it that way?

$$\phi(pq) = (p-1)(q-1) = \phi(p)\phi(q).$$

$$\phi(pq) = (p-1)(q-1) = \phi(p)\phi(q).$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

This generalizes: Theorem: If a, b are rel prime then $\phi(ab) = \phi(a)\phi(b)$. Example of proof n next slide.

 ϕ (5 × 8)

x is rel prime to 5×8 if its rel prime to 5 and rel prime to 8.

1	6	11	16	21	26	31	36
2	7	12	17	22	27	32	37
3	8	13	18	23	28	33	38
4	9	14	19	24	29	34	39
5	10	15	20	25	30	35	40

Look at the rows. If the first entry is NOT rel prime to 5, then entire row is not. Hence need only look at the $\phi(5)$ columns that begin with a number rel prime to 5.

*ロト *目 * * * * * * * * * * * * * * *

ϕ (5 × 8) Continued

x is rel prime to 5×8 if its rel prime to 5 and rel prime to 8.

1	6	11	16	21	26	31	36
2	7	12	17	22	27	32	37
3	8	13	18	23	28	33	38
4	9	14	19	24	29	34	39

Look at any row. How many elts of it are rel prime to 8. Look at the columns mod 8. Will get all 8 congruence classes mod 8. For example, the second row mod 8 is

2 7 4 1 6 3 0 5

without even looking, the number of elts in this row that are rel prime to 8 is $\phi(8)$. So $\phi(5 \times 8) = \phi(5) \times \phi(8)$.

$$\phi(7 \times 11 \times 13) = \phi(7)\phi(11)\phi(13) = 6 \times 10 = 720.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\phi(7 \times 11 \times 13) = \phi(7)\phi(11)\phi(13) = 6 \times 10 = 720.$$

 $\phi(2^{10})$. Hmmm, need to do powers systematically.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\phi(7 \times 11 \times 13) = \phi(7)\phi(11)\phi(13) = 6 \times 10 = 720.$$

 $\phi(2^{10})$. Hmmm, need to do powers systematically.

 $\phi(2^n)$: Number of elts of $\{1, \ldots, 2^n - 1\}$ that are $\not\equiv 0 \pmod{2}$. Half of the elts of $\{1, \ldots, 2^n\}$: $\frac{1}{2}2^n = 2^{n-1}$.

ション ふゆ アメビア メロア しょうくしゃ

$$\phi(7 \times 11 \times 13) = \phi(7)\phi(11)\phi(13) = 6 \times 10 = 720.$$

 $\phi(2^{10})$. Hmmm, need to do powers systematically.

 $\phi(2^n)$: Number of elts of $\{1, \ldots, 2^n - 1\}$ that are $\not\equiv 0 \pmod{2}$. Half of the elts of $\{1, \ldots, 2^n\}$: $\frac{1}{2}2^n = 2^{n-1}$.

ション ふぼう メリン メリン しょうくしゃ

 $\phi(3^n)$: Number of elts of $\{1, \ldots, 3^n - 1\}$ that $\not\equiv 0 \pmod{3}$. $\frac{2}{3}$'s of the elts of $\{1, \ldots, 3^n\}$: $\frac{2}{3} \times 3^n = 2 \times 3^{n-1}$.

$$\phi(7 \times 11 \times 13) = \phi(7)\phi(11)\phi(13) = 6 \times 10 = 720.$$

 $\phi(2^{10})$. Hmmm, need to do powers systematically.

 $\phi(2^n)$: Number of elts of $\{1, \ldots, 2^n - 1\}$ that are $\not\equiv 0 \pmod{2}$. Half of the elts of $\{1, \ldots, 2^n\}$: $\frac{1}{2}2^n = 2^{n-1}$.

 $\phi(3^n)$: Number of elts of $\{1, \ldots, 3^n - 1\}$ that $\not\equiv 0 \pmod{3}$. $\frac{2}{3}$'s of the elts of $\{1, \ldots, 3^n\}$: $\frac{2}{3} \times 3^n = 2 \times 3^{n-1}$.

 $\phi(p^n)$: Number of elts of $\{1, \ldots, p^n\}$ that are $\not\equiv 0 \pmod{p}$. $\frac{p-1}{p}$ of the elts of $\frac{p-1}{p} \times p^n$: $(p-1)p^{n-1}$.

Computing ϕ

- 1. *p* prime, $\phi(p^n) = (p-1)p^{n-1}$)
- 2. a, b rel prime, $\phi(nm) = \phi(n)\phi(m)$.

If can factor *m* then can compute $\phi(m)$. The complexity of ϕ is not our current concern.

Vulcans have an alphabet of size 2ⁿ Klingons have an alphabet of size 3ⁿ Who is better off for using the affine cipher?

Vulcans have an alphabet of size 2ⁿ Klingons have an alphabet of size 3ⁿ Who is better off for using the affine cipher?

 $\phi(2^n) = 2^{n-1}$. If Vulcans pick an element of $\{1, \ldots, 2^n\}$ at random then prob that its rel prime to 2^n is $\frac{2^{n-1}}{2^n} = 0.5$.

ション ふゆ アメリア メリア しょうくしゃ

Vulcans have an alphabet of size 2ⁿ Klingons have an alphabet of size 3ⁿ Who is better off for using the affine cipher?

 $\phi(2^n) = 2^{n-1}$. If Vulcans pick an element of $\{1, \ldots, 2^n\}$ at random then prob that its rel prime to 2^n is $\frac{2^{n-1}}{2^n} = 0.5$. $\phi(3^n) = 2 \times 3^{n-1}$. If Klingons pick an element of $\{1, \ldots, 3^n\}$ at random then prob that its rel prime to 3^n is $\frac{2 \times 3^{n-1}}{3^n} \sim 0.66$.

Vulcans have an alphabet of size 2ⁿ Klingons have an alphabet of size 3ⁿ Who is better off for using the affine cipher?

 $\phi(2^n) = 2^{n-1}$. If Vulcans pick an element of $\{1, \ldots, 2^n\}$ at random then prob that its rel prime to 2^n is $\frac{2^{n-1}}{2^n} = 0.5$. $\phi(3^n) = 2 \times 3^{n-1}$. If Klingons pick an element of $\{1, \ldots, 3^n\}$ at random then prob that its rel prime to 3^n is $\frac{2 \times 3^{n-1}}{3^n} \sim 0.66$.

So Klingons better off.

Fill in the following sentence:

It is easier to use the affine cipher if the number of letters in the alphabet is XXXX because XXXX.

ANSWER:

It is easier to use the affine cipher if the number of letters in the alphabet is PRIME because ALL VALUES OF a in $\{1, \ldots, |\Sigma| - 1\}$ are fine to use.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

PROBLEM THREE SETUP

Alice and Eve play the game where

Alice randomly chooses to send Eve either (1) a perm generated by a random 7-letter keyword and a shift OR (2) a truly random perm. Eve tries to figure out which one.

In this problem we give Eve a strategy.

If Alice picks keyword-shift then the encoding table will ALWAYS have three consecutive letters in consecutive positions in the second row.

PROBLEM THREE-a ANSWER

a) Give an upper bound on how many perms of $\{a, \ldots, z\}$ have three consecutive letters in them? (It cannot be trivial or later problems will be harder.)

ANSWER: We form the perm by first picking the first letter in the set of three. We can do that 26 ways. Say its p. Then we place p, q, r where p is the first, second, ..., or 26th letter. We can do that 26 ways. Then the remaining 23 letters are permuted an placed around p, q, r. So there are

 $\leq 26 \times 26 \times 23!$ such perms.

b) Obtain an upper bound on the probability that a randomly chosen perm has three consecutive letters in them? Your bound has to be < 1. Express as a fraction in lowest terms, but also give an approximation in decimal.

ANSWER: Using the last part the bound is

$$\frac{26^2 \times 23!}{26!} = \frac{26^2}{26 \times 25 \times 24} = \frac{26}{25 \times 24} = \frac{13}{300} \sim 0.04333$$

ション ふゆ アメリア メリア しょうくしゃ
c) Alice and Eve are playing that really fun game where Alice randomly chooses to send Eve a perm generated by a random 7-letter keyword and a shift OR a truly random perm, and Eve tries to figure out which one.

Here is Eve's strategy: if the perm she gets has three consecutive letters then she'll guess it comes from Keyword-shift, otherwise rand perm.

ション ふゆ アメビア メロア しょうくしゃ

PROBLEM THREE-c ANSWER

- Bound prob Alice chose a k-shift cipher AND Eve got it wrong. ANSWER: Prob Alice chose a keyword-shift is ¹/₂. Prob Eve wrong is 0 since a k-shift ALWAYS has 3 consecutive.
- Bound prob Alice chose r-perms AND Eve got it wrong. ANSWER: Prob Alice chose r-perm is ¹/₂. Prob Eve wrong is prob a r-perm had 3 consecutive in a row: ¹³/₃₀₀. Prob both happen is

$$\frac{13}{300} \times \frac{1}{2} = \frac{13}{600} \sim 0.021666$$

▶ Bound Prob that Eve is wrong. ANSWER This is the sum of the two prior answers, so ¹³/₆₀₀ =~ 0.021666.

PROBLEM THREE: A Better Strategy by Andrew Frock

ALL of the information on the slides on this strategy are due to Andrew Frock.

If k-shift is used then the letters that are NOT the keyword are an increasing sequence (perhaps wrapped around) Example: Keyword ANDREWF, shift 4 then the cipher's bottom row is

V X Y Z A N D R E W F B C G H I J K L M O P Q S T U Notice the part after A N D R E W F and wrap it around: F B C G H I J K L M O P Q S T U V X Y Z

ション ふゆ アメビア メロア しょうくしゃ

It IS 19 letters increasing.

Eve's Strategy

- 1. If Eve sees 19 consecutive letters (include wrap-around) that are increasing then guess Keyword Shift. (She might still be wrong.)
- 2. If Eve does not sees 19 consecutive letters (include wrap-around) that are increasing then guess Rand Perm. (She will always be right.)

ション ふゆ アメビア メロア しょうくしゃ

Bound Prob that Eve is Wrong

Bound Prob Eve is wrong with (Prob that it is rand perm)×(Prob that a random perm has a 19-inc-seq) (Prob that it is rand perm)= $\frac{1}{2}$

ション ふゆ アメビア メロア しょうくしゃ

Need Prob that a random perm has a 19-inc-seq

Prob that a random perm has a 19-inc-seq Need bound on the number of perms that have a 19-inc-seq.

Pick the 19 elements: $\binom{26}{19}$. Pick where seq will start: 26 (because of wrap-around) Permute the 7 left: 7!

So number of ways is

$$\binom{26}{19} \times 26 \times 7!$$

ション ふゆ アメビア メロア しょうくしゃ

Bound Prob that Eve is Wrong. Almost Done

Prob that a random perm has a 19-inc-seq is

$$\frac{1}{2}\frac{\binom{26}{19}\times 26\times 7!}{26!}\sim 10^{-16}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Bound Prob that Eve is Wrong. Almost Done

Prob that a random perm has a 19-inc-seq is

$$\frac{1}{2} \frac{\binom{26}{19} \times 26 \times 7!}{26!} \sim 10^{-16}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

I would bet on Eve! But one caveat on the next slide.

Eve's strategy works!

But how long does it take? We want Eve to NOT brute force. Problem: Given a perm of $\{0, \ldots, 25\}$ determine if there 19 consecutive numbers (counting wrap around) that are increasing. Discuss how to solve fast.

Eve's strategy works!

But how long does it take? We want Eve to NOT brute force. Problem: Given a perm of $\{0, \ldots, 25\}$ determine if there 19 consecutive numbers (counting wrap around) that are increasing. Discuss how to solve fast.

Idea One: For all *i* see if beginning at *i* works. Takes 26×19 steps. Good Enough. Can we do better?

Eve's strategy works!

But how long does it take? We want Eve to NOT brute force. Problem: Given a perm of $\{0, \ldots, 25\}$ determine if there 19 consecutive numbers (counting wrap around) that are increasing. Discuss how to solve fast.

Idea One: For all *i* see if beginning at *i* works. Takes 26×19 steps. Good Enough. Can we do better?

Idea Two: Scan the list looking at every pair (σ_i, σ_{i+1}) . If $\sigma_i < \sigma_{i+1}$. If so then write a 1, else write a 0 (26 steps). Need to know if there are 19 1's in a row. Scan sequence keeping track of how many 1's in a row, starting back at 0 when you see a 0. (26 steps). So 2×26 .

Eve's strategy works!

But how long does it take? We want Eve to NOT brute force. Problem: Given a perm of $\{0, \ldots, 25\}$ determine if there 19 consecutive numbers (counting wrap around) that are increasing. Discuss how to solve fast.

Idea One: For all *i* see if beginning at *i* works. Takes 26×19 steps. Good Enough. Can we do better?

Idea Two: Scan the list looking at every pair (σ_i, σ_{i+1}). If

 $\sigma_i < \sigma_{i+1}$. If so then write a 1, else write a 0 (26 steps). Need to know if there are 19 1's in a row. Scan sequence keeping track of how many 1's in a row, starting back at 0 when you see a 0. (26 steps). So 2×26 .

More Interesting Problem this Inspires: Given a sequence of n numbers is there a set of k consecutive numbers that are increasing (count wrap around). Idea One: would take O(kn) steps. Idea Two: would take O(n) steps.

PROBLEM FOUR

Programming assignment. Not going to do that on the slides.

PROBLEM FIVE

Alice and Bob us Vig cipher with keyword justin. Alice sends

Bill's course on Ramsey Theory this spring will be awesome!

ANS: I used https://www.dcode.fr/vigenere-cipher to get:

Kcde'a pxojlm bw Lsfarh Nzxweh nzba fylago jrfd um nfykhur!

This leaks LOTS of information: Spacing, Punctuation, Cap letters.

The point of this problem is that many of the online available ciphers are awful for security.

Why do they do that? Discuss.

Finding Inverse Mod n

September 16, 2019

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) =

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) =

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) =

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3

```
GCD(m, n) is the largest number that divides m AND n.
Examples
GCD(10, 15) = 5
GCD(11, 15) = 1
GCD(12, 15) = 3
GCD(13, 15) =
```

```
GCD(m, n) is the largest number that divides m AND n.
Examples
GCD(10, 15) = 5
GCD(11, 15) = 1
GCD(12, 15) = 3
GCD(13, 15) = 1
```

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) =

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1

GCD(m, n) is the largest number that divides *m* AND *n*. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =

GCD(m, n) is the largest number that divides *m* AND *n*. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) = 15

GCD(m, n) is the largest number that divides *m* AND *n*. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) = 15GCD(15, 24) =

GCD(m, n) is the largest number that divides *m* AND *n*. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) = 15GCD(15, 24) = 3

GCD(m, n) is the largest number that divides *m* AND *n*. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) = 15GCD(15, 24) = 3GCD(15, 25) =

GCD(*m*, *n*) is the largest number that divides *m* AND *n*. Examples GCD(10, 15) =5 GCD(11, 15) =1 GCD(12, 15) =3 GCD(13, 15) =1 GCD(14, 15) =1 GCD(15, 15) =15 GCD(15, 24) =3 GCD(15, 25) =5

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) =5 GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) = 3GCD(15, 25) = 5GCD(15, 30) =

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) =5 GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) = 3GCD(15, 25) = 5GCD(15, 30) = 15

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) = 3GCD(15, 25) = 5GCD(15, 30) =15 GCD(15, 0) =

GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) = 3GCD(15, 25) = 5GCD(15, 30) =15 GCD(15, 0) = 15

GCD(404, 192) The Long Way

d div both 404 and 192 IFF d div 404 and 404 - 192 = 212.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ
d div both 404 and 192 IFF *d* div 404 and 404 - 192 = 212. *d* is largest divisor of both 404 and 192 IFF *d* is largest divisor of 404 and 404 - 192 = 212.

d div both 404 and 192 IFF d div 404 and 404 - 192 = 212. d is largest divisor of both 404 and 192 IFF d is largest divisor of 404 and 404 - 192 = 212.

Idea: Keep subtracting smaller from larger:

GCD(404, 192) = GCD(404 - 192 = 212, 192)

 $= \operatorname{GCD}(212 - 192 = 20, 192) = \operatorname{GCD}(20, 192 - 20 = 172).$

ション ふぼう メリン メリン しょうくしゃ

d div both 404 and 192 IFF d div 404 and 404 - 192 = 212. d is largest divisor of both 404 and 192 IFF d is largest divisor of 404 and 404 - 192 = 212.

Idea: Keep subtracting smaller from larger:

GCD(404, 192) = GCD(404 - 192 = 212, 192)

 $= \operatorname{GCD}(212 - 192 = 20, 192) = \operatorname{GCD}(20, 192 - 20 = 172).$

Could keep going, but will be subtracting 20's for a while. Idea: Subtract LOTS of 20's.

d div both 404 and 192 IFF d div 404 and 404 - 192 = 212. d is largest divisor of both 404 and 192 IFF d is largest divisor of 404 and 404 - 192 = 212.

Idea: Keep subtracting smaller from larger:

GCD(404, 192) = GCD(404 - 192 = 212, 192)

 $= \operatorname{GCD}(212 - 192 = 20, 192) = \operatorname{GCD}(20, 192 - 20 = 172).$

Could keep going, but will be subtracting 20's for a while. Idea: Subtract LOTS of 20's.Largest $x:192 - 20x \ge 0$, x = 9.

d div both 404 and 192 IFF d div 404 and 404 - 192 = 212. d is largest divisor of both 404 and 192 IFF d is largest divisor of 404 and 404 - 192 = 212.

Idea: Keep subtracting smaller from larger:

$$GCD(404, 192) = GCD(404 - 192 = 212, 192)$$

$$= \operatorname{GCD}(212 - 192 = 20, 192) = \operatorname{GCD}(20, 192 - 20 = 172).$$

Could keep going, but will be subtracting 20's for a while. Idea: Subtract LOTS of 20's.Largest $x:192 - 20x \ge 0$, x = 9.

$$= \operatorname{GCD}(20, 192 - 20 \times 9 = 12) = \operatorname{GCD}(20 - 12, 12) = \operatorname{GCD}(8, 12)$$

$$= \text{GCD}(8, 12 - 8 = 4) = \text{GCD}(8 - 2 \times 4, 4) = \text{GCD}(0, 4) = 4.$$

 $404 = 2 \times 192 + 20$

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \end{array}$

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \\ 20 = 1 \times 12 + 8 \\ 12 = 1 \times 8 + 4 \mbox{ (AH- 4 is the answer)}. \end{array}$

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ (AH- 4 is the answer). Can use this to write 4 as a combination of 404 and 192

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \\ 20 = 1 \times 12 + 8 \\ 12 = 1 \times 8 + 4 \ (\text{AH- 4 is the answer}). \\ \hline \text{Can use this to write 4 as a combination of 404 and 192} \\ \hline \text{Write 4 as a combo of 12's and 8's:} \\ 4 = 12 - 1 \times 8 \end{array}$

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \\ 20 = 1 \times 12 + 8 \\ 12 = 1 \times 8 + 4 \ (\text{AH- 4 is the answer}). \\ \hline \textbf{Can use this to write 4 as a combination of 404 and 192} \\ \hline \textbf{Write 4 as a combo of 12's and 8's:} \\ 4 = 12 - 1 \times 8 \\ \hline \textbf{Write 8 as a combo of 20's and 12's:} \\ 4 = 12 - 1 \times (20 - 12) = 2 \times 12 - 1 \times 20 \end{array}$

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ (AH- 4 is the answer). Can use this to write 4 as a combination of 404 and 192 Write 4 as a combo of 12's and 8's: $4 = 12 - 1 \times 8$ Write 8 as a combo of 20's and 12's: $4 = 12 - 1 \times (20 - 12) = 2 \times 12 - 1 \times 20$ Write 12 as combo of 192's and 20's: $4 = 2 \times (192 - 9 \times 20) - 1 \times 20 = 2 \times 192 - 19 \times 20$

ション ふぼう メリン メリン しょうくしゃ

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ (AH- 4 is the answer). Can use this to write 4 as a combination of 404 and 192 Write 4 as a combo of 12's and 8's: $4 = 12 - 1 \times 8$ Write 8 as a combo of 20's and 12's: $4 = 12 - 1 \times (20 - 12) = 2 \times 12 - 1 \times 20$ Write 12 as combo of 192's and 20's. $4 = 2 \times (192 - 9 \times 20) - 1 \times 20 = 2 \times 192 - 19 \times 20$ Write 20 as a combo of 404 and 192: $4 = 2 \times 192 - 19 \times (404 - 2 \times 192) = 39 \times 192 - 19 \times 404$ Upshot: GCD(m, n) is a combo of m and n

・ロト・西ト・モート 一日・ 今々で

 $101=2\times 38+25$

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$ $25 = 1 \times 13 + 12$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$ $25 = 1 \times 13 + 12$ 13 = 12 + 1 GREAT - 1 is GCD.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$ $25 = 1 \times 13 + 12$ 13 = 12 + 1 GREAT - 1 is GCD.

 $1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$ $25 = 1 \times 13 + 12$ 13 = 12 + 1 GREAT - 1 is GCD.

$$\begin{array}{l} 1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25 \\ 1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25 \end{array}$$

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$ $25 = 1 \times 13 + 12$ 13 = 12 + 1 GREAT - 1 is GCD.

$$1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25$$

$$1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25$$

$$1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$ $25 = 1 \times 13 + 12$ 13 = 12 + 1 GREAT - 1 is GCD.

$$1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25$$

$$1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25$$

$$1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101$$

$$1 = 8 \times 38 - 3 \times 101$$

Why is this interesting? Hint: What was our original goal?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$ $25 = 1 \times 13 + 12$ 13 = 12 + 1 GREAT - 1 is GCD.

$$1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25$$

$$1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25$$

$$1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101$$

$$1 = 8 \times 38 - 3 \times 101$$

Why is this interesting? Hint: What was our original g

Why is this interesting? Hint: What was our original goal? Take both sides mod 101 $1 = 8 \times 38 \pmod{101}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$ $25 = 1 \times 13 + 12$ 13 = 12 + 1 GREAT - 1 is GCD.

$$\begin{array}{l} 1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25 \\ 1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25 \\ 1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101 \\ 1 = 8 \times 38 - 3 \times 101 \\ \end{array}$$
Why is this interesting? Hint: What was our original goal?
Take both sides mod 101
$$1 = 8 \times 38 \pmod{101}$$
8 is the inverse of 38 mod 101

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Given m, n with m < n we want to know

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- Is there an inverse of m mod n
- If so then find it

Given m, n with m < n we want to know

- Is there an inverse of m mod n
- If so then find it
- 1. Find GCD(m, n). If it is NOT 1 then NO inverse.
- 2. If it IS 1 then use the work you did to find $\operatorname{GCD}(m, n)$ to find $a, b \in \mathbb{Z}$

$$am + bn = 1$$

$$am\equiv 1\pmod{n}$$

3. a is the inverse of $m \mod y$.

Given m, n with m < n we want to know

- Is there an inverse of m mod n
- If so then find it
- 1. Find GCD(m, n). If it is NOT 1 then NO inverse.
- 2. If it IS 1 then use the work you did to find $\operatorname{GCD}(m, n)$ to find $a, b \in \mathbb{Z}$

$$am + bn = 1$$

$$am\equiv 1\pmod{n}$$

a is the inverse of m mod y. Not quite: (1) a might be negative (2) a might be > n. That won't do!

Given m, n with m < n we want to know

- Is there an inverse of m mod n
- If so then find it
- 1. Find GCD(m, n). If it is NOT 1 then NO inverse.
- 2. If it IS 1 then use the work you did to find $\operatorname{GCD}(m, n)$ to find $a, b \in \mathbb{Z}$

$$am + bn = 1$$

$$am \equiv 1 \pmod{n}$$

ション ふぼう メリン メリン しょうくしゃ

 a is the inverse of m mod y. Not quite: (1) a might be negative (2) a might be > n. That won't do! Take a (mod n).